
Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Master in Data Science

Mining Unsupervised Data
Word Classification



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification setup
and notation

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification setup
and notation

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Classification setup and notation

Generally we have a training dataset consisting of samples

{xi, yi}Ni=1

xi are inputs, e.g. words (indices or vectors), sentences,
documents, etc

Dimension d.

yi are labels (one of C classes) we try to predict, for
example:

classes: sentiment, named entities, buy/sell decision
other words
later: multi-word sequences



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification setup
and notation

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Classification setup and notation (II)

Figure: Simple illustration case: Fixed 2D word vectors to classify.
Using softmax/logistic regression. Linear decision boundary.



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Softmax Classifier

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Softmax Classifier

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Softmax Classifier

Training Data:

Traditional ML approach:

train (I.e. set) softmax/logistic regression weights
W ∈ RC×d to determine a decision boundary
(hyperplatne)

Method: For each x, predict:

p(y|x; θ) = e(Wy×x)∑C
c=1 e

(Wc×x)



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Softmax Classifier

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Softmax Classifier (II)

p(y|x; θ) = e(Wy×x)∑C
c=1 e

(Wc×x)

We can tease apart the prediction function into two steps:

1 Take the yth row of W and multiply that row with x:
Wy × x =

∑
Wyixi

d
I=1 = fy Compute all fc for

c = 1, . . . , c

2 Apply softmax function to get the normalised probability:

p(y|x; θ) = efy∑C
c=1 e

fc
= softmax(fy)



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Softmax Classifier

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Cross-entropy loss

For each training example (x, y), our objective is to
maximise the probability of the correct class y

This is equivalent to minimising the negative log
probability of that class:

−logp(y|x; θ) = −log( efy∑C
c=1 e

fc
)

Using log probability converts our objective function to
sums, which is easier to work with on paper and in
implementation.



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Softmax Classifier

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Cross-entropy loss (II)

Concept of ”cross entropy” is from information theory

Let the true probability distribution be p

Let our computed model probability be q

The cross entropy is:

H(p, q) =

C∑
c=1

p(c) · log(q(c))

Assuming a ground truth (or true or gold or target)
probability distribution that is 1 at the right class and 0
everywhere else: p = [0, . . . , 0, 1, 0, . . . 0] then:

Because of one-hot p, the only term left is the negative
log probability of the true class



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Softmax Classifier

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Cross-entropy loss (III)

Cross entropy loss function over full dataset xi, yi
N
i=1

J(θ) =
1

N
·
N∑
i=1

−log( efyi∑C
c=1 e

fc
)

In general:

θ =

W1

. . .
WC

 =W ∈ RC·d

So we only update the decision boundary via:

OJ(θ) =

OW1

. . .
OWC

 ∈ RC·d



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Softmax with
trainable Word
Vectors

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Softmax with
trainable Word
Vectors

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Softmax with trainable Word Vectors

Commonly in NLP deep learning:

We learn both W and word vectors x
We learn both conventional parameters and representations
The word vectors re-represent one-hot vectors (move them
around in an intermediate layer vector space) for easy
classification with a (linear) softmax classifier

OθJ(θ) =



OW1

. . .
OWd

Oxword1
. . .

Oxwordv

 ∈ RC·d+V ·d

! But V · d is big!



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Neural Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Neural Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Neural Network Classifier

Softmax (≈ logistic regression) alone not very powerful

Softmax gives only linear decision boundaries This can be
quite limiting: Unhelpful when a problem is complex

Solution: Neural Networks can learn much more complex
functions and nonlinear decision boundaries

Figure: Non-linear decision boundary



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Neural Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Neural Computation



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Neural Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

A Neuron

A neuron can be a binary logistic regression unit

f = nonlinear activation function (e.g. sigmoid), w =
weights, b = bias, h = hidden, x = inputs

hw,b(x) = f(wT · x+ b)

f(z) =
1

1 + e−z

b = We can have an ”always on” feature, which gives a
class prior, or separate it out, as a bias term

w, b are the parameters of this neuron i.e., this logistic
regression model



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Neural Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

A Neuron

(a) Single Neuron (b) Sigmoid



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Neural Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Neural Network

A neural network = running several logistic regressions at
the same time

If we feed a vector of inputs through a bunch of logistic
regression functions, then we get a vector of outputs ...

Figure: Neural Network with 3 neurons

But we don’t have to decide ahead of time what variables these
logistic regressions are trying to predict!



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Neural Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Neural Network (II)

... which we can feed into another logistic regression function

It is the loss function that will direct what the
intermediate hidden variables should be, so as to do a
good job at predicting the targets for the next layer, etc.

