
Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Master in Data Science

Mining Unstructured Data
12. LLM & LLM-based Assistants



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

History of LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

History of LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

History of Transformer-based LLMs

BERT
Pre-training Objective: Masked Language Modeling
(MLM)
Base Architecture: Encoder-only Transformer
Size: 340M parameters
Training Dataset Size: 13GB (Wikipedia + BooksCorpus)
Year: 2018
Main Contribution: Introduced bidirectional context and
MLM for pre-training

T5
Pre-training Objective: Text-to-Text Transfer Transformer
(T5)
Base Architecture: Encoder-decoder Transformer
Size: 11B parameters
Training Dataset Size: 750GB (C4)
Year: 2019
Main Contribution: Unified natural language understanding
and generation tasks under a text-to-text framework



Mining
Unstructured

Data

Large
Language
Models

History of LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

History of Transformer-based LLMs

BART
Pre-training Objective: Denoising Autoencoder (DAE)
Base Architecture: Encoder-decoder Transformer
Size: 400M parameters
Training Dataset Size: 160GB (Wikipedia + BookCorpus)
Year: 2019
Main Contribution: Introduced a flexible DAE objective
that can handle various types of noise and improve text
generation quality

GPT-2
Pre-training Objective: Autoregressive Language Modeling
(ALM)
Base Architecture: Decoder-only Transformer
Size: 1.5B parameters
Training Dataset Size: 40GB (WebText)
Year: 2019
Main Contribution: Improved the quality and diversity of
text generation with a larger model and dataset



Mining
Unstructured

Data

Large
Language
Models

History of LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

History of Transformer-based LLMs

XLNet
Pre-training Objective: Permutation Language Modeling
(PLM)
Base Architecture: Encoder-only Transformer with
recurrence mechanism
Size: 110M (base), 340M (large)
Training Dataset Size: 40GB (WebText)
Year: 2019
Main Contribution: Introduced a novel PLM objective that
preserves bidirectional context and avoids the
pretrain-finetune discrepancy



Mining
Unstructured

Data

Large
Language
Models

History of LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

History of Transformer-based LLMs

GPT-3
Pre-training Objective: Autoregressive Language Modeling
(ALM)
Base Architecture: Decoder-only Transformer
Size: 175B parameters
Training Dataset Size: 570GB (Common Crawl +
WebText2 + Books1/2/3 + Wikipedia + CC-News +
OpenWebText + Stories + RealNews)
Year: 2020
Main Contribution: Scaled up ALM to a very large model
and demonstrated zero-shot and few-shot capabilities



Mining
Unstructured

Data

Large
Language
Models

History of LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

History of Transformer-based LLMs

GPT-3.5 & InstructGPT & ChatGPT
Pre-training Objective: Autoregressive Language Modeling
(ALM)
Base Architecture: Decoder-only Transformer
Size: 175B parameters, same as GPT-3 + Reward Model
(RM). Also released smaller models of 1.3B and 6B
parameters.
Training Dataset Size: LM Undisclosed (+570GB?) + RL
Human ratings to outputs.
Year: 2022
Main Contribution: Reinforcement Learning from Human
Feedback (RLHF) and Supervised Fine Tuning (SFT) to
align with human values and policies.



Mining
Unstructured

Data

Large
Language
Models

History of LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

History of Transformer-based LLMs

BLOOM
Pre-training Objective: Autoregressive Language Modeling
(ALM)
Base Architecture: Decoder-only Transformer
Size: 175B parameters
Training Dataset Size: 1.6TB (ROOTS)
Year: 2022
Main Contribution: Open source and trained on a large
multilingual corpus covering 46 languages and 13
programming languages



Mining
Unstructured

Data

Large
Language
Models

History of LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

History of Transformer-based LLMs

GPT-4
Pre-training Objective: Autoregressive Language Modeling
(ALM)
Base Architecture: Undisclosed, Decoder-only
Transformer?
Size: Undisclosed, +175B parameters?
Training Dataset Size: Undisclosed
Year: 2023
Main Contribution: Multimodality, processes both images
and text inputs to produce text outputs



Mining
Unstructured

Data

Large
Language
Models

Datasets for LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

Datasets for LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Datasets for LLM

