Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Master in Data Science

Mining Unstructured Data

7. Dependency parsing

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Facultat d’Informatica de Barcelona

FIB

Outline

Dependency Trees

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Theories of Syntactic Structure

Constituent Trees

S
NP VP
|
PRP
| VBD NP
They |
solved /’\

N
the problem N NNS
|

with statistics
m Main element: constituents

m Constituent: linguistic unit
subsuming a word sequence

*

Dependency Trees

@)

, “‘S
NN

PRP VBN DT NN IN
They solved the problem with statistics

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Theories of Syntactic Structure

Constituent Trees

S
NP VP
|
PRP
| VBD NP
They |
solved /’\

N
the problem N NNS
|

with statistics
m Main element: constituents

m Constituent: linguistic unit
subsuming a word sequence

Dependency Trees

@)

, “‘S
NN

* PRP VBN DT NN IN
They solved the problem with statistics

m Main element: dependency

m Dependency: a word has a
grammatical function with
respect to another word

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Theories of Syntactic Structure

Constituent Trees

NP VP
|
PRP
VBD NP
They |
solved /’\

N
the problem N NNS
|

with statistics

Main element: constituents

m Constituent: linguistic unit
subsuming a word sequence

m Focus on combinations of
constituents

Builds nested trees

Dependency Trees

@)

, “‘S
NN

* PRP VBN DT NN IN
They solved the problem with statistics

m Main element: dependency

m Dependency: a word has a
grammatical function with
respect to another word

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Theories of Syntactic Structure

Constituent Trees

NP VP
PRP
| VBD NP
They |
solved /’\

N
the problem N NNS
|

with statistics

Main element: constituents

m Constituent: linguistic unit
subsuming a word sequence

m Focus on combinations of
constituents

Builds nested trees

*

Dependency Trees

@)

, “‘S
NN

PRP VBN DT NN IN
They solved the problem with statistics

Main element: dependency

Dependency: a word has a
grammatical function with
respect to another word
Focus on relations between
words

Builds dependency graphs

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Notation: Dependency

root dobj

[\ s \X/ \/'”'”x
NN

* PRP VBN
They solved the problem wnth statistics
0 1 2 3 4 5 6

m * is a special root symbol
m Each dependency is a tuple (h,m, k) where
m h: index of the head word (root is 0)
m m: index of the modifier word
m k: dependency label
g.: (0,2,root), (2,1, nsubj), (2,4,dobj), (4,3,det),
(4,5,pmod), (5,6, pobj)

m Sometimes we just consider unlabeled dependencies

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Notation: Dependency Tree

[=\ s \X/ VO
* PRP VBN NN

They solved the problem W|th statistics

m y is a dependency tree if:
(a) y is a set of dependencies, {(h,m,k);}
(b) Each non-root token has exactly an incoming arc (i.e. one
parent)
(c) The graph is connected
(d) There are no cycles
- That is, dependency arcs form a directed tree rooted at *

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Projectivity

m Projective dependency tree: no crossing dependencies

root dobj

[=\[\\/ e

* PRP VBN
They solved the problem Wlth statistics

m Non-projective dependency tree: crossing dependencies

*/ —V W g\

John saw a dog yesterday which was a Yorkshire Terrier

[
[bV — V) \v

* a hearing is scheduled on the issue today

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Projectivity

m Projective dependency tree: no crossing dependencies

root dobj

[=\[\\/ e

* PRP VBN
They solved the problem Wlth statistics

m Non-projective dependency tree: crossing dependencies

*/ —V W g\

John saw a dog yesterday which was a Yorkshire Terrier

[
[bV — V) \v

* a hearing is scheduled on the issue today

On the contrary of constituent parsing, dependency parsing can
manage different word orders, so it can provide both projective
and non-projective trees

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Outline

Dependency Parsing

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Types of Dependency Parsing

m Regarding projectivity:
m Projective parsing: produces projective dependency trees
m Non-projective parsing: produces projective or
non-projective dependency trees
(how often occurs in a particular language -or treebank-?)

Types of Dependency Parsing

m Regarding projectivity:

ST m Projective parsing: produces projective dependency trees
Dependency L Non—pro.Ject.lve parsing: produces projective or

Parsing non-projective dependency trees

Graph-based (how often occurs in a particular language -or treebank-?)
Dependency . .