And if we add more layers... Before we know it, we have a
multi-layer neural network....

Figure: Multi-layer Neural Network



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Neural Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Neural Network (III)

In a Multi-layer Perceptron (MLP)

h(c1|x; θ) = σ(z) =
1

1 + e−z

z is no longer lineal

h(ck|x; θ) =
ezk∑
j e

zj

Then:

h21 = f(W 1
11 · x1 +W 1

12 · x2 +W 1
13 · x3 + b11)

h22 = f(W 1
21 · x1 +W 1

22 · x2 +W 1
23 · x3 + b12)

The activation function is applied element-wise
f([z21 , z

2
2 , z

2
3 ]) = [f(z21), f(z

2
2), f(z

2
3)]



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Neural Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

The need of Non-linearity

Without non-linearities, deep neural networks can’t do
anything more than a linear transform

Extra layers could just be compiled down into a single
linear transform: W 1 ·W 2 · x =W · x
More layers approximate more complex functions

Figure: Common activation functions

You can ”play” with them in the TensorFlow Playground

https://playground.tensorflow.org/


Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Named Entity
Recognition (NER)

Beyond
Word-window
Classification

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Named Entity
Recognition (NER)

Beyond
Word-window
Classification

Conclusions

Named Entity Recognition - Recap

We have already introduced the Named Entity Recognition
task in the previous session

Remember that NER aims to find spans of text that are
proper names and classify them according to their type:
PER (person), LOC (location), ORG (organization), etc.

We saw that one approach was to use Conditional
Random Fields (CRFs)

Today we will explore neural approaches to NER using
word embeddings



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Named Entity
Recognition (NER)

Beyond
Word-window
Classification

Conclusions

Neural Architectures for NER

Neural architectures for NER typically consist of three
main components:

1 Word representation layer: converts words to vectors
2 Context encoder: captures contextual information
3 Tag decoder: assigns entity tags to each word

Different neural architectures vary in these components

Today we’ll focus on architectures using word embeddings
for representation



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Word-window
Classification

Beyond
Word-window
Classification

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Word-window
Classification

Beyond
Word-window
Classification

Conclusions

Word-window Classification

Idea: classify a word in its context window of neighboring
words.

Ex: “Museums in Paris are amazing”
to classify whether or not the center word “Paris” is a
named-entity

For example, Named Entity Classification of a word in
context:

Person, Location, Organization, None

A simple way to classify a word in context might be to
average the word vectors in a window and to classify the
average vector

Problem: that would lose position information



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Word-window
Classification

Beyond
Word-window
Classification

Conclusions

Word-window Classification (II)

Train softmax classifier to classify a center word by taking
the concatenation of words surrounding in a window

Ex: Classify ”Paris” in the context of this sentence with
window length 2:

Resulting vector wwindow = x ∈ R5·d, a column vector!



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Word-window
Classification

Beyond
Word-window
Classification

Conclusions

Word-window Classification (III)

With x = xwindow we can use the softmax classifier

p(y|x; θ) = ezy∑
j e

zj
=

eWy ·x∑
j e

Wj ·x

With cross-entropy loss:

J(θ) =
1

N

N∑
i=1

−log( ezyi∑C
j=1 e

zj )

How do you update the word vectors?

Short answer: Just take derivatives and optimize



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Word-window
Classification

Beyond
Word-window
Classification

Conclusions

Word-window Classification - Binary Logistic
Classifier

Train logistic classifier on hand-labeled data to classify
center word {yes / no} for each class based on a
concatenation of word vectors in a window

Ex: Classify “Paris” as +/– location in context of sentence
with window length 2:



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Word-window
Classification

Beyond
Word-window
Classification

Conclusions

Word-window Classification - Binary Logistic
Classifier (II)

We do supervised training and want high score if it’s a
location



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Stochastic Gradient
Descent

Beyond
Word-window
Classification

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Stochastic Gradient
Descent

Beyond
Word-window
Classification

Conclusions

Stochastic Gradient Descent

Update equation gradient descent:

θnew = θold − α · OθJ(θ)

J(θ) =
1

N

N∑
i=1

−log( ezyi∑C
j=1 e

zj
)

Update equation stochastic gradient descent (SGD):

θnew = θold − α · OθJi(θ;xi, yi)

1 Randomly shuffle dataset
2 For every training sample (i) in the dataset-¿apply the

update rule

We can also update the parameter every minibatch, which
means a few number of samples.