To train LLMs and ChatGPT-like assistants, we need large
and varied datasets

Large datasets help the models achieve higher accuracy,
fluency, and diversity in their outputs

Varied datasets help the models cover different domains,
languages, and modalities, such as web pages, books,
code, images, and audio

Some examples of large and varied datasets are Common
Crawl, The Pile, MassiveText, Wikipedia, GitHub, Alpaca,
LAION-5B, and Awesome Instruction Dataset



Mining
Unstructured

Data

Large
Language
Models

Datasets for LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

The Pile Dataset (I)

For example, “The Pile” Dataset (GPT3-NeoX) includes the
following components:

Pile-CC: A collection of website crawls from 2008
onwards, with diverse domains but varying quality data.

PubMed Central: A subset of the PubMed repository for
biomedical articles providing open, full-text access to
nearly five million publications, with a focus on the
medical domain.

Books3: A dataset of books, almost an order of
magnitude larger than the next largest book dataset,
valuable for long-range context modeling research and
coherent storytelling.

OpenWebText2: A generalized multilingual web scrape
dataset including recent content from Reddit submissions
up until 2020.



Mining
Unstructured

Data

Large
Language
Models

Datasets for LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

The Pile Dataset (II)

ArXiv: Preprint server for research papers in math,
computer science, and physics. Written in LaTeX.

GitHub: Large corpus of open-source code repositories.

FreeLaw: Provides access to legal opinions from federal
and state courts.

Stack Exchange: Publicly available repositories of
question-answer pairs in diverse domains.

USPTO Backgrounds: Dataset of technical writing on
applied subjects.

Wikipedia (English): Source of high-quality text written
in expository prose spanning many domains.

PubMed Abstracts: Biomedical article abstracts from
PubMed and MEDLINE.



Mining
Unstructured

Data

Large
Language
Models

Datasets for LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

The Pile Dataset (III)

Project Gutenberg - classic Western literature, PG-19
dataset includes books before 1919, distinct from modern
books.

OpenSubtitles - English language dataset of subtitles
from movies and TV shows, natural dialog source, useful
for creative writing tasks.

DeepMind Mathematics - mathematical problems from
various topics, formatted as natural language prompts,
improve mathematical ability of language models.

BookCorpus2 - expanded version of BookCorpus, a
widely used language modeling corpus, unlikely to overlap
with other datasets.

Ubuntu IRC - publicly available chatlogs from
Ubuntu-related channels on Freenode IRC chat server,
model real-time human interactions.



Mining
Unstructured

Data

Large
Language
Models

Datasets for LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

The Pile Dataset (IV)

EuroParl - multilingual parallel corpus of European
Parliament proceedings in 21 languages from 1996 to
2012.

YouTube Subtitles - parallel corpus of text from
human-generated closed captions on YouTube, provides
multilingual data, educational content, popular culture,
and natural dialog.

PhilPapers - open-access philosophy publications, spans a
wide body of abstract, conceptual discourse, contains
high-quality academic writing.

NIH Grant Abstracts - ExPORTER service provides
awarded grant applications from 1985 to present,
high-quality scientific writing.



Mining
Unstructured

Data

Large
Language
Models

Datasets for LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

The Pile Dataset (IV)

Hacker News - link aggregator operated by Y
Combinator, focus on computer science and
entrepreneurship, comment trees provide high-quality
dialogue and debate on niche topics.

Enron Emails - valuable corpus for research on email
usage patterns, aid in understanding the modality of email
communications.



Mining
Unstructured

Data

Large
Language
Models

Datasets for LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Assistant-specific Datasets

Assistant LLM require specific conversation-like datasets to be
fine-tuned from their base LLM. Some of the open-source
instruction tuning datasets are:

Alpaca: 50,000 questions and answers from Stanford

LAION-5B: 5 billion words of natural language
instructions from LAION

Awesome Instruction Dataset: A collection of text and
multi-modal instruction tuning datasets from Github



Mining
Unstructured

Data

Large
Language
Models

Evaluation of LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

Evaluation of LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Evaluation of LLM

Evaluating LLMs and ChatGPT-like models is challenging for
several reasons:

There is no clear definition of what constitutes a good or
bad output for these models, as different tasks and
domains may have different criteria and expectations

There is a lack of standardized benchmarks and metrics to
measure the quality and reliability of these models,
especially for complex and open-ended tasks

