Mining Unstructured Data

11. Transformers

Javier Ferrando

Based on Stanford CS224N and The Illustrated Transformer
Recap
Language Modeling

- Language Modeling is the task of predicting what word comes next:

The students opened their ________

books

laptops

exams

\[P(x^{(t+1)} \mid x^{(t)}, \ldots, x^{(1)}) \]
N-gram Language Models

Suppose we are learning a 4-gram Language Model.

\[P(w|\text{students opened their}) = \frac{\text{count(students opened their } w)}{\text{count(students opened their)}} \]
A RNN Language Model

output distribution
\[\hat{y}(t) = \text{softmax} \left(U h^{(t)} + b_2 \right) \in \mathbb{R}^{|V|} \]

hidden states
\[h^{(t)} = \sigma \left(W_h h^{(t-1)} + W_e e^{(t)} + b_1 \right) \]

\(h^{(0)} \) is the initial hidden state

word embeddings
\[e^{(t)} = E x^{(t)} \]

words / one-hot vectors
\[x^{(t)} \in \mathbb{R}^{[V]} \]
Long Short-Term Memory RNNs (LSTMs)

Forget some cell content

Compute the forget gate

Compute the input gate

Compute the new cell content

Compute the output gate

Write some new cell content

Output some cell content to the hidden state
Index

- Sequence-to-sequence Models
 - Neural Machine Translation
 - Decoding Strategies

- Attention

- Transformer
 - Issues with RNNs
 - Self-attention
 - Multi-head attention
 - Positional Encodings
 - Decoder
Sequence-to-sequence Models
Sequence-to-sequence tasks

Many NLP tasks can be phrased as sequence-to-sequence:

- **Summarization** (long text -> short text)
- **Dialogue** (previous utterances -> next utterance)
- **Parsing** (input text -> output parse as sequence)
- **Code generation** (Natural Language -> Python Code)
- **Translation** (source sentence -> translation)
Sequence-to-sequence model
Sequence-to-sequence model

Encoder RNN produces an encoding of the source sentence.

Decoder RNN is a Language Model that generates target sentence, conditioned on encoding.

Note: This diagram shows test time behavior: decoder output is fed in \(\cdots \cdots \rightarrow \) as next step's input.
Neural Machine Translation

- The sequence-to-sequence model is an example of a Conditioned Language Model
 - Language Model because the decoder is predicting the next word of the target sentence y
 - Conditioned because its predictions are also conditioned on the source sentence x

- NMT computes $P(y|x)$:
 \[
P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \ldots P(y_T|y_1, \ldots, y_{T-1}, x)
 \]

- We train these models with a parallel corpus
Training a Neural Machine Translation system

\[J = \frac{1}{T} \sum_{t=1}^{T} I_t \]

- \(J_1 \) = negative log prob of "he"
- \(J_2 \) = negative log prob of "with"
- \(J_3 \) = negative log prob of \(<END>\)

Source sentence (from corpus):
- \(il \)
- \(a \)
- \(m' \)
- \(entarté \)

Target sentence (from corpus):
- \(<START>\)
- \(he \)
- \(hit \)
- \(me \)
- \(with \)
- \(a \)
- \(pie \)

Encoder RNN

Decoder RNN

Teacher forcing
Greedy decoding

At each timestep we take the most probable word (argmax).

Decoder RNN is a Language Model that generates target sentence, conditioned on encoding.

Note: This diagram shows test time behavior; decoder output is fed in \(\cdots \) as next step's input.
Exhaustive search decoding

- We want to find the translation y that maximizes:

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \ldots, P(y_T|y_1, \ldots, y_{T-1}, x)$$

$$= \prod_{t=1}^{T} P(y_t|y_1, \ldots, y_{t-1}, x)$$

- We could achieve the optimal translation by tracking all possible sequences
 - This means that on each step t, we track V^t possible partial translations, where V is the vocabulary size
 - This $O(V^T)$ complexity is too expensive
Beam search decoding

- On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
 - K is the beam size (in NMT, around 5 to 10)

- Each hypothesis has a score, its log probability:
 \[
 \text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)
 \]
 - We search for high-scoring hypotheses, tracking top k on each step

- Beam search doesn’t guarantee an optimal solution, but is more efficient than exhaustive search
Beam search decoding: example

Beam size $k = 2$

$$\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$$

<START>
Beam search decoding: example

Beam size $k = 2$

$$\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$$

-0.7 = log $P_{LM}(he|\text{<START>})$

-0.9 = log $P_{LM}(l|\text{<START>})$

Take top k words and compute scores
Beam search decoding: example

Beam size $k = 2$

For each of the k hypotheses, find top k next words and calculate scores
Beam search decoding: example

