
Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Master in Data Science

Mining Unstructured Data
7. Dependency parsing

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Outline

1 Dependency Trees

2 Dependency Parsing

3 Graph-based Dependency Parsing
Algorithm based on Maximum-Spanning Trees

4 Transition-Based Dependency parsers
Arc-Standard algorithm

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Theories of Syntactic Structure

Constituent Trees
S

NP

PRP

They

VP

VBD

solved

NP

DT

the

NN

problem

PP

IN

with

NNS

statistics

Main element: constituents

Constituent: linguistic unit
subsuming a word sequence

Focus on combinations of
constituents

Builds nested trees

Dependency Trees

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

nsubj

dobj

det pmod pobj

Main element: dependency

Dependency: a word has a
grammatical function with
respect to another word

Focus on relations between
words

Builds dependency graphs

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Theories of Syntactic Structure

Constituent Trees
S

NP

PRP

They

VP

VBD

solved

NP

DT

the

NN

problem

PP

IN

with

NNS

statistics

Main element: constituents

Constituent: linguistic unit
subsuming a word sequence

Focus on combinations of
constituents

Builds nested trees

Dependency Trees

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

nsubj

dobj

det pmod pobj

Main element: dependency

Dependency: a word has a
grammatical function with
respect to another word

Focus on relations between
words

Builds dependency graphs

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Theories of Syntactic Structure

Constituent Trees
S

NP

PRP

They

VP

VBD

solved

NP

DT

the

NN

problem

PP

IN

with

NNS

statistics

Main element: constituents

Constituent: linguistic unit
subsuming a word sequence

Focus on combinations of
constituents

Builds nested trees

Dependency Trees

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

nsubj

dobj

det pmod pobj

Main element: dependency

Dependency: a word has a
grammatical function with
respect to another word

Focus on relations between
words

Builds dependency graphs

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Theories of Syntactic Structure

Constituent Trees
S

NP

PRP

They

VP

VBD

solved

NP

DT

the

NN

problem

PP

IN

with

NNS

statistics

Main element: constituents

Constituent: linguistic unit
subsuming a word sequence

Focus on combinations of
constituents

Builds nested trees

Dependency Trees

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

nsubj

dobj

det pmod pobj

Main element: dependency

Dependency: a word has a
grammatical function with
respect to another word

Focus on relations between
words

Builds dependency graphs

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Notation: Dependency

* PRP VBN DT NN IN NN
They solved the problem with statistics

0 1 2 3 4 5 6

root

nsubj

dobj

det pmod pobj

* is a special root symbol

Each dependency is a tuple (h,m, k) where

h: index of the head word (root is 0)
m: index of the modifier word
k: dependency label

e.g.: (0, 2, root), (2, 1, nsubj), (2, 4, dobj), (4, 3, det),
(4, 5, pmod), (5, 6, pobj)

Sometimes we just consider unlabeled dependencies

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Notation: Dependency Tree

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

nsubj

dobj

det pmod pobj

y is a dependency tree if:

(a) y is a set of dependencies, {(h,m, k)i}
(b) Each non-root token has exactly an incoming arc (i.e. one

parent)
(c) The graph is connected
(d) There are no cycles

- That is, dependency arcs form a directed tree rooted at *

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Projectivity

Projective dependency tree: no crossing dependencies

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

nsubj

dobj

det pmod pobj

Non-projective dependency tree: crossing dependencies

* John saw a dog yesterday which was a Yorkshire Terrier

* a hearing is scheduled on the issue today

On the contrary of constituent parsing, dependency parsing can
manage different word orders, so it can provide both projective
and non-projective trees

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Projectivity

Projective dependency tree: no crossing dependencies

* PRP VBN DT NN IN NN
They solved the problem with statistics

root

nsubj

dobj

det pmod pobj

Non-projective dependency tree: crossing dependencies

* John saw a dog yesterday which was a Yorkshire Terrier

* a hearing is scheduled on the issue today

On the contrary of constituent parsing, dependency parsing can
manage different word orders, so it can provide both projective
and non-projective trees

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Outline

1 Dependency Trees

2 Dependency Parsing

3 Graph-based Dependency Parsing
Algorithm based on Maximum-Spanning Trees

4 Transition-Based Dependency parsers
Arc-Standard algorithm

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Types of Dependency Parsing

Regarding projectivity:

Projective parsing: produces projective dependency trees
Non-projective parsing: produces projective or
non-projective dependency trees
(how often occurs in a particular language -or treebank-?)