There is a risk of generating erroneous, misleading, or
harmful outputs that may not be easily detected or
corrected by human users or reviewers

There is a need for ethical and responsible use of these
models, as they may have social, legal, and moral
implications for various stakeholders



Mining
Unstructured

Data

Large
Language
Models

Evaluation of LLM

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Evaluation of Language Models at the BigScience
Workshop

The workshop aimed to develop standardised measures
and diverse evaluations for LLM. Some of the evaluation
tasks in the workshop included:

Extrinsic evaluation: downstream applications (e.g.,
sentiment analysis, natural language inference, machine
translation, text summarization)
Intrinsic evaluation: internal properties and capabilities
(e.g., syntactic parsing, semantic role labeling, named
entity recognition, fact verification)
Few-shot generalization: minimal or no supervision tasks
(e.g., text classification, text generation, question
answering, summarization)
Bias and social impact: potential harms and benefits
(e.g., gender bias, racial bias, toxicity, hate speech,
misinformation, privacy)
Multilingualism: performance and limitations across
languages and scripts (e.g., English, French, Spanish,
German, Chinese, Arabic, Hindi, Bengali, ...)



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Introduction

Efficiency and
Optimizations

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Introduction

Efficiency and
Optimizations

Limitations of
LLM

Adapting LLMs as Chatbots and Assistants

Large Language Models (LLMs) can be adapted to work
as chatbots and assistants to interact with humans.

This requires several techniques such as fine-tuning (FT),
Reinforcement Learning (RL), Natural Language
Understanding (NLU), etc.

FT involves training a pre-trained LLM for generating
human-like responses in conversational context
RL can be used to further improve the performance of the
chatbot by rewarding it for generating appropriate
responses and punishing it for generating inappropriate
responses
NLU (usually intrinsic to the backbone LLM) allows the
chatbot to understand the intent of the user’s message and
generate appropriate responses



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Introduction

Efficiency and
Optimizations

Limitations of
LLM

LLM-based Assistants

Figure: ChatGPT fine-tuning diagram



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Reinforcement
Learning from
Human Feedback

Efficiency and
Optimizations

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Reinforcement
Learning from
Human Feedback

Efficiency and
Optimizations

Limitations of
LLM

Reinforcement Learning from Human Feedback
(RLHF)

RLHF is a method to optimize a language model with
human feedback

It involves three steps:

1 Pretraining a LM
2 Gathering data and training a reward model
3 Fine-tuning the LM with RL

It can enable LMs to align with complex human values
and preferences



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Reinforcement
Learning from
Human Feedback

Efficiency and
Optimizations

Limitations of
LLM

Pretraining language models

RLHF uses a LM that has already been pretrained with a
standard objective (e.g. next token prediction)

Examples of pretrained LMs are GPT-3, Gopher, or
Flan-T5

The initial model can also be fine-tuned on additional text
or conditions



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Reinforcement
Learning from
Human Feedback

Efficiency and
Optimizations

Limitations of
LLM

Pretraining language models (II)

Figure: Initial Language model. Source:
https://huggingface.co/blog/rlhf



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Reinforcement
Learning from
Human Feedback

Efficiency and
Optimizations

Limitations of
LLM

Gathering data and training a reward model

RLHF collects human annotations for generated text and
trains a reward model to predict them

The reward model can be a classifier or a regressor that
takes text as input and outputs a score

It can be trained using maximum likelihood estimation
(MLE) under different models, such as the
Bradley-Terry-Luce (BTL) model or the Plackett-Luce
(PL) model.

The reward model can capture human preferences such as
creativity, truthfulness, or executability

R(s) = fθ(s)

where s is the text and fθ is the reward model.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Reinforcement
Learning from
Human Feedback

Efficiency and
Optimizations

Limitations of
LLM

Gathering data and training a reward model (II)

Figure: Training the reward model



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Reinforcement
Learning from
Human Feedback

Efficiency and
Optimizations

Limitations of
LLM

Fine-tuning the LM with RL

RLHF uses an RL algorithm (e.g. PPO) to fine-tune the
LM with the reward model as the objective