Parsing m Regarding the techniques:

TR m Graph-based dependency parsing:

asel

Dependency | Algorithms based on CKY

FEIEIE m Algorithm based on Maximum-Spanning Trees

m Transition-based dependency parsing:
m Arc-standard algorithm

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Outline

Graph-based Dependency Parsing
m Algorithm based on Maximum-Spanning Trees

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Graph-based Dependency Parsing

m Goal: given an input sentence, provide the dependency
tree with the highest score

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Graph-based Dependency Parsing

m Goal: given an input sentence, provide the dependency
tree with the highest score
m A graph can be split into parts (arcs, sequences of 2 arcs,

...). Then, the score of a graph is the sum of the scores of
its parts

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Graph-based Dependency Parsing

m Goal: given an input sentence, provide the dependency
tree with the highest score

m A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

m Arc-factored score:

Score(y) = Z score(h, m, k)
(h,m,k)ey

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Graph-based Dependency Parsing

m Goal: given an input sentence, provide the dependency
tree with the highest score

m A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

m Arc-factored score:

Score(y) = Z score(h, m, k)
(h,m,k)ey

1- How to compute score(h,m,k) ?

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Graph-based Dependency Parsing

m Goal: given an input sentence, provide the dependency
tree with the highest score

m A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

m Arc-factored score:

Score(y) = Z score(h, m, k)
(h,m,k)ey

1- How to compute score(h,m,k) ?
2- How to find the highest scored tree?

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Graph-based Dependency Parsing

m Goal: given an input sentence, provide the dependency
tree with the highest score

m A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

m Arc-factored score:

Score(y) = Z score(h, m, k)
(h,m,k)ey

1- How to compute score(h,m,k) ?
2- How to find the highest scored tree?
Ex: MST-based algorithm

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Compute the Dependency Scores

score(h,m,k) =w £(h,m,k) = Zwifi(h,m, k)

where:
m {f;} is a binary feature set to represent any dependency

m w; is the relevance of f; given a treebank

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Compute the Dependency Scores

score(h,m,k) =w £(h,m,k) = Zwifi(h,m, k)

where:
m {f;} is a binary feature set to represent any dependency

m w; is the relevance of f; given a treebank

Then,

Score(y) =w f(y) = Z w t(h,m,k)
(h,m,k)ey

where:

m f(y) is the feature vector of the dependency tree y

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Compute the Dependency Scores

score(h,m,k) =w £(h,m,k) = Zwifi(h,m, k)

where:
m {f;} is a binary feature set to represent any dependency

m w; is the relevance of f; given a treebank

Then,

Score(y) =w f(y) = Z w f(h,m, k)
(h,m,k)ey

where:

m f(y) is the feature vector of the dependency tree y

A treebank of sentences with their respective valid dependency
parses is required to estimate w;

Compute the Dependency Scores

ST Examples of features f;(h,m,k):
Eaer;:ie:gency m Words, lemmas, PoS of h or m
Graph-based m Words, lemmas, PoS of tokens in the context of h or m
E’Zr’;?n"ge“y m Distance in tokens between h and m
Lransion- m Dependency k
e m Direction of the dependency (right, left)
m Combinations of previous features

Outline

Dependency
Trees

Dependency
Parsing

Graph-based

Dependency

Parsing .

e — Graph-based Dependency Parsing

Maximum-Spanning . . .

Tres m Algorithm based on Maximum-Spanning Trees
Transition-

Based

Dependency

parsers

Algorithm based on Maximum-Spanning Trees

1- Build the graph:
m Nodes are tokens (and the root token)
m A weighted directed edge between any two nodes

Dependency
Trees
Dependency w;; = max_score(i, j, k)
Parsing 1<k<K
Graph-based . /—\
Dpentitaney Ex: John saw Mary ol — 1 0
Parsing / \
Algorithm based on
!\r/\gximumrSp nnnnn g 9 20 Hsawh 30
. VANRA N
Transition- John - 30 0 —_ Mary

Based
Dependency \tll ﬁ
parsers 3

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based

Dependency
parsers

Algorithm based on Maximum-Spanning Trees

1- Build the graph:
m Nodes are tokens (and the root token)
m A weighted directed edge between any two nodes

w;. s = max score(i,],k
2,7 1<k<K (7.77)

Ex: John saw Mary /—_ T~

g/’root i\ﬁ
AA

2- Perform non-projective parsing as maximum-spanning

trees, using the Chu-Liu-Edmonds algorithm

Cost: O(n?), improved version O(n?)