Regarding the techniques:
Graph-based dependency parsing:

Algorithms based on CKY
Algorithm based on Maximum-Spanning Trees

Transition-based dependency parsing:

Arc-standard algorithm

...

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Types of Dependency Parsing

Regarding projectivity:

Projective parsing: produces projective dependency trees
Non-projective parsing: produces projective or
non-projective dependency trees
(how often occurs in a particular language -or treebank-?)

Regarding the techniques:
Graph-based dependency parsing:

Algorithms based on CKY
Algorithm based on Maximum-Spanning Trees

Transition-based dependency parsing:

Arc-standard algorithm

...

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Outline

1 Dependency Trees

2 Dependency Parsing

3 Graph-based Dependency Parsing
Algorithm based on Maximum-Spanning Trees

4 Transition-Based Dependency parsers
Arc-Standard algorithm

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Graph-based Dependency Parsing

Goal: given an input sentence, provide the dependency
tree with the highest score

A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

Arc-factored score: (arc-factored parsing)

Score(y) =
∑

(h,m,k)∈y

score(h,m, k)

1- How to compute score(h,m, k) ?

2- How to find the highest scored tree?

Ex: MST-based algorithm

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Graph-based Dependency Parsing

Goal: given an input sentence, provide the dependency
tree with the highest score

A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

Arc-factored score: (arc-factored parsing)

Score(y) =
∑

(h,m,k)∈y

score(h,m, k)

1- How to compute score(h,m, k) ?

2- How to find the highest scored tree?

Ex: MST-based algorithm

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Graph-based Dependency Parsing

Goal: given an input sentence, provide the dependency
tree with the highest score

A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

Arc-factored score: (arc-factored parsing)

Score(y) =
∑

(h,m,k)∈y

score(h,m, k)

1- How to compute score(h,m, k) ?

2- How to find the highest scored tree?

Ex: MST-based algorithm

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Graph-based Dependency Parsing

Goal: given an input sentence, provide the dependency
tree with the highest score

A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

Arc-factored score: (arc-factored parsing)

Score(y) =
∑

(h,m,k)∈y

score(h,m, k)

1- How to compute score(h,m, k) ?

2- How to find the highest scored tree?

Ex: MST-based algorithm

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Graph-based Dependency Parsing

Goal: given an input sentence, provide the dependency
tree with the highest score

A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

Arc-factored score: (arc-factored parsing)

Score(y) =
∑

(h,m,k)∈y

score(h,m, k)

1- How to compute score(h,m, k) ?

2- How to find the highest scored tree?

Ex: MST-based algorithm

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Graph-based Dependency Parsing

Goal: given an input sentence, provide the dependency
tree with the highest score

A graph can be split into parts (arcs, sequences of 2 arcs,
...). Then, the score of a graph is the sum of the scores of
its parts

Arc-factored score: (arc-factored parsing)

Score(y) =
∑

(h,m,k)∈y

score(h,m, k)

1- How to compute score(h,m, k) ?

2- How to find the highest scored tree?

Ex: MST-based algorithm

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Compute the Dependency Scores

score(h,m, k) = w f(h,m, k) =
∑
i

wifi(h,m, k)

where:

{fi} is a binary feature set to represent any dependency

wi is the relevance of fi given a treebank

Then,

Score(y) = w f(y) =
∑

(h,m,k)∈y

w f(h,m, k)

where:

f(y) is the feature vector of the dependency tree y

A treebank of sentences with their respective valid dependency
parses is required to estimate wi

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Compute the Dependency Scores

score(h,m, k) = w f(h,m, k) =
∑
i

wifi(h,m, k)

where:

{fi} is a binary feature set to represent any dependency

wi is the relevance of fi given a treebank

Then,

Score(y) = w f(y) =
∑

(h,m,k)∈y

w f(h,m, k)

where:

f(y) is the feature vector of the dependency tree y

A treebank of sentences with their respective valid dependency
parses is required to estimate wi

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Compute the Dependency Scores

score(h,m, k) = w f(h,m, k) =
∑
i

wifi(h,m, k)

where:

{fi} is a binary feature set to represent any dependency

wi is the relevance of fi given a treebank

Then,

Score(y) = w f(y) =
∑

(h,m,k)∈y

w f(h,m, k)

where:

f(y) is the feature vector of the dependency tree y

A treebank of sentences with their respective valid dependency
parses is required to estimate wi