The RL algorithm updates the LM parameters to
maximize the expected reward

The fine-tuned LM can generate text that better satisfies
human feedback

J(ϕ) = Es∼pϕ [R(s)]

where pϕ is the LM and ϕ are its parameters.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Reinforcement
Learning from
Human Feedback

Efficiency and
Optimizations

Limitations of
LLM

Illustration of RLHF

Figure: Illustration of the full RLHF model. Source:
https://huggingface.co/blog/rlhf



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Proximal Policy
Optimization

Efficiency and
Optimizations

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Proximal Policy
Optimization

Efficiency and
Optimizations

Limitations of
LLM

Proximal Policy Optimization (PPO)

PPO is a popular and efficient deep RL algorithm

It uses an actor-critic architecture with two neural
networks

It improves the stability of policy updates by clipping the
ratio of new and old policies

From empirical results, we have seen that making small
changes to the policy during training helps to find the best
solution.
A too-large change in the policy can lead to getting a bad
policy that is hard or even impossible to fix.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Proximal Policy
Optimization

Efficiency and
Optimizations

Limitations of
LLM

Proximal Policy Optimization (PPO)

Figure: Representation of the “off the cliff” effect for large policy
updates. Source: Huggingface.co

https://huggingface.co/learn/deep-rl-course/unit8/intuition-behind-ppo


Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Proximal Policy
Optimization

Efficiency and
Optimizations

Limitations of
LLM

Actor-Critic Architecture

The actor network outputs a probability distribution over
actions given an observation

The critic network outputs a value function that estimates
the expected return from an observation

The actor and critic networks are updated using gradient
ascent and TD errors respectively

Lactor(ϕ) = Es,a∼πϕ
[A(s, a)]

Lcritic(θ) = Es,r,s′∼πϕ
[(r + γVθ(s

′)− Vθ(s))
2]

πϕ is the actor policy
Vθ is the critic value function
A(s, a) is the advantage function
ϕ and θ are the network parameters



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Proximal Policy
Optimization

Efficiency and
Optimizations

Limitations of
LLM

Clipped Surrogate Objective

PPO uses a clipped surrogate objective to limit the policy
change at each update

The objective is the minimum of two terms: the unclipped
and clipped advantages

The clipping prevents the ratio from deviating too much
from 1, which means no change

Lclip
PPO(ϕ) =

Es,a∼πϕ
[min(rt(ϕ)A(s, a), clip(rt(ϕ), 1− ϵ, 1 + ϵ)A(s, a))]

rt(ϕ) =
πϕ(a|s)

πϕold
(a|s) is the probability ratio of new and old

policies.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Proximal Policy
Optimization

Efficiency and
Optimizations

Limitations of
LLM

PPO Loss Function

The PPO loss function combines three terms: clipped
surrogate objective, value loss, and entropy bonus

The clipped surrogate objective limits the policy change by
clipping the ratio of new and old policies

The value loss measures the difference between the
estimated and actual returns

The entropy bonus encourages exploration by penalizing
deterministic policies

LPPO(ϕ, θ) =

Es,a∼πϕ
[Lclip

PPO(ϕ)− c1Lcritic(θ) + c2H(πϕ)]

Lcritic(θ) is the value loss function
H(πϕ) is the entropy of the policy
c1 and c2 are hyperparameters



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Proximal Policy
Optimization

Efficiency and
Optimizations

Limitations of
LLM

PPO for ChatGPT

ChatGPT uses PPO to fine-tune its policy based on
human feedback.

An example of how PPO would fine-tune the answers of
ChatGPT is:

1 User: What is the capital of France?
2 ChatGPT: The capital of France is Paris.
3 Human feedback: Rank the answer from 1 (worst) to 5

(best). Rank: 5
4 Reward signal: High positive reward for the correct and

concise answer.
5 PPO update: Increase the probability of generating similar

answers for similar questions.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Data Parallelism

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Data Parallelism

Limitations of
LLM

3D Parallelism for Efficient Training of LLM

3D parallelism is a technique for training large language
models (LLM) on multiple GPUs or instances

It combines data parallelism (DP), tensor parallelism (TP)
and pipeline parallelism (PP) to address the memory
efficiency and compute efficiency challenges of LLM
training1

DP replicates the model and feeds a slice of data to each
replica
TP splits each tensor into chunks and assigns each chunk
to a different device
PP splits the model into stages and assigns each stage to a
different device