Beam size $k = 2$

$$\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{\text{LM}}(y_i|y_1, \ldots, y_{i-1}, x)$$

Of these k^2 hypotheses, just keep k with highest scores.
Beam search decoding: example

Beam size $k = 2$

$$\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$$

For each of the k hypotheses, find top k next words and calculate scores.
Beam search decoding: example

Beam size $k = 2$

$$\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$$

Of these k^2 hypotheses, just keep k with highest scores
Beam search decoding: example

Beam size $k = 2$

\[
score(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)
\]

For each of the k hypotheses, find top k next words and calculate scores.
Beam search decoding: example

Beam size $k = 2$

$$\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$$

Of these k^2 hypotheses, just keep k with highest scores
Beam search decoding: example

Beam size $k = 2$

$$\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$$

Diagram showing the beam search decoding process with examples of words and their scores.
Beam search decoding: stopping criterion

- **In greedy decoding**, usually we decode until the model produces an `<END>` token
 - `<START>` he hit me with a pie `<END>`

- **In beam search decoding**, different hypotheses may produce tokens on different timesteps
 - When a hypothesis produces `<END>`, that hypothesis is complete
 - Place it aside and continue exploring other hypotheses via beam search

- Usually we continue beam search until:
 - We reach timestep T (where T is some pre-defined cutoff), or
 - We have at least n completed hypotheses (where n is pre-defined cutoff)
Beam search decoding: selecting the best hypothesis

- Each hypothesis in our list of hypotheses has a score

\[
\text{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)
\]

- Problem with this: longer hypotheses have lower scores

- Fix: Normalize by length. Use this to select top one instead:

\[
\frac{1}{t} \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)
\]
About the success of NMT

Neural Machine Translation went from a fringe research attempt in 2014 to the leading standard method in 2016

- 2014: First seq2seq paper published
- 2016: Google Translate switches from SMT to NMT – and by 2018 everyone has
NMT is far from solved

- NMT picks up biases in training data
NMT is far from solved

- Hard to interpret systems do strange things
Sequence-to-sequence: the bottleneck problem
Attention
Attention

- Attention provides a solution to the bottleneck problem.

- Core idea: on each step of the decoder, use direct connection to the encoder to focus on a particular part of the source sequence
Attention

On this decoder timestep, we’re mostly focusing on il (he)

Dot product

Sometimes called the context vector

Use the attention distribution to take a weighted sum of the encoder hidden states.

The attention output mostly contains information from the hidden states that received high attention.

Source sentence (input)
Attention

![Diagram showing the process of attention in Transformers]

- **Encoder RNN**: Input sequence (il, o, m', entarté) is processed by the RNN to generate encoder hidden states.
- **Attention**: The attention mechanism computes attention weights which are then used to weight the encoder hidden states.
- **Attention distribution**: The weighted sum of encoder hidden states is computed to produce the attention output.
- **Decoder RNN**: The output of the attention mechanism is concatenated with the decoder hidden state (h_e) to compute the next decoder hidden state (h_{t+1}).

The process involves:
- Concatenating attention output with decoder hidden state, then using to compute h_{t+1} as before.
Attention
Attention
Attention
Attention
Attention

Source sentence (input)

Transformers
Attention equations

• We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
• On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
• We get the attention scores e^t for this step:
 $$e^t = [s_t^T h_1, \ldots, s_t^T h_N] \in \mathbb{R}^N$$
• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)
 $$\alpha^t = \text{softmax}(e^t) \in \mathbb{R}^N$$
• We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t
 $$a_t = \sum_{i=1}^N \alpha^t_i h_i \in \mathbb{R}^h$$
• Finally we concatenate the attention output a_t with the decoder hidden state s_t and proceed as in the non-attention seq2seq model
 $$[a_t; s_t] \in \mathbb{R}^{2h}$$

Several variants for computing attention scores, this one is the dot product attention
Generalization of attention

- We can use attention in many architectures (not just seq2seq) and many tasks (not just MT)

- General definition of attention:
 - Given a set of vector values and keys, and a vector query, attention is a technique to compute a weighted sum of the values, dependent on the query and keys.