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Compute the Dependency Scores

Examples of features fi(h,m, k):

Words, lemmas, PoS of h or m

Words, lemmas, PoS of tokens in the context of h or m

Distance in tokens between h and m

Dependency k

Direction of the dependency (right, left)

Combinations of previous features

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Outline

1 Dependency Trees

2 Dependency Parsing

3 Graph-based Dependency Parsing
Algorithm based on Maximum-Spanning Trees

4 Transition-Based Dependency parsers
Arc-Standard algorithm

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Algorithm based on Maximum-Spanning Trees

1- Build the graph:

Nodes are tokens (and the root token)
A weighted directed edge between any two nodes

wi,j = max
1≤k≤K

score(i, j, k)

Ex: John saw Mary

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

2- Perform non-projective parsing as maximum-spanning
trees, using the Chu-Liu-Edmonds algorithm

Cost: O(n3), improved version O(n2)

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Algorithm based on Maximum-Spanning Trees

1- Build the graph:

Nodes are tokens (and the root token)
A weighted directed edge between any two nodes

wi,j = max
1≤k≤K

score(i, j, k)

Ex: John saw Mary

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

2- Perform non-projective parsing as maximum-spanning
trees, using the Chu-Liu-Edmonds algorithm

Cost: O(n3), improved version O(n2)

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Chu-Liu-Edmonds, example

Step 1: for each node, find highest-scoring incoming edge

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

If we get a tree, STOP. We have found the MST

If not, there has to be a cycle

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Chu-Liu-Edmonds, example

Step 1: for each node, find highest-scoring incoming edge

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

If we get a tree, STOP. We have found the MST

If not, there has to be a cycle

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Chu-Liu-Edmonds, example

Step 2: identify cycle and contract it into a new node c

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A Large Margin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

Weight of edges between c and other nodes i:

c→ i: max weight of any node in c to i
i→ c: max weight of i that spans c

root → saw → John : 40
root → John → saw : 29

Mary → John → saw : 31
Mary→ saw → John : 30

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Chu-Liu-Edmonds, example

Step 2: identify cycle and contract it into a new node c

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A Large Margin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

Weight of edges between c and other nodes i:

c→ i: max weight of any node in c to i
i→ c: max weight of i that spans c

root → saw → John : 40
root → John → saw : 29

Mary → John → saw : 31
Mary→ saw → John : 30

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Chu-Liu-Edmonds, example

Step 2: identify cycle and contract it into a new node c

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A Large Margin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

Weight of edges between c and other nodes i:

c→ i: max weight of any node in c to i

i→ c: max weight of i that spans c

root → saw → John : 40
root → John → saw : 29

Mary → John → saw : 31
Mary→ saw → John : 30

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Chu-Liu-Edmonds, example

Step 2: identify cycle and contract it into a new node c

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A Large Margin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

Weight of edges between c and other nodes i:

c→ i: max weight of any node in c to i
i→ c: max weight of i that spans c

root → saw → John : 40
root → John → saw : 29

Mary → John → saw : 31
Mary→ saw → John : 30

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Chu-Liu-Edmonds, example

Step 2: identify cycle and contract it into a new node c

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A LargeMargin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40
9

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A Large Margin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

Weight of edges between c and other nodes i:

c→ i: max weight of any node in c to i
i→ c: max weight of i that spans c

root → saw → John : 40
root → John → saw : 29
Mary → John → saw : 31
Mary→ saw → John : 30

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Chu-Liu-Edmonds, example

Step 3: recursively call the algorithm on the new graph

Step 1: for each node, find highest-scoring incoming edge

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A Large Margin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

on this graph. Note that we need to keep track of
the real endpoints of the edges into and out of wjs

for reconstruction later. Running the algorithm, we
must find the best incoming edge to all words,

root

saw

John Mary

40

30
wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge from wjs to Mary originally was from the
word saw, so we include that edge. Furthermore, the
edge from root towjs represented a tree from root to
saw to John, so we include all those edges to get the
MST,

root

saw

John Mary

10

3030

This is obviously the MST for this graph.