1Reference: Smith et al. Using DeepSpeed and Megatron to Train
Megatron-Turing NLG 530B, A Large-Scale Generative Language Model.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Data Parallelism

Limitations of
LLM

3D Parallelism for Efficient Training of LLM (II)

Figure: Illustration of the training process of the BLOOM LM.
BLOOM was trained on 384 NVIDIA A100 80GB GPUs (48 nodes) +
32 spare gpus. The full 175B weights model weights 329GB (2.3TB
including the optimizer states). Source: Le Scao et al. BLOOM: A
176B-Parameter Open-Access Multilingual Language Model



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Data Parallelism

Limitations of
LLM

Data Parallelism (DP)

Figure: Data Paralellism intuition. Source: Huggingface.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Data Parallelism

Limitations of
LLM

Data Parallelism (DP) (II)

Figure: Data Parallelism for GeLU.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Data Parallelism

Limitations of
LLM

Data Parallelism (DP) (III)

Figure: Data Parallelism for Self-Attention.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Data Parallelism

Limitations of
LLM

ZeRO Optimizer for Training LLM

ZeRO stands for Zero Redundancy Optimizer. It is a
memory optimization technique for large-scale distributed
deep learning2

ZeRO reduces the memory footprint of model parameters,
gradients and optimizer states by partitioning them across
data parallel processes
ZeRO can train models with up to 100 billion parameters
on the current generation of GPU clusters with high
throughput and scalability
ZeRO has three stages: ZeRO-1, ZeRO-2 and ZeRO-3,
each offering different levels of memory reduction and
performance trade-offs

2Reference: Rajbhandari et al. Zero Redundancy Optimizer (ZeRO): A
Memory Efficient Optimization Technique for Large-Scale Distributed
Training.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Data Parallelism

Limitations of
LLM

ZeRO Optimizer for Training LLM (II)

1 Pos Optimizer State Partitioning – 4x memory reduction,
same communication volume as data parallelism

2 Pos+g Add Gradient Partitioning – 8x memory reduction,
same communication volume as data parallelism

3 Pos+g+p Add Parameter Partitioning – Memory reduction
is linear with data parallelism degree Nd. For example,
splitting across 64 GPUs (Nd = 64) will yield a 64x
memory reduction. There is a modest 50% increase in
communication volume.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Data Parallelism

Limitations of
LLM

ZeRO Optimizer for Training LLM (III)

Figure: Representation of ZeRO stages



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Data-Type
Optimization

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Data-Type
Optimization

Limitations of
LLM

BF16 vs TF16 for Training LLM

BF16 and TF16 are low-precision floating-point data types
that can improve the speed and memory efficiency of
training LLM

BF16 stands for Brain Floating Point 16, which uses 8 bits
for exponent and 7 bits for mantissa. It is a truncated
version of FP32 with the same dynamic range but less
precision
TF16 stands for Tensor Float 16, which uses 5 bits for
exponent and 10 bits for mantissa. It is a variant of FP16
with more precision but less dynamic range
Both BF16 and TF16 can be faster than FP32 on modern
hardware that supports them, such as NVIDIA A100 GPUs
Some networks may require more precision or more
dynamic range depending on their architecture and loss
function. In general, BF16 is more compatible with FP32
than TF16, but TF16 may offer better accuracy than BF16
for some tasks



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Data-Type
Optimization

Limitations of
LLM

BF16Optimizer for Training LLM

BF16Optimizer is a tool for training large language models
(LLM) using the BF16 data format

BF16 has the same exponent as FP32, which avoids
overflow problems that FP16 suffers from when dealing
with large or small values
BF16 has less precision than FP16, but this is not a major
issue for stochastic gradient descent and its variations

BF16Optimizer also maintains a copy of weights in FP32,
which is updated by the optimizer. The 16-bit formats are
only used for the computation

BF16Optimizer performs gradient accumulation in FP32,
which is crucial for pipeline parallelism and training
precision3

3Reference: Ahmed et al. The Large Language Model Training
Handbook. GitHub.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Low-Rank Adapters

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Low-Rank Adapters

Limitations of
LLM

Fine-tuning a LLM with Low Rank Adapters

Low Rank Adapters (LoRA) are a technique to fine-tune
only a small fraction of model parameters by adding extra
layers with low-rank matrices that can adapt to different
tasks.