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Stochastic Gradient
Descent

Beyond
Word-window
Classification

Conclusions

Gradients

Given a function with 1 output and n inputs:
f(x) = f(x1,x2, . . . , xn)

Its gradient is a vector of partial derivatives with respect
to each input: ∂f

∂x = [ ∂f∂x1 ,
∂f
∂x2

, . . . , ∂f∂xn ]

Now given a function f with m outputs and n inputs, its
Jacobian is:

∂f

∂x
=


∂f1
∂x1

(x) ∂f1
∂x2

(x) . . . ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) . . . ∂f2
∂xn

(x)
...

...
. . .

...
∂fm
∂x1

(x) ∂fm
∂x2

(x) . . . ∂fm
∂xn

(x)





Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Stochastic Gradient
Descent

Beyond
Word-window
Classification

Conclusions

Gradients (II)

Let’s find ∂s
∂b

1

1In actuality, we care about the gradient of the loss Ji but we will
compute the gradient of the score for simplicity



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Stochastic Gradient
Descent

Beyond
Word-window
Classification

Conclusions

Gradients (III)

We apply the chain rule

Ex: Derivative of s respect to b:

s = uT · h h = f(z) z =W · x+ b

∂s

∂b
=
∂s

∂h
· ∂h
∂z
· ∂z
∂b



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Stochastic Gradient
Descent

Beyond
Word-window
Classification

Conclusions

Computational Graph

Software represents our neural net equations as a graph

Source nodes: inputs
Interior nodes: operations
Edges pass along result of the operation

Figure: Forward Pass



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Stochastic Gradient
Descent

Beyond
Word-window
Classification

Conclusions

Computational Graph (II)

Then do the backward pass

Figure: Backpropagation



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Stochastic Gradient
Descent

Beyond
Word-window
Classification

Conclusions

Computational Graph (III)

Backpropagation in a single node:

Node receives an “upstream gradient”
Goal is to pass on the correct “downstream gradient”
Each node has a local gradient

The gradient of its output with respect to its input



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Other considerations

Beyond
Word-window
Classification

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Other considerations

Beyond
Word-window
Classification

Conclusions

Faster Activation Functions

LReLU (Leaky Retified Linear Unit - Leaky ReLU):
Modification ReLU that avoids the ”dying ReLU” problem,
where neurons stop firing due to a zero output
Introduces a small, non-zero slope for negative inputs
(f(x) = max(α · x, x))
Can avoid the vanishing gradient problem, which can occur
when using sigmoid or other saturating activation functions
Allows a small, non-zero gradient when the input is
negative, which can prevent the gradient from becoming
too small
This can lead to faster convergence and better accuracy in
some cases.

ELU (Exponential Linear Unit):
Avoids the ”dying ReLU” problem and has a smooth
output

SELU (Scaled Exponential Linear Unit):
Self-normalizing activation function that can significantly
improve the performance



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Other considerations

Beyond
Word-window
Classification

Conclusions

Parameter Initialization

Proper initialization of model parameters is crucial for
effective training and convergence. Popular approaches
include:

Random: e.g., uniform or normal distribution
He: scaled version of random initialization, designed for
ReLU activations
Xavier: Scaled version of random initialization

Designed for sigmoid/tanh activations that have a linear
region
Sets the variance of the weights to V ar(Wi) =

2
nin+nout

,
where nin is the number of input neurons and nout is the
number of output neurons

Glorot: Combination of He and Xavier
Pre-trained word-embeddings: Using pre-trained
word-embeddings, such as GloVe or Word2Vec, to initialize
the embedding layer of the model

In general, we initialize the weights to small random values
and biases to 0 in the hidden layers.



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Other considerations

Beyond
Word-window
Classification

Conclusions

Optimizers: SGD

SGD is a commonly used optimizer for neural network
training

The method iteratively adjusts the model’s parameters by
computing the gradient of the loss function with respect
to the parameters for a randomly selected sample
(stochastic) of the training data.

Simple and efficient.

However, getting good results often requires hand-tuning
the learning rate

Learning rate determines the step size that the optimizer
takes to update the weights and biases
Inappropriate values can cause the optimizer to converge
too slowly or too quickly



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Other considerations

Beyond
Word-window
Classification

Conclusions

Adaptative Optimization Algorithms

They scale the learning rate of each parameter based on
the accumulated gradient history

This provides a per-parameter learning rate that can
perform well in settings with high curvature, noisy
gradients, and sparse data

Popular adaptive optimizers include:

Adagrad: divides the learning rate by the sum of the
squares of past gradients
RMSprop: exponentially decays the average of past
squared gradients to normalize the learning rate
Adam: combines the benefits of Adagrad and RMSprop by
using both first and second moments of past gradients
SparseAdam: similar to Adam, but optimized for sparse
gradients

Each optimizer has its own strengths and weaknesses



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Other considerations

Beyond
Word-window
Classification

Conclusions

Learning Rate

In NLP models, the learning rate plays a crucial role in
training and convergence.
Learning rate determines the size of the step the optimizer
takes in the direction of the negative gradient to update
the weights and biases of the model.