Chu-Liu-Edmonds, example

m Step 1: for each node, find highest-scoring incoming edge

Dependency

Trees

Dependency K\\ 9

Parsing /7’0075 10 root

Graph-based 9 20 "‘}Lw" 30 —

Dependency k / / \ \ 20 ;aw 30

Parsi

:rs.ltr:g boced John 30 0 Mary 7 h/ 30]:}
orithm based on y

ngimumrSpanmng \\ _// onn ary

Trees

Transition-

Based

Dependency

parsers

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based

Dependency
parsers

Chu-Liu-Edmonds, example

m Step 1: for each node, find highest-scoring incoming edge

T
/root 10 9 root
9 / 0 A;Z“»U\A 3 \ 20 " “saw 30
k John 30 0 Mary / / \

\ill :// John 30 Mary
3

m If we get a tree, STOP. We have found the MST

m If not, there has to be a cycle

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based

Dependency
parsers

Chu-Liu-Edmonds, example

m Step 2: identify cycle and contract it into a new node ¢

T~
/ root 10 root
o

k / 30/ \ \ / 20 ;aw 30 \

John 0 Mary 30 Mary

Ay John
N

root ’\ 40

SN

Pid 5aw; 30
/ ~
Lo s
-
{ John e

\ A
~-

Mary
31

Chu-Liu-Edmonds, example

m Step 2: identify cycle and contract it into a new node ¢

Dependency

ool 9 .
Trees / root 10 \ root root 0
DiEpenelansy 9 20 " saw 30 20 ™ saw 30 -7 /?gw\ ;30
Parsi o A

arsing k / / \ \ / / \\ /// Wja - \
Graph-based John 30 0 ~ Mary 30 . . _-
S~ John Mary (John - Mary

Dependency 1 .)&
Parsing 3 - a1 /

Algorithm based on
Maximum-Spanning
Trees

m Weight of edges between ¢ and other nodes i:

Transition-
Based
Dependency
parsers

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based

Dependency
parsers

Chu-Liu-Edmonds, example

m Step 2: identify cycle and contract it into a new node ¢

— 9
/ root 10 \ root root” 40
\ / " A}“w\’\ . \\ 20 7 “saw 30 rad /?gw\)I\ 30
P -
k John 30 0 Mary / / \ /,/ _Wis P \4

John 30 Mar (" John” .-~ Mary
S~— i — -~ Y N N
3 31

m Weight of edges between ¢ and other nodes i:
B ¢ — i max weight of any node in ¢ to ¢

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based

Dependency
parsers

Chu-Liu-Edmonds, example

m Step 2: identify cycle and contract it into a new node ¢

— 9
/ root 10 \ root root” 40
—_— —_— - \)\
9 / 20 7“”\ 30 \ 20 7 “saw 30 -7 /,zgw)30
. -
k John 30 0 — Mary / / \ /,/ P Wjs -~ \

John 30 Mar (" John” .-~ Mary
S~— i — -~ Y N N
3 31

m Weight of edges between ¢ and other nodes i:
B ¢ — i max weight of any node in ¢ to ¢
m 7 — ¢: max weight of ¢ that spans ¢
root — saw — John : 40
root — John — saw : 29

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing
Algorithm based on

Maximum-Spanning
Trees

Transition-
Based

Dependency
parsers

Chu-Liu-Edmonds, example

m Step 2: identify cycle and contract it into a new node ¢

/\
oot 9 .
/ root 10 \ root root 40
—_ N N~
k 20 ;uw 30 \ 20 ™ Nsaw 30 . _ /lzgw);‘ 30
, P
John 30 0 — Mary / / \ /,/ B ws ~_ - \