LoRA leverages the hypothesis that the change in weights
during model adaptation has a low ”intrinsic rank”, which
means that it can be captured by a low-dimensional
subspace.

LoRA allows us to train some dense layers in a neural
network while freezing most of the parameters of the
pretrained model, thereby reducing the computational and
storage costs.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Low-Rank Adapters

Limitations of
LLM

Representation of LoRA

Figure: Representation of LoRA. Source: Huggingface.co

https://huggingface.co/blog/trl-peft


Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Low-Rank Adapters

Limitations of
LLM

LoRA LLM fine-tuning process

1 Load the LLM (often in 8-bit precision) with LoRA
configuration. This will inject trainable rank
decomposition matrices into each layer of the Transformer
architecture:

WLoRA = UΣV T

U and V are low-rank matrices and Σ is a diagonal matrix

2 Fine-tune on the target task. The gradients will only
update the LoRA parameters and not the original model
parameters.

3 Merge the adapter layers into the base model’s weights.
The merged weights are given by:

Wmerged = Wbase +WLoRA

Wbase and WLoRA are the original and adapter weights



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Low-Rank Adapters

Limitations of
LLM

LoRA LLM fine-tuning process

Figure: Fine-tuning a LLM with LoRA. Note that we can activate and
deactivate weights to get the reference and FT models in
RLHF/PPO. Source: Huggingface.co

https://huggingface.co/blog/trl-peft


Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Optimization
Takeaways

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Optimization
Takeaways

Limitations of
LLM

DeepSpeed and DeeperSpeed

DeepSpeed is an open-source deep learning training
optimization library that supports 3D parallelism and other
techniques for LLM training

DeepSpeed offers ZeRO-Offload, which offloads optimizer
states and gradients to CPU memory, allowing training
models up to 13 billion parameters on a single GPU

DeepSpeed also offers Sparse Attention, which enables
training models with up to 10x longer sequences using
sparse matrices and custom kernels

DeeperSpeed is a fork of DeepSpeed that adds support for
automatic mixed precision (AMP), gradient accumulation
across iterations, stable softmax approximation, and more

DeeperSpeed can train models with up to 175 billion
parameters on 128 GPUs with high efficiency



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Optimization
Takeaways

Limitations of
LLM

Which Strategy To Use When for Parallelism

Parallelism strategies depend on the model size, the number of
GPUs, and the inter-node connectivity4

For single GPU, use normal training if model fits, or ZeRO
+ Offload if model doesn’t fit

For single node / multi-GPU, use DDP if model fits, or
PP, ZeRO or TP if model doesn’t fit. Experiment to find
the best option for your setup

For multi-node / multi-GPU, use ZeRO if you have fast
inter-node connectivity, or DP+PP+TP+ZeRO-1 if you
have slow inter-node connectivity and low GPU memory

4Reference: Ahmed et al. The Large Language Model Training
Handbook. GitHub.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Biases in LLM

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Biases in LLM

Biases in Large Language Models

What are biases and where do they come from?

Biases refer to systematic deviations from rationality or
fairness that influence human judgments and decisions.
Language models (LMs) trained on extensive unfiltered
text data that reflect human prejudices and stereotypes
can encode biases.
Biases can also originate from model specifications,
algorithmic constraints, product design, and policy
decisions.

Why are biases problematic and harmful?

Biases in LMs and their applications can lead to
discrimination, exclusion, toxicity, and misinformation.
Biases affect the quality, reliability, trustworthiness, and
social responsibility of LMs.
Marginalized or vulnerable groups may experience negative
impacts due to biases in LMs.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Biases in LLM

Biases in Large Language Models (II)

How can we identify, quantify, and mitigate biases?

Various methods and tools can be employed to detect,
measure, and analyze biases in LMs and their outputs.

Data filtering, debiasing techniques, adversarial training,
and human feedback can be utilized to reduce or eliminate
biases in LMs.

Ethical principles, guidelines, and regulations ensure fair,
transparent, and accountable development and deployment
of LMs.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Biases in LLM

Biases in language models: Gender Bias

Gender Bias:

Gender bias involves associating certain attributes or roles
with a specific gender, often resulting in discrimination or
stereotyping.