- Intuition:
 - The weighted sum is a selective summary of the information contained in the values, where the query and keys determine which values to focus on.
 - Attention is a way to obtain a fixed-size representation of an arbitrary set of representations (the values), dependent on some other representation (the query).
Attention

Keys and values

Source sentence (input)

query

Attention output
Advantages of attention

- Attention significantly improves NMT performance
- Attention provides more “human-like” model of the MT process
 - We look back at the source sentence while translating, rather than remembering it all
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with the vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we see what the decoder was focusing on
 - The network learns alignment by itself
Transformer
Attention is all you need

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar*
Google Research
nikip@gmail.com

Jakob Uszkoreit*
Google Research
usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez†
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser*
Google Brain
lukaszkaiser@gmail.com

Illia Polosukhin‡
illia.polosukhin@gmail.com

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Transformers are used everywhere

- Image Classification [Dosovitsky et al. 2021]
- Protein Folding [Jumper et al. 2021]
- Autonomous cars (Tesla)
Issues with RNNs: Linear interaction distance

- RNNs encode linear locality: useful since nearby words often affect each other’s meaning

- Problem: RNNs take $O(\text{sequence length})$ steps for distant word pairs to interact
 - Hard to learn long-distance dependencies (vanishing gradient problem)
 - Meaning in sentences doesn’t necessarily follow a ‘linear order’
Issues with RNNs: Lack of parallelizability

- Forward and backward passes have $O(\text{sequence length})$ unparallelizable operations
 - GPUs can perform a bunch of independent computations at once!
 - But future RNN hidden states can’t be computed in full before past RNN hidden states have been computed
 - Inhibits training on very large datasets!
Self-attention

- To recap, **attention** treats each word’s representation as a **query** to access and incorporate information from a **set of values**.
 - **Self-attention** is **encoder-encoder** (or decoder-decoder) attention where each word attends to each other word **within the input (or output)**.

Transformer Advantages:
- Number of unparallelizable operations does not increase with sequence length.
- Each "word" interacts with each other, so maximum interaction distance: $O(1)$.
Transformer

- Self-attention
- Encoder-decoder attention / Cross-attention
- Masked self-attention

- Transformer components:
 - Input Embedding
 - Positional Encoding
 - Add & Norm
 - Feed Forward
 - Multi-Head Attention
 - Outputs (shifted right)
 - Softmax
 - Linear
 - Add & Norm
 - Feed Forward
 - Multi-Head Attention
 - Masked Multi-Head Attention
 - Outputs
Transformer
Encoder: self-attention
Encoder: self-attention

- Recall: Attention operates on queries, keys, and values
 - We have some queries \(q_1, q_2, \ldots, q_T \). Each query is \(q_i \in \mathbb{R}^d \)
 - We have some keys \(k_1, k_2, \ldots, k_T \). Each key is \(k_i \in \mathbb{R}^d \)
 - We have some values \(v_1, v_2, \ldots, v_T \). Each value is \(v_i \in \mathbb{R}^d \)

- In self-attention, the queries, keys, and values are drawn from the same source.

- The (dot product) self-attention operation is as follows:
 \[
 e_{ij} = q_i^T k_j \\
 \alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})} \\
 \text{output}_i = \sum_j \alpha_{ij} v_j
 \]
 - Compute key-query affinities
 - Compute attention weights from affinities (softmax)
 - Compute outputs as weighted sum of values
Recipe for Self-Attention in the Transformer Encoder

- Step 1: For each word, calculate its query, key, and value
 \[q_i = W^Q x_i \quad k_i = W^K x_i \quad v_i = W^V x_i \]

- Step 2: Calculate attention score between query and keys
 \[e_{ij} = q_i^T k_j \]

- Step 3: Take the softmax to normalize attention scores
 \[\alpha_{ij} = \text{softmax}(e_{ij}) = \frac{\exp(e_{ij})}{\sum_k \exp(e_{ik})} \]

- Step 4: Take a weighted sum of values
 \[\text{Output}_i = \sum_j \alpha_{ij} v_j \]
Multi-head self-attention
Multi-head self-attention

• What if we want to look in multiple places in the sentence at once?
 • For word i, self-attention “looks” where $x_i^T Q^T K x_j$ is high, but maybe we want to focus on different j for different reasons?
• We’ll define multiple attention “heads” through multiple Q, K, V matrices
• Let, $Q_\ell, K_\ell, V_\ell \in \mathbb{R}^{d \times \frac{d}{h}}$, where h is the number of attention heads, and ℓ ranges from 1 to h.
• Each attention head performs attention independently:
 • $output_\ell = \text{softmax}(X Q_\ell K_\ell^T X^T) \ast XV_\ell$, where $output_\ell \in \mathbb{R}^{d/h}$
• Then the outputs of all the heads are combined!
 • $output = Y[output_1; \ldots; output_h]$, where $Y \in \mathbb{R}^{d \times d}$
Encoder: Feedforward

- **Problem**: Since there are no element-wise non-linearities, self-attention is simply performing a re-averaging of the value vectors.
- **Easy fix**: Apply a feedforward layer to the output of attention, providing non-linear activation (and additional expressive power).