High LR can cause the model to overshoot the optimal
point and diverge
Low LR can result in the model taking too long to
converge or getting stuck in local minima

A while a low learning rate can result in the model taking
too long to converge or getting stuck in local minima
NLP models can benefit from using:

Learning rate schedules
Adaptive optimization algorithms (previous slide)

Fine-tuning pre-trained models for downstream NLP
tasks may require using a smaller learning rate than for
training the original model



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Other considerations

Beyond
Word-window
Classification

Conclusions

Regularization

Regularization (largely) prevents overfitting when we have
a lot of features (or later a very powerful/deep model)

L1 regularization: adds the sum of absolute values of
weights to the loss function

Lreg = L+ λ

n∑
i=1

|wi|

L2 regularization: adds the sum of squares of weights to
the loss function

Lreg = L+ λ

n∑
i=1

w2
i



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Other considerations

Beyond
Word-window
Classification

Conclusions

Regularization (II)

Figure: Representation of the effect of L1 (left) and L2 (right)
Regularization. Red lines represent local minima. The red area
represents optimal values for the regularization term.



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Other considerations

Beyond
Word-window
Classification

Conclusions

Regularization (III)

Dropout: randomly sets a fraction of the units to zero
during training

y =

{
x with probability 1− p
0 with probability p



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Limitations of Word-window Classification

The sliding window approach has several limitations:

Limited window size: Fixed context cannot capture
long-range dependencies
Local patterns only: Only captures patterns in the
immediate neighborhood of the token
No morphological information: Cannot leverage subword
information (prefixes, suffixes, etc.)
Sparse representations: Out-of-vocabulary words are
problematic
Parameter inefficiency: Each position in window has
separate parameters

These limitations motivate more sophisticated neural
architectures



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Convolutional Neural
Networks for NER

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Convolutional Neural
Networks for NER

Conclusions

Convolutional Neural Networks for NER

Convolutional Neural Networks (CNNs) can overcome
some limitations of the word-window approach

CNNs apply filters across the input sequence to detect
patterns at different positions

Key benefits:

Parameter sharing: Same filters applied at different
positions
Hierarchical feature extraction: Stacked CNNs can
capture increasingly complex patterns
Position invariance: Through pooling operations
Variable-length inputs: Can handle sentences of different
lengths



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Convolutional Neural
Networks for NER

Conclusions

CNN Architecture for NER

Input Sentences
(seq len)

Word Embedding
(seq len, embed dim)

Convolution 1D
(seq len, filters)

Max Pooling 1D
(pooled len, filters)

Flatten
(pooled len× filters)

Fully Connected
(num classes)

Softmax
(num classes)

NER Tags



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Convolutional Neural
Networks for NER

Conclusions

CNN for Word Classification

For a sequence of words {w1, w2, ..., wn} with embeddings
{e1, e2, ..., en}:

Apply convolutional filters of width k:
fj(ei, ei+1, ..., ei+k−1)
Each filter produces a feature map:
cj = [cj,1, cj,2, ..., cj,n−k+1]
Apply max-pooling over each feature map: ĉj = max(cj)
Concatenate pooled features from all filters to get a
fixed-length representation
Feed into fully connected layer and softmax for
classification

This architecture effectively captures local patterns in text



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Convolution Filters
for Text Processing

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Convolution Filters
for Text Processing

Conclusions

Convolution Operations for NLP

Convolution filters extend word windows with several
advantages:

Parameter sharing: Same filter applied across the
sequence
Flexible window sizes: Multiple filter sizes capture
different n-gram patterns
Feature detection: Learn to recognize patterns like
negations or entity markers

Mathematical representation:

yi = f(wi:i+n · θ + b)

where f is typically a non-linear activation function
(ReLU)



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Convolution Filters
for Text Processing

Conclusions

Pooling Mechanisms

Pooling operations aggregate filter outputs to:

Reduce dimensionality
Create position-invariant features
Control overfitting

Max-pooling selects the strongest feature signal:

Yi = max(yi, yi+1, ..., yi+m)

This operation enables capturing the most salient features
regardless of their position



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Convolution Filters
for Text Processing

