
VIEWER COMPONENTS

The software has five major components:

• A simple Viewer Application that allows you
to open and view OBJ files. This viewer is
extensible via plugins implementing a simple
interface. The idea is that solving an exercise
involves writing a plugin. Testing the plugin
involves running the viewer and loading the
plugin to check its behavior.

• A Core Library that provides classes to
represent a 3D scene: Scene, Object, Face,
Vertex, Camera... This library is used by the
application and your plugins.

• A GLWidget Library containg a GLWidget
class. The GLWidget class has little OpenGL
code. Instead, most of the GLWidget
implementation is devoted to enable users to
load an arbitrary number of plugins that
provide the typical functionalities of a 3D
application: setting up the OpenGL state,
loading shaders, drawing the scene by issuing
OpenGL rendering calls, and enabling some
user interaction (object selection, camera
control...).

• A Plugin Interface that provides the base
class for all plugins. A default (do nothing)
implementation is provided for all methods,
so most plugins need to override very few
methods (typically onPluginLoad(),
onObjectAdd(), and a subset of preFrame(),
postFrame, drawScene() and paintGL().
Within a plugin, you can use the scene() and
camera() methods to access the Scene and
the Camera. You can also access the
GLWidget with glwidget().

• Some Plugin examples that provide basic
functionality for the viewer.

CORE LIBRARY

INTRODUCTION

The core library contains a collection of classes for
representing 3D scenes.
A Scene represents a collection of 3D objects.
Each 3D Object contains a collection of vertices
and a collection of faces.
A Vertex stores per-vertex attributes (such as
vertex coordinates).
A Face is a collection of vertex indices. Faces do
not hold directly vertex coordinates; instead, faces
store vertex indices, that is, integers indicating the
position of each vertex in the vector of vertices
associated with every 3D Object.
The library also provides a simple Camera class,
and basic math classes for representing Points and
Vectors in 3D space.

BOX

The Box class represents a box in 3D space
through its (min, max) corners. This class is
suitable for representing axis-aligned boxes (but
not oriented boxes). A typical use is for
representing the bounding box of an object or
group of objects.

#include <box.h>

Public Member Functions

 Box (const Point &point=Point())

 Box (const Point &minimum, const Point
&maximum)

void expand (const Point &p)

void expand (const Box &b)

void render ()

Point center () const

float radius () const

CAMERA

The Camera class represents a perspective
camera.

#include <camera.h>

Public Member Functions

void init (const Box &b)

QMatrix4x4 modelviewMatrix () const

QMatrix4x4 projectionMatrix () const

Point getObs () const

void setAspectRatio (float ar)

void updateClippingPlanes (const Box &)

void incrementDistance (float inc)

void incrementAngleX (float inc)

void incrementAngleY (float inc)

void pan (const Vector &offset)

FACE

The Face class represents a face of a 3D object.
Each face keeps a list of vertices (actually vertex
indices) and a normal vector. The face is assumed
to be convex.

#include <face.h>

Public Member Functions

 Face ()

 Face (int i0, int i1, int i2, int i3=-1)

void addVertexIndex (int i)

int numVertices () const

int vertexIndex (int i) const

Vector normal () const

void computeNormal (const vector< Vertex >
&verts)

OBJECT

The Object class represents a 3D object. Each
object consists of a collection of vertices and a
collection of faces. Objects also store a bounding
box.
#include <object.h>

Public Member Functions

 Object (std::string name)

void readObj (const char
*filename)

Box boundingBox () const

const vector< Face >
& faces () const

const vector< Vertex
> & vertices () const

vector< Vertex > & vertices ()

void computeNormals ()

void computeBoundingBox ()

POINT

The Point class represents a point (x,y,z) in 3D
space. For the sake of simplicity, Point is
implemented as a typedef of Qt's QVector3D.
#include <point.h>

Example of use:
 #include "point.h"
 #include "vector.h"
 // create two points
 Point p = Point(0.0, 0.0, 0.0);
 Point q = Point(1.0, 0.0, 0.0);
 // get coordinate values
 float x = p.x();
 // set coordinate values
 p.setX(2.0);
 // common operations
 Vector v = p - q; // point substraction
 Point r = 0.4*p + 0.6*q; // barycentric sum

http://qt-project.org/doc/qt-4.8/qvector3d.html

SCENE

The Scene class represents a 3D scene as a flat
collection of 3D objects. A scene is basically a
vector of 3D objects.
#include <scene.h>

Public Member Functions

 Scene ()

const vector< Object
> & objects () const

void addObject (Object &)

int selectedObject () const

void setSelectedObject (int
index)

void computeBoundingBox ()

Box boundingBox () const

VECTOR

The Vector class represents a vector (x,y,z) in 3D
space. For the sake of simplicity, Vector is
implemented as a typedef of Qt's QVector3D.