\[
m_t = MLP(output_t) = W_2 \ast \text{ReLU}(W_1 \times output_t + b_1) + b_2
\]
Training tricks

- Training Trick #1: Residual Connections
- Training Trick #2: LayerNorm
- Training Trick #3: Scaled Dot Product Attention
Training trick 1: Residual Connections

- **Residual connections** are a trick to help models train better.
 - Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (where i represents the layer)

 \[
 X^{(i-1)} \xrightarrow{\text{Layer}} X^{(i)}
 \]

 - We let $X^{(i)} = X^{(i-1)} + \text{Layer}(X^{(i-1)})$

 \[
 X^{(i-1)} \xrightarrow{\text{Layer}} + X^{(i)}
 \]

- Residual connections are thought to make the loss landscape considerably smoother (thus easier training!)
Training trick 2: Layer Normalization

- **Layer normalization** is a trick to help models train faster.

- Cut down on uninformative variation in hidden vector values by normalizing to zero mean and unit standard deviation within each layer.

\[
\text{output} = \frac{x - \mu}{\sqrt{\sigma + \epsilon}} \cdot \gamma + \beta
\]

Normalize by scalar mean and variance

Modulate by learned elementwise gain and bias
Training trick 3: Scaled Dot Product Attention

- The dot product in the attention tends to take on extreme values, as its variance scales with dimensionality d_k.

Updated Self-Attention Equation:

$$\text{Output} = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$
Fixing the sequence order problem

- Since self-attention doesn’t build in order information, we need to encode the order of the sentence in our keys, queries, and values.
- Consider representing each sequence index as a vector $p_i \in \mathbb{R}^d$, for $i \in \{1, 2, \ldots, T\}$ are position vectors.
- Easy to incorporate this info into our self-attention block: just add the p_i to our inputs!
- Let $\tilde{v}_i, \tilde{k}_i, \tilde{q}_i$ be our old values, keys, and queries.

$$
\begin{align*}
 v_i &= \tilde{v}_i + p_i \\
 q_i &= \tilde{q}_i + p_i \\
 k_i &= \tilde{k}_i + p_i
\end{align*}
$$

We could concatenate instead
Position representation vectors through sinusoids

\[p_i = \begin{cases}
\sin(i/10000^{2+1/d}) \\
\cos(i/10000^{2+1/d}) \\
\vdots \\
\sin(i/10000^{2+d/d}) \\
\cos(i/10000^{2+d/d})
\end{cases} \]

- It allows to extrapolate (in theory) to longer sequences as periods restart. However, doesn’t work in practice
- Not learnable parameters
Position representation vectors learned from scratch

- **Learned position representations**: Let all p_i be learnable parameters!
 - Learn a matrix $P \in \mathbb{R}^{d \times T}$

- **Pros**:
 - Flexibility: each position gets to be learned to fit the data

- **Cons**:
 - Can’t extrapolate to indices outside 1, ..., T

- Most systems use this
Solution: Inject Order Information through Positional Encodings!
Fixing the decoder problem: Masked attention

● **Problem**: How do we keep the decoder from "cheating"? If we have a language modeling objective, can't the network just look ahead and "see" the answer?

● **Solution**: Masked Multi-Head Attention. At a high-level, we hide (mask) information about future tokens from the model.
Fixing the decoder problem: Masked attention

- To use self-attention in decoders, we need to ensure we can’t peek at the future.

- At every timestep, we could change the set of keys and queries to include only past words (Inefficient!)

- To enable parallelization, we mask out attention to future words by setting attention scores to $-\infty$

$$e_{ij} = \begin{cases} q_i^T k_j, j < i \\ -\infty, j \geq i \end{cases}$$
Decoder: cross-attention

- We saw that self-attention is when keys, queries, and values come from the same source.
- In the decoder, the cross-attention is in charge of looking for information from the source sequence (like the attention in RNNs).
- Let \(h_1, \ldots, h_T \) be output vectors from the Transformer encoder, \(x_i \in \mathbb{R}^d \).
- Let \(z_1, \ldots, z_T \) be input vectors from the Transformer decoder, \(z_i \in \mathbb{R}^d \).
- Then keys and values are drawn from the encoder:
 \[
 k_i = Kh_i, \quad v_i = Vh_i
 \]
- And the queries are drawn from the decoder, \(q_i = Qz_i \).
Decoder

- Add a final linear layer to project the embeddings into a much longer vector of length vocab size (logits)
- Add a final softmax to generate a probability distribution of possible next words
Recap of Transformer Architecture