Conclusions

Multi-Layer Convolutions

Stacked convolutional layers learn hierarchical
representations:

First layer: Low-level lexical features (character/word
sequences)
Higher layers: Abstract syntactic/semantic patterns (entity
structures)

Mathematical formulation of stacked layers:

Y 1[i] = f(W 1 ∗X[i : i+ k1] + b1)

Y 2[j] = f(W 2 ∗ Y 1[j : j + k2] + b2)

where ∗ represents convolution operation with stride s



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Character-level
Embeddings

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Character-level
Embeddings

Conclusions

Character-level Embeddings

Word embeddings alone face critical limitations:

Out-of-vocabulary words: Cannot handle unseen words
Missing morphology: Ignore important subword features
Rare words: Poor representations for infrequent terms

Character-level embeddings address these issues by:

Representing words as character sequences
Learning subword patterns automatically
Enabling better modeling of morphologically rich languages
Handling unseen words and misspellings gracefully



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Character-level
Embeddings

Conclusions

CNN for Character-level Embeddings

For each word, represent it as a sequence of character
embeddings

Apply CNN over character sequence for fixed-size word
representation:

Convolutional layer with multiple filter widths (capturing
n-grams)
Max-pooling over time to extract salient character patterns

Character-based CNNs effectively capture:

Morphological patterns (prefixes, suffixes)
Character-level regularities in named entities



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Character-level
Embeddings

Conclusions

CNN for Character-level Embeddings (II)

Figure: CNN for Character-level Embeddings



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Character-level
Embeddings

Conclusions

Hybrid Word Representation

Combining complementary representations improves
performance:

Word embeddings: Capture semantic and distributional
information
Character embeddings: Capture morphological and
orthographic patterns

The concatenated representation provides a more robust
word encoding:

wfinal = [wpretrained;wchar−cnn]

This hybrid approach effectively handles both seen and
unseen words



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Character-level
Embeddings

Conclusions

Word Embeddings + Character Embeddings (II)

Figure: Hybrid Word Representation: Word + Character Embeddings



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Character-level
Embeddings

Conclusions

Complete Architecture: Embeddings + CNN +
MLP + Softmax

The complete architecture combines:

1 Input representation: Hybrid word+character
embeddings

2 Feature extraction: CNN layers for contextual pattern
recognition

3 Hidden layers: MLP with non-linear activations
4 Output layer: Softmax for entity type classification

This architecture effectively addresses the core challenges
of NER:

Handling unseen entities through character-level patterns
Capturing local context through convolution operations
Learning non-linear decision boundaries for entity
classification



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Character-level
Embeddings

Conclusions

Beyond CNNs: State-of-the-Art Architectures

CNNs still face certain limitations:

Difficulty capturing long-range dependencies
Limited modeling of sequential information

State-of-the-art pre-Transformer architectures combined:

CNN for character-level features
BiLSTM for capturing bidirectional context
CRF layer for modeling label dependencies

The CNN+BiLSTM+CRF architecture achieved excellent
results on NER benchmarks

BiLSTMs and their integration with CNNs will be covered
in future sessions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Outline

1 Classification Task with Neural Networks
Classification setup and notation
Softmax Classifier
Softmax with trainable Word Vectors
Neural Networks

2 Classification Tasks in NLP
Named Entity Recognition (NER)
Word-window Classification
Stochastic Gradient Descent
Other considerations

3 Beyond Word-window Classification
Convolutional Neural Networks for NER
Convolution Filters for Text Processing
Character-level Embeddings

4 Conclusions



Mining
Unsupervised

Data

Classification
Task with
Neural
Networks

Classification
Tasks in NLP

Beyond
Word-window
Classification

Conclusions

Conclusions

Neural networks excel at NER through their ability to:

Capture non-linear patterns in text
Learn hierarchical representations from raw data
Combine different levels of linguistic information

Character-level embeddings effectively address OOV and
morphological challenges

Hybrid word+character representations provide robust
input for neural architectures

Modern NER systems benefit from combining CNNs with
sequence modeling (BiLSTMs) and structured prediction
(CRFs)

Deep learning for NLP requires careful architecture design
and hyperparameter selection


	Classification Task with Neural Networks
	Classification setup and notation
	Softmax Classifier
	Softmax with trainable Word Vectors
	Neural Networks

	Classification Tasks in NLP
	Named Entity Recognition (NER)
	Word-window Classification
	Stochastic Gradient Descent
	Other considerations

	Beyond Word-window Classification
	Convolutional Neural Networks for NER
	Convolution Filters for Text Processing
	Character-level Embeddings

	Conclusions