#include <vector.h>

Example of use:
 #include "point.h"
 #include "vector.h"
 // create two vectors
 Vector u = Vector(0.0, 0.0, 0.0);
 Vector v = Vector(1.0, 0.0, 0.0);

 // get components
 float x = u.x();

 // set components
 u.setX(2.0);

 // get length
 float len = u.length();

 // normalize (in place)

 u.normalize();

 // get normalized copy
 v = u.normalized();

 // common operations
 Vector w;
 w = u + v; // vector addition
 w = u - v; // vector substraction
 w = 2.0*u; // scalar multiplication
 float dot = dotProduct(u, v); // dot product
 w = crossProduct(u, v); // cross product

VERTEX

The Vertex class represents a vertex with a single
attribute (vertex coordinates).
#include <vertex.h>

Public Member Functions

 Vertex (const Point &coords)

Point coord () const

void setCoord (const Point &coord)

GLWIDGET LIBRARY

INTRODUCTION

The GLWidget library contains a single class:
GLWidget . The main purpose of this class, which
is derived from QGLWidget, is to provide a very
basic implementation of the well-known methods
initializeGL() , paintGL() and resizeGL().

GLWidget has little OpenGL rendering code.
Instead, GLWidget loads an arbitrary number of
plugins that provide the typical functionalities of a
3D application. The viewer application makes use
of this library. Indeed, the plugins you will create
will also require using this library to get access to
important objects such as the 3D scene and the
camera.

Overview
The GLWidget class holds basically three different
pieces of information: a scene, a camera, a list of
loaded plugins.
Most of the code in GLWidget deals with invoking
appropriate methods from the plugins:
• Everytime a new plugin is loaded, its

onPluginLoad() method is called.
• Everytime a new object is added to the

scene, the onObjectAdd() method of all
loaded plugins is invoked.

• The GLWidget::paintGL() method performs
three basic steps: 1) call preFrame() for all
plugins, 2) call paintGL() for the plugin that
implements it, and 3) call postFrame() for all
plugins.

• Mouse and keyboard events (keyPressEvent
and so on) are propagated to all loaded
plugins.

GLWIDGET

The GLWidget class handles OpenGL rendering
through plugins.
#include <glwidget.h>

Public Slots & Member functions

 void addObject ()

 void addObjectFromFile (const
QString &filename)

 void resetCamera ()

 void drawAxes () const

 Box boundingBoxIncludingAxes
() const

 void loadPlugin ()

 void loadPlugins (const
QStringList &list)

 void loadDefaultPlugins ()

 GLWidget (QWidget
*parent)

QGLShaderProgram* defaultProgram ()

PLUGIN INTERFACE

INTRODUCTION

The Plugin interface contains a single class:
BasicPlugin . All viewer plugins must derive from
this class.
A default implementation is provided for all
methods, so most plugins need to override very
few methods, e.g. onPluginLoad(), onObjectAdd(),
and a subset of preFrame(), postFrame,
drawScene() and paintGL().
Within a plugin, you can use the scene() and
camera() methods to access the Scene and the
Camera .

BASICPLUGIN

#include <basicplugin.h>

Public Member Functions

 BasicPlugin ()

virtual void onPluginLoad ()

virtual void onObjectAdd ()

virtual void preFrame ()

virtual void postFrame ()

virtual void keyPressEvent (QKeyEvent *)

virtual void keyReleaseEvent (QKeyEvent *)

virtual void mouseMoveEvent (QMouseEvent *)

virtual void mousePressEvent (QMouseEvent *)

virtual void mouseReleaseEvent(QMouseEvent*
)

virtual void wheelEvent (QWheelEvent *)

virtual bool paintGL ()

virtual bool drawScene ()

Scene * scene ()

Camera* camera ()

BasicPlugin*
 drawPlugin ()

GLWidget * glwidget ()

http://qt-project.org/doc/qt-4.8/qvector3d.html

	Viewer Components
	CORE LIBRARY
	Introduction
	Box
	Camera
	Face
	Object
	POINT
	Scene
	Vector
	Vertex

	GLWidget Library
	Introduction
	GLWidget

	Plugin interface
	Introduction
	BasicPlugin