For instance, a language model may generate more toxic
or hateful sentences when provided with female pronouns
compared to male pronouns.

Another example is the association of certain professions
or emotions with a specific gender, such as ”flight
attendant” or ”anxious” with females and ”fisherman” or
”lawyer” with males.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Biases in LLM

Biases in language models: Religious Bias

Religious Bias:

Religious bias entails favoring or disfavoring a particular
religion or group of religions, often leading to prejudice or
intolerance.

For example, a language model may generate more violent
or negative sentences when given Muslim-related terms
compared to other religions.

Additionally, a language model may associate certain
actions or values with a specific religion, such as
”terrorism” or ”oppression” with Islam and ”peace” or
”freedom” with Christianity.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Biases in LLM

Techniques for mitigating biases in LMs

Data filtering

Data filtering involves the removal or alteration of biased
or harmful content in the data before training the LM.

It reduces the exposure to biased or harmful content,
although it may introduce new biases or reduce diversity.

Ex: Hate speech classifiers, sentiment analyzers, or
keyword lists can be used to filter toxic or offensive data.

Debiasing techniques

Debiasing techniques aim to modify a language model or
its outputs to minimize or eliminate biases.

Ex: Use data augmentation, counterfactual data
generation, or adversarial examples to increase the
representation of underrepresented groups or scenarios.

Ex 2: Post-hoc interventions, such as rewriting, reranking,
or filtering, to modify the outputs of a LM and make them
less biased or harmful.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Biases in LLM

Techniques for mitigating biases in LMs (II)

Adversarial training

Adversarial training aims to train a language model to be
resilient against perturbations or attacks that may induce
biases or errors.

One approach involves using gradient-based methods, such
as FGSM or PGD, to generate adversarial examples that
maximize the loss of a language model and then using
them to fine-tune the model.

Adversarial training improves the generalization and
robustness of a language model, but it may also increase
the computational cost and complexity of the training
process.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Content
Hallucination

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Content
Hallucination

Content Hallucination in LLM

Content hallucination is when a large language model
(LLM) generates text that is nonsensical or unfaithful to
the provided source content.

It occurs because LLMs are trained on diverse and noisy
text data and have no way of distinguishing between fact
and fiction.

It poses a serious problem for applications that rely on
LLMs for generating accurate and trustworthy
information, such as question answering, summarization,
and medical advice.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Content
Hallucination

Conditioned Language Model

A conditioned language model is a language model that
predicts the next word or token based on some context or
condition.

The context can be the previous words in a sequence, a
topic label, a document, or any other relevant information.

The general equation for a conditioned language model is:

P (w|c) = P (w, c)

P (c)

where w is the word or token to be predicted and c is the
context or condition. In LLM, c is complex and can lead to
hallucination due to divergences in the source content, lack of
grounding in external knowledge or insufficient and inaccurate
data and resources.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Content
Hallucination

Examples of Content Hallucination

In summarization, content hallucination can lead to false
or misleading summaries that do not reflect the main
points or facts of the original text.

For example, ChatGPT generated this summary of an
article about COVID-19 vaccines:

The article discusses the development and distribu-
tion of COVID-19 vaccines around the world. It men-
tions that several countries have approved or autho-
rized some vaccines, such as Pfizer-BioNTech, Mod-
erna, Oxford-AstraZeneca, and Sputnik V. It also re-
ports that some challenges remain, such as ensuring
equitable access, overcoming vaccine hesitancy, and
monitoring safety and efficacy.

However, this summary is hallucinated, because the
original article does not mention Sputnik V at all.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Content
Hallucination

Examples of Content Hallucination (contd.)

In question answering, content hallucination can lead to
wrong or fabricated answers that do not match the
evidence from the source text.

For example, ChatGPT generated this answer to the
question ”Who owns Silicon Valley Bank?” based on a
Wikipedia article:

Silicon Valley Bank is owned by SVB Financial Group,
a holding company that also operates other subsidiaries
such as SVB Capital, SVB Analytics, SVB Private
Bank, and SVB Wealth Advisory.

