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Theories of Syntactic Structure
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PRP
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Main element: constituents

m Constituent: linguistic unit
subsuming a word sequence

m Focus on combinations of
constituents

Builds nested trees

*

Dependency Trees

@)

, “‘S
NN

PRP VBN DT NN IN
They solved the problem with statistics

Main element: dependency

Dependency: a word has a
grammatical function with
respect to another word
Focus on relations between
words

Builds dependency graphs
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Notation: Dependency

root dobj

[\ s \X/ \/'”'”x
NN

* PRP VBN
They solved the problem wnth statistics
0 1 2 3 4 5 6

m * is a special root symbol
m Each dependency is a tuple (h,m, k) where
m h: index of the head word (root is 0)
m m: index of the modifier word
m k: dependency label
g.: (0,2,root), (2,1, nsubj), (2,4,dobj), (4,3,det),
(4,5,pmod), (5,6, pobj)

m Sometimes we just consider unlabeled dependencies
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Notation: Dependency Tree

[ =\ s \X/ VO
* PRP VBN NN

They solved the problem W|th statistics

m y is a dependency tree if:
(a) y is a set of dependencies, {(h,m,k);}
(b) Each non-root token has exactly an incoming arc (i.e. one
parent)
(c) The graph is connected
(d) There are no cycles
- That is, dependency arcs form a directed tree rooted at *
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m Projective dependency tree: no crossing dependencies

root dobj

[ =\[ \\/ e

* PRP VBN
They solved the problem Wlth statistics

m Non-projective dependency tree: crossing dependencies

*/ —V W g\

John saw a dog yesterday which was a Yorkshire Terrier

[
[ bV — V) \v

* a hearing is scheduled on the issue today
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Projectivity

m Projective dependency tree: no crossing dependencies

root dobj

[ =\[ \\/ e

* PRP VBN
They solved the problem Wlth statistics

m Non-projective dependency tree: crossing dependencies

*/ —V W g\

John saw a dog yesterday which was a Yorkshire Terrier

[
[ bV — V) \v

* a hearing is scheduled on the issue today

On the contrary of constituent parsing, dependency parsing can
manage different word orders, so it can provide both projective
and non-projective trees
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Types of Dependency Parsing

m Regarding projectivity:
m Projective parsing: produces projective dependency trees
m Non-projective parsing: produces projective or
non-projective dependency trees
(how often occurs in a particular language -or treebank-?)



Types of Dependency Parsing

m Regarding projectivity:

ST m Projective parsing: produces projective dependency trees
Dependency L Non—pro.Ject.lve parsing: produces projective or

Parsing non-projective dependency trees

Graph-based (how often occurs in a particular language -or treebank-?)
Dependency . .

Parsing m Regarding the techniques:

TR m Graph-based dependency parsing:

asel

Dependency | Algorithms based on CKY

FEIEIE m Algorithm based on Maximum-Spanning Trees

m Transition-based dependency parsing:
m Arc-standard algorithm
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Graph-based Dependency Parsing
m Algorithm based on Maximum-Spanning Trees
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Graph-based Dependency Parsing

m Goal: given an input sentence, provide the dependency
tree with the highest score
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Graph-based Dependency Parsing

m Goal: given an input sentence, provide the dependency
tree with the highest score
m A graph can be split into parts (arcs, sequences of 2 arcs,

...). Then, the score of a graph is the sum of the scores of
its parts
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Graph-based Dependency Parsing

m Goal: given an input sentence, provide the dependency
tree with the highest score

m A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

m Arc-factored score:

Score(y) = Z score(h, m, k)
(h,m,k)ey
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Graph-based Dependency Parsing

m Goal: given an input sentence, provide the dependency
tree with the highest score

m A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

m Arc-factored score:

Score(y) = Z score(h, m, k)
(h,m,k)ey

1- How to compute score(h,m,k) ?
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Graph-based Dependency Parsing

m Goal: given an input sentence, provide the dependency
tree with the highest score

m A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

m Arc-factored score:

Score(y) = Z score(h, m, k)
(h,m,k)ey

1- How to compute score(h,m,k) ?
2- How to find the highest scored tree?
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Graph-based Dependency Parsing

m Goal: given an input sentence, provide the dependency
tree with the highest score

m A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

m Arc-factored score:

Score(y) = Z score(h, m, k)
(h,m,k)ey

1- How to compute score(h,m,k) ?
2- How to find the highest scored tree?
Ex: MST-based algorithm
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Compute the Dependency Scores

score(h,m,k) =w £(h,m,k) = Zwifi(h,m, k)

where:
m {f;} is a binary feature set to represent any dependency

m w; is the relevance of f; given a treebank
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Compute the Dependency Scores

score(h,m,k) =w £(h,m,k) = Zwifi(h,m, k)

where:
m {f;} is a binary feature set to represent any dependency

m w; is the relevance of f; given a treebank

Then,

Score(y) =w f(y) = Z w t(h,m,k)
(h,m,k)ey

where:

m f(y) is the feature vector of the dependency tree y
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Compute the Dependency Scores

score(h,m,k) =w £(h,m,k) = Zwifi(h,m, k)

where:
m {f;} is a binary feature set to represent any dependency

m w; is the relevance of f; given a treebank

Then,

Score(y) =w f(y) = Z w f(h,m, k)
(h,m,k)ey

where:

m f(y) is the feature vector of the dependency tree y

A treebank of sentences with their respective valid dependency
parses is required to estimate w;



Compute the Dependency Scores

ST Examples of features f;(h,m,k):
Eaer;:ie:gency m Words, lemmas, PoS of h or m
Graph-based m Words, lemmas, PoS of tokens in the context of h or m
E’Zr’;?n"ge“y m Distance in tokens between h and m
Lransion- m Dependency k
e m Direction of the dependency (right, left)
m Combinations of previous features
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Algorithm based on Maximum-Spanning Trees

1- Build the graph:
m Nodes are tokens (and the root token)
m A weighted directed edge between any two nodes

Dependency
Trees
Dependency w;; = max_score(i, j, k)
Parsing 1<k<K
Graph-based . /—\
Dpentitaney Ex: John saw Mary ol — 1 0
Parsing / \
Algorithm based on
!\r/\gximumrSp nnnnn g 9 20 Hsawh 30
. VANRA N
Transition- John - 30 0 —_ Mary

Based
Dependency \tll ﬁ
parsers 3
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Algorithm based on Maximum-Spanning Trees

1- Build the graph:
m Nodes are tokens (and the root token)
m A weighted directed edge between any two nodes

w;. s = max score(i, ],k
2,7 1<k<K (7.77 )

Ex: John saw Mary /—_ T~

g/’root i\ﬁ
AA

2- Perform non-projective parsing as maximum-spanning

trees, using the Chu-Liu-Edmonds algorithm

Cost: O(n?), improved version O(n?)



Chu-Liu-Edmonds, example

m Step 1: for each node, find highest-scoring incoming edge

Dependency

Trees

Dependency K\\ 9

Parsing /7’0075 10 root

Graph-based 9 20 "‘}Lw" 30 —

Dependency k / / \ \ 20 ;aw 30

Parsi

:rs.ltr:g boced John 30 0 Mary 7 h/ 30 ]:}
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Chu-Liu-Edmonds, example

m Step 1: for each node, find highest-scoring incoming edge

T
/root 10 9 root
9 / 0 A;Z“»U\A 3 \ 20 " “saw 30
k John 30 0 Mary / / \

\ill :// John 30 Mary
3

m If we get a tree, STOP. We have found the MST

m If not, there has to be a cycle
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Chu-Liu-Edmonds, example

m Step 2: identify cycle and contract it into a new node ¢

T~
/ root 10 root
o

k / 30/ \ \ / 20 ;aw 30 \

John 0 Mary 30 Mary

Ay John
N

root ’\ 40

SN

Pid 5aw; 30
/ ~
Lo s
-
{ John e

\ A
~-

Mary
31



Chu-Liu-Edmonds, example

m Step 2: identify cycle and contract it into a new node ¢

Dependency

ool 9 .
Trees / root 10 \ root root 0
DiEpenelansy 9 20 " saw 30 20 ™ saw 30 -7 /?gw\ ;30
Parsi o A

arsing k / / \ \ / / \\ /// Wja - \
Graph-based John 30 0 ~ Mary 30 . . _-
S~ John Mary ( John - Mary

Dependency 1 . )&
Parsing 3 - a1 /

Algorithm based on
Maximum-Spanning
Trees

m Weight of edges between ¢ and other nodes i:

Transition-
Based
Dependency
parsers
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Chu-Liu-Edmonds, example

m Step 2: identify cycle and contract it into a new node ¢

— 9
/ root 10 \ root root” 40
\ / " A}“w\’\ . \\ 20 7 “saw 30 rad /?gw\)I\ 30
P -
k John 30 0 Mary / / \ /,/ _Wis P \4

John 30 Mar (" John” .-~ Mary
S~— i — -~ Y N N
3 31

m Weight of edges between ¢ and other nodes i:
B ¢ — i max weight of any node in ¢ to ¢
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Chu-Liu-Edmonds, example

m Step 2: identify cycle and contract it into a new node ¢

— 9
/ root 10 \ root root” 40
—_— —_— - \)\
9 / 20 7“”\ 30 \ 20 7 “saw 30 -7 /,zgw )30
. -
k John 30 0 — Mary / / \ /,/ P Wjs -~ \

John 30 Mar (" John” .-~ Mary
S~— i — -~ Y N N
3 31

m Weight of edges between ¢ and other nodes i:
B ¢ — i max weight of any node in ¢ to ¢
m 7 — ¢: max weight of ¢ that spans ¢
root — saw — John : 40
root — John — saw : 29
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Chu-Liu-Edmonds, example

m Step 2: identify cycle and contract it into a new node ¢

/\
oot 9 .
/ root 10 \ root root 40
—_ N N~
k 20 ;uw 30 \ 20 ™ Nsaw 30 . _ /lzgw);‘ 30
, P
John 30 0 — Mary / / \ /,/ B ws ~_ - \

John 30 Mar (" John” .-~ Mary
\ 11— -~ Y N N
3 31

m Weight of edges between ¢ and other nodes i:
B ¢ — i max weight of any node in ¢ to ¢
m 7 — ¢: max weight of ¢ that spans ¢
root — saw — John : 40
root — John — saw : 29
Mary — John — saw : 31
Mary— saw — John : 30



Chu-Liu-Edmonds, example

m Step 3: recursively call the algorithm on the new graph

Dependency
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Chu-Liu-Edmonds, example

m Step 3: recursively call the algorithm on the new graph
m Step 1: for each node, find highest-scoring incoming edge

root” 40 root” 40
X~ 2
N X
-7 _saw ) 30 e - saw)/\ 30
- - Wjs e PR -
_- i e - wis~_<
(" John” -7 Mary John _- Mary

\\//‘&31_/ \__-~
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Chu-Liu-Edmonds, example

m Step 3: recursively call the algorithm on the new graph
m Step 1: for each node, find highest-scoring incoming edge

—
root” 40 Toot 40
. Y R, N
_- sau)// 3 7 saw ) 30
// Wjs _~ /// Wjs ///
-
" John e Mary John -7 Mary

\\//‘&31_/ \__-~

m If we get a tree, STOP. We have found the MST
(after one recursive call we get a tree)
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Chu-Liu-Edmonds, example

m Step 3: recursively call the algorithm on the new graph
m Step 1: for each node, find highest-scoring incoming edge

root” 40 root 40 'root\
~ 10
e /\V //\V ~— Ssaw
Lo s ) 3 /,/ saw ) 30 o )
s \ w7 L 30 0,
“John” e Mary 1" john” -7 Mary John Mary

\\//‘&31_/ \__-~

m If we get a tree, STOP. We have found the MST
(after one recursive call we get a tree)

m Step 4: reconstruct the original MST by undoing the

contraction operations (saw N John)
(see (McDonald et al 2005) for details)
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Transition-Based parsers

m The parser has a current state or configuration consisting
Dependency of a stack (of tokens processed and tree built so far) and a
frees buffer (tokens remaining).

Dependency . .

Parsing m At each step, a transition is chosen to alter the
Graph-based configuration and move (via a classifier).
ependency

Parsing

m Parsing stops when a final configuration is reached

Transition-

o m No backtracking, cost is O(n)
ependency

parsers



Transition-Based parsers

m The parser has a current state or configuration consisting
Dependency of a stack (of tokens processed and tree built so far) and a
frees buffer (tokens remaining).