John 30 Mar (" John” .-~ Mary
\ 11— -~ Y N N
3 31

m Weight of edges between ¢ and other nodes i:
B ¢ — i max weight of any node in ¢ to ¢
m 7 — ¢: max weight of ¢ that spans ¢
root — saw — John : 40
root — John — saw : 29
Mary — John — saw : 31
Mary— saw — John : 30

Chu-Liu-Edmonds, example

m Step 3: recursively call the algorithm on the new graph

Dependency
Trees
root 40
Dependency \V -
Parsin, N
e i g saw | 30
-
Graph-based 7 Wjs -7
- - P
Dependency t John _~ Mary

Parsing R
~-
Algorithm based on 31

Maximum-Spanning
Trees

Transition-
Based

Dependency
parsers

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based

Dependency
parsers

Chu-Liu-Edmonds, example

m Step 3: recursively call the algorithm on the new graph
m Step 1: for each node, find highest-scoring incoming edge

root” 40 root” 40
X~ 2
N X
-7 _saw) 30 e - saw)/\ 30
- - Wjs e PR -
- i e - wis~<
(" John” -7 Mary John _- Mary

\\//‘&31_/ __-~

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based

Dependency
parsers

Chu-Liu-Edmonds, example

m Step 3: recursively call the algorithm on the new graph
m Step 1: for each node, find highest-scoring incoming edge

—
root” 40 Toot 40
. Y R, N
_- sau)// 3 7 saw) 30
// Wjs _~ /// Wjs ///
-
" John e Mary John -7 Mary

\\//‘&31_/ __-~

m If we get a tree, STOP. We have found the MST
(after one recursive call we get a tree)

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based

Dependency
parsers

Chu-Liu-Edmonds, example

m Step 3: recursively call the algorithm on the new graph
m Step 1: for each node, find highest-scoring incoming edge

root” 40 root 40 'root\
~ 10
e /\V //\V ~— Ssaw
Lo s) 3 /,/ saw) 30 o)
s \ w7 L 30 0,
“John” e Mary 1" john” -7 Mary John Mary

\\//‘&31_/ __-~

m If we get a tree, STOP. We have found the MST
(after one recursive call we get a tree)

m Step 4: reconstruct the original MST by undoing the

contraction operations (saw N John)
(see (McDonald et al 2005) for details)

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Outline

Transition-Based Dependency parsers
m Arc-Standard algorithm

Transition-Based parsers

m The parser has a current state or configuration consisting
Dependency of a stack (of tokens processed and tree built so far) and a
frees buffer (tokens remaining).

Dependency . .

Parsing m At each step, a transition is chosen to alter the
Graph-based configuration and move (via a classifier).
ependency

Parsing

m Parsing stops when a final configuration is reached

Transition-

o m No backtracking, cost is O(n)
ependency

parsers

Transition-Based parsers

m The parser has a current state or configuration consisting
Dependency of a stack (of tokens processed and tree built so far) and a
frees buffer (tokens remaining).

Dependency

Parsing m At each step, a transition is chosen to alter the
Graph-based configuration and move (via a classifier).

ependency

Parsi

e m Parsing stops when a final configuration is reached
Transition-

o m No backtracking, cost is O(n)

Dependency

parsers

m Different parsers are defined depending on the set of
possible transitions: arc-standard model, arc-eager model,
swap-based model, ...

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Outline

Transition-Based Dependency parsers
m Arc-Standard algorithm

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard algorithm

A configuration (S, B, A) of the parser consists of:
m A stack S containing seen words
m A buffer B containing not-yet seen words
m The dependency graph A built so far (not a tree yet)

Initial configuration: ([],[0...n],[])

Final configuration: ([0],[], 4)
m Possible transitions:

m shift: push next word in the buffer onto the stack

m left-arc: add an arc from S[0] to S[1] and remove S[1]
from the stack

m right-arc: add an arc from S[1] to S[0] and remove S|[0]
from the stack

Arc-Standard Transition definitions

Dependency

Trees

Dependency E Shlft' (sh) .