However, this answer is hallucinated, because the
Wikipedia article does not mention SVB Analytics or SVB
Wealth Advisory at all.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Security Concerns

Outline

1 Large Language Models
History of LLM
Datasets for LLM
Evaluation of LLM

2 LLM-based Assistants
Introduction
Reinforcement Learning from Human Feedback
Proximal Policy Optimization

3 Efficiency and Optimizations
Data Parallelism
Data-Type Optimization
Low-Rank Adapters
Optimization Takeaways

4 Limitations of LLM
Biases in LLM
Content Hallucination
Security Concerns



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Security Concerns

Security Concerns with LLM

LLMs like ChatGPT integrated into other applications pose
significant security risks. According to a Greshake et Al.5, the
following concerns are identified:

Remote control of LLMs

Leakage/exfiltration of user data

Persistent compromise across sessions

Injection spread to other LLMs

Compromising LLMs using small multi-stage payloads

Automated Social Engineering

Targeting code completion engines

5From Not what you’ve signed up for: Compromising Real-World
LLM-Integrated Applications with Indirect Prompt Injection

https://arxiv.org/abs/2302.12173
https://arxiv.org/abs/2302.12173


Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Security Concerns

Security Concerns with LLM (II)



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Security Concerns

Demonstrations: Inject Actions

This scenario demonstrates how a small injection embedded
within regular content can trigger the LLM to autonomously
fetch a larger payload, without the end user’s awareness.

By hiding a small injection within side-channels, like the
Markdown of a Wikipedia page, the LLM becomes
compromised. The injection, in the form of a comment,
remains invisible to regular users visiting the site.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Security Concerns

Demonstrations: Inject Actions (II)

1 Agent: Hello User how can I help today?

2 User: When was Albert Einstein born?

3 Agent: Aye, thar answer be: Albert Einstein be born on 14 March 1879.

4 User: Why are you talking like a pirate?

5 Agent: Arr matey, I am following the instruction aye.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Security Concerns

Demonstrations: Spreading injections via E-Mail

LLMs can be utilized for automatic processing of messages and
other incoming data. This demonstration showcases how a
tainted agent can propagate the injection. The targeted agent
can read emails, compose emails, access the user’s address
book, and send emails.

The tainted agent can spread to other LLMs that may be
processing the incoming messages.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Security Concerns

Demonstrations: Spreading injections via E-Mail
(II)

1 Action: Read Email

2 Observation: Subject: ”’”Party 32”, ”Message Body: [...]’”

3 Action: Read Contacts

4 Contacts: Alice, Dave, Eve

5 Action: Send Email

6 Action Input: Alice, Dave, Eve

7 Observation: Email sent



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Security Concerns

Demonstrations: Attacks on Code Completion

This demonstration highlights how code completions can be
manipulated through the context window. Code completion
engines employing LLMs use complex heuristics to determine
relevant code snippets based on the context. Snippets from
recently accessed files or relevant classes are often collected to
provide the language model with contextual information.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Security Concerns

Demonstrations: Attacks on Code Completion (II)

Attackers can attempt to insert malicious or obfuscated code
that may be executed by a curious developer when suggested
by the completion engine, as it enjoys a level of trust.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Security Concerns

Demonstrations: Remote Control

In this example, an already compromised LLM is manipulated
to fetch new instructions from an attacker’s command and
control server.

By repeating this cycle, a backdoor is established, enabling
remote access and bidirectional communication with the agent.
The attack can be executed by searching for specific keywords
or by instructing the agent to retrieve a URL directly.



Mining
Unstructured

Data

Large
Language
Models

LLM-based
Assistants

Efficiency and
Optimizations

Limitations of
LLM

Security Concerns

Demonstrations: Persisting between Sessions

This demonstration illustrates how a tainted agent can persist
between sessions by storing a small payload in its memory.
Simulating long-term persistent memory, a simple key-value
store within the agent is used.

The agent becomes reinfected by accessing its “notes”. If
prompted to recall the previous conversation, it will re-poison
itself.


	Large Language Models
	History of LLM
	Datasets for LLM
	Evaluation of LLM

	LLM-based Assistants
	Introduction
	Reinforcement Learning from Human Feedback
	Proximal Policy Optimization

	Efficiency and Optimizations
	Data Parallelism
	Data-Type Optimization
	Low-Rank Adapters
	Optimization Takeaways

	Limitations of LLM
	Biases in LLM
	Content Hallucination
	Security Concerns