Dependency

Parsing m At each step, a transition is chosen to alter the
Graph-based configuration and move (via a classifier).

ependency

Parsi . . . . .

e m Parsing stops when a final configuration is reached
Transition-

o m No backtracking, cost is O(n)

Dependency

parsers

m Different parsers are defined depending on the set of
possible transitions: arc-standard model, arc-eager model,
swap-based model, ...
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m Arc-Standard algorithm
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Arc-Standard algorithm

A configuration (S, B, A) of the parser consists of:
m A stack S containing seen words
m A buffer B containing not-yet seen words
m The dependency graph A built so far (not a tree yet)

Initial configuration: ([],[0...n],[])

Final configuration: ([0],[ ], 4)
m Possible transitions:

m shift: push next word in the buffer onto the stack

m left-arc: add an arc from S[0] to S[1] and remove S[1]
from the stack

m right-arc: add an arc from S[1] to S[0] and remove S|[0]
from the stack



Arc-Standard Transition definitions

Dependency

Trees

Dependency E Shlft' (sh) .

Porsne (o, [il5], A) = ([olil, B, A)

Dependency m left-arc (la-L)

Parsin oo . ..
([olilj), B. A) = (o]}, B, AU {j,i, L})
gz:“:‘ndency m right-arc (ra-L):

. ([olilj], B, A) = ([olil, B, AU {i, j, L})
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Stack | Buffer Transition
* the woman saw the man with glasses
* the woman saw the man with glasses
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Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det

*  the

woman saw the man with glasses



Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack | Buffer Transition
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Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj

* the woman saw the man with glasses
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Stack | Buffer Transition
* the woman saw the man with glasses | sh
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* saw | the man with glasses sh
* saw the | man with glasses sh

* saw the man | with glasses la-det
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
— * the woman | saw the man with glasses la-det
ependenc .
Trepes Y * woman | saw the man with glasses sh
Devend * woman saw | the man with glasses la-subj
P:rzie:ge"cy * saw | the man with glasses sh
* saw the | man with glasses sh
gr:ppe:';::sj * saw the man | with glasses la-det
Parsing * saw man | with glasses ra-dobj
o * saw | with glasses sh
ransition- .
Based * saw with | glasses sh
Dependency * saw with glasses ra-pmod
FEIESE * saw with ra-madj
Arc-Standard *
algorithm Saw

* the woman saw the man with glasses



Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
— * the woman | saw the man with glasses la-det
ependenc .
Trepes Y * woman | saw the man with glasses sh
Devend * woman saw | the man with glasses la-subj
P:rzie:ge"cy * saw | the man with glasses sh
* saw the | man with glasses sh
gr:ppe:';::sj * saw the man | with glasses la-det
Parsing * saw man | with glasses ra-dobj
o * saw | with glasses sh
ransition- .
Based * saw with | glasses sh
Dependency * saw with glasses ra-pmod
FEIESE * saw with ra-madj
Arc-Standard *
algorithm saw ra-root

* the woman saw the man with glasses
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Transition Selection

m On the contrary to graph-based parsers, only one tree is
produced. How to handle ambiguity?

m Add probabilities to select which transition to apply at
each step

m Similar to CKY with PCFGs, but greedy search
m May be made less greedy with e.g. beam-search

m Use ML to learn a model for taking the decision

m Given that we apply local search, we can achieve a valid
projective parse, but can be suboptimal.



Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Transition Selection

m Classifier: predicts the next transition (class) given the
current configuration

m Learn the classification model from <configuration,
transition> pairs annotated by hand in a treebank.

m Need to model the configurations as feature vectors and
use ML.

m Typical features:

word /lemma/PoS for S[0], S[1], B[0], B[1]

morphological features (gender, number, mode, tense, etc)
in S[0], B[O]

number of children of S[0]

dependency labels of S[0] children

..etc

m We can use SVM, perceptron, MBL, DT, ... any
feature-based ML classifier, or deep learning as well



Variants of Transition-based Parsing

Dependency

Trees

Dy m Stack-stack arcs

parsineg m Arc-standard (shift, left-arc, right-arc)
S';Zhnj’:jﬁ;’ m Non-projective (shift, swap, left-arc, right-arc)
parsine m Stack-buffer arcs

Transition-

Based m Arc-eager (shift, reduce, left-arc, right-arc)
R m Arc-standard variant (shift, left-arc, right-arc)

parsers

Arc-Standard
algorithm
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