Porsne (o, [il5], A) = ([olil, B, A)

Dependency m left-arc (la-L)

Parsin oo . ..
([olilj), B. A) = (o]}, B, AU {j,i, L})
gz:“:‘ndency m right-arc (ra-L):

. ([olilj], B, A) = ([olil, B, AU {i, j, L})

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses
* the woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses
* the woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh

* the woman

* the

saw the man with glasses

woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det

* the

woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses

* the woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh

* the woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh

* woman saw

* the

the man with glasses

woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj

* the woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses

* the

woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh

* the

woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses

* the

woman saw the

with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition

* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh

* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh

* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh

* the

woman saw the

with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition

* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh

* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh

* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh

* saw the man

* the

with glasses

woman saw the

with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition

* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh

* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh

* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh

* saw the man | with glasses la-det

* the

woman saw the

with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition

* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh

* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh

* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh

* saw the man | with glasses la-det

* saw man | with glasses

* the

e

woman saw the

man

with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj

* the

e

woman saw the

man

with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses

* the

woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh

* the

woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses

* the

woman saw the

with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh

* the

woman saw the

with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh

* saw with glasses

* the woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh
* saw with glasses ra-pmod

* the woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh
* saw with glasses ra-pmod

* saw with

* the woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh
* saw with glasses ra-pmod
* saw with ra-madj

* the woman saw the man with glasses

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
— * the woman | saw the man with glasses la-det
ependenc .
Trepes Y * woman | saw the man with glasses sh
Devend * woman saw | the man with glasses la-subj
P:rzie:ge"cy * saw | the man with glasses sh
* saw the | man with glasses sh
gr:ppe:';::sj * saw the man | with glasses la-det
Parsing * saw man | with glasses ra-dobj
o * saw | with glasses sh
ransition- .
Based * saw with | glasses sh
Dependency * saw with glasses ra-pmod
FEIESE * saw with ra-madj
Arc-Standard *
algorithm Saw

* the woman saw the man with glasses

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
— * the woman | saw the man with glasses la-det
ependenc .
Trepes Y * woman | saw the man with glasses sh
Devend * woman saw | the man with glasses la-subj
P:rzie:ge"cy * saw | the man with glasses sh
* saw the | man with glasses sh
gr:ppe:';::sj * saw the man | with glasses la-det
Parsing * saw man | with glasses ra-dobj
o * saw | with glasses sh
ransition- .
Based * saw with | glasses sh
Dependency * saw with glasses ra-pmod
FEIESE * saw with ra-madj
Arc-Standard *
algorithm saw ra-root

* the woman saw the man with glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh
* saw with glasses ra-pmod
* saw with ra-madj
* saw ra-root
*

* the

woman saw the man with

glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh
* saw with glasses ra-pmod
* saw with ra-madj
* saw ra-root
* stop

* the

woman saw the man with

glasses

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Transition Selection

m On the contrary to graph-based parsers, only one tree is
produced. How to handle ambiguity?

m Add probabilities to select which transition to apply at
each step

m Similar to CKY with PCFGs, but greedy search
m May be made less greedy with e.g. beam-search

m Use ML to learn a model for taking the decision

m Given that we apply local search, we can achieve a valid
projective parse, but can be suboptimal.

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Transition Selection

m Classifier: predicts the next transition (class) given the
current configuration

m Learn the classification model from <configuration,
transition> pairs annotated by hand in a treebank.

m Need to model the configurations as feature vectors and
use ML.

m Typical features:

word /lemma/PoS for S[0], S[1], B[0], B[1]

morphological features (gender, number, mode, tense, etc)
in S[0], B[O]

number of children of S[0]

dependency labels of S[0] children

..etc

m We can use SVM, perceptron, MBL, DT, ... any
feature-based ML classifier, or deep learning as well

Variants of Transition-based Parsing

Dependency

Trees

Dy m Stack-stack arcs

parsineg m Arc-standard (shift, left-arc, right-arc)
S';Zhnj’:jﬁ;’ m Non-projective (shift, swap, left-arc, right-arc)
parsine m Stack-buffer arcs

Transition-

Based m Arc-eager (shift, reduce, left-arc, right-arc)
R m Arc-standard variant (shift, left-arc, right-arc)

parsers

Arc-Standard
algorithm

	Dependency Trees
	Dependency Parsing
	Graph-based Dependency Parsing
	Algorithm based on Maximum-Spanning Trees

	Transition-Based Dependency parsers
	Arc-Standard algorithm