B Eisner Algorithm

Here we give a brief description of the Eisner algo-
rithm (Eisner, 1996) for parsing projective depen-
dency/spanning trees.
Let C[s][t][d][c] be a dynamic programming table

that stores the score of the best subtree from position
s to position t, s ≤ t, with direction d and complete
value c. d ∈ {←,→} and indicates the direction of
the subtree (gathering left or right dependents). If
d =← then t must be the head of the subtree and if
d =→ then s is the head. c ∈ {0, 1} indicates if a
subtree is complete (c = 1, no more dependents) or
incomplete (c = 0, needs to be completed). For in-
stance, C[s][t][←][1] would be the score of the best
subtree represented by the item,

s t

and C[s][t][→][0] for the following item,

s t

The Eisner algorithm fills in the dynamic program-
ming table bottom-up just like the CKY parsing al-
gorithm (Younger, 1967) by finding optimal sub-
trees for substrings of increasing increasing length.
Pseudo code for filling up the dynamic programming
table is in Figure 7.
Consider the line in Figure 7 indicated by (*).

This says that to find the best score for an incom-
plete left subtree

s t

we need to find the index s ≤ r < t that leads to
the best possible score through joining two complete
subtrees,

s r r+1 t

The score of joining these two complete subtrees is
the score of these subtrees plus the score of creating
an edge from word xt to word xs. This is guaran-
teed to be the score of the best subtree provided the
table correctly stores the scores of all smaller sub-
trees. This is because by enumerating over all values
of r, we are considering all possible combinations.
By forcing a unique root at the left-hand side of

the sentence, the score of the best tree for the entire
sentence isC[1][n][→][1]. The only remaining prob-
lem is how to extract the best dependency tree after
running the Eisner algorithm. In order to do this we
simply need to maintain back pointers to the sub-
trees that gave rise to the each item in the dynamic
programming table. This is identical to maintaining
back pointers for the Viterbi algorithm for sequences
and the CKY algorithm for parsing.
A quick look at the pseudo-code shows that the

run-time of the Eisner algorithm is O(n3). Note,
that unlike CFG parsing, there is no grammar con-
stant. This is significant because large scale CFG
parsing can sometimes have a grammar constant in
the thousands.

on this graph. Note that we need to keep track of
the real endpoints of the edges into and out of wjs

for reconstruction later. Running the algorithm, we
must find the best incoming edge to all words,

root

saw

John Mary

40

30
wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge from wjs to Mary originally was from the
word saw, so we include that edge. Furthermore, the
edge from root towjs represented a tree from root to
saw to John, so we include all those edges to get the
MST,

root

saw

John Mary

10

3030

This is obviously the MST for this graph.

B Eisner Algorithm

Here we give a brief description of the Eisner algo-
rithm (Eisner, 1996) for parsing projective depen-
dency/spanning trees.
Let C[s][t][d][c] be a dynamic programming table

that stores the score of the best subtree from position
s to position t, s ≤ t, with direction d and complete
value c. d ∈ {←,→} and indicates the direction of
the subtree (gathering left or right dependents). If
d =← then t must be the head of the subtree and if
d =→ then s is the head. c ∈ {0, 1} indicates if a
subtree is complete (c = 1, no more dependents) or
incomplete (c = 0, needs to be completed). For in-
stance, C[s][t][←][1] would be the score of the best
subtree represented by the item,

s t

and C[s][t][→][0] for the following item,

s t

The Eisner algorithm fills in the dynamic program-
ming table bottom-up just like the CKY parsing al-
gorithm (Younger, 1967) by finding optimal sub-
trees for substrings of increasing increasing length.
Pseudo code for filling up the dynamic programming
table is in Figure 7.
Consider the line in Figure 7 indicated by (*).

This says that to find the best score for an incom-
plete left subtree

s t

we need to find the index s ≤ r < t that leads to
the best possible score through joining two complete
subtrees,

s r r+1 t

The score of joining these two complete subtrees is
the score of these subtrees plus the score of creating
an edge from word xt to word xs. This is guaran-
teed to be the score of the best subtree provided the
table correctly stores the scores of all smaller sub-
trees. This is because by enumerating over all values
of r, we are considering all possible combinations.
By forcing a unique root at the left-hand side of

the sentence, the score of the best tree for the entire
sentence isC[1][n][→][1]. The only remaining prob-
lem is how to extract the best dependency tree after
running the Eisner algorithm. In order to do this we
simply need to maintain back pointers to the sub-
trees that gave rise to the each item in the dynamic
programming table. This is identical to maintaining
back pointers for the Viterbi algorithm for sequences
and the CKY algorithm for parsing.
A quick look at the pseudo-code shows that the

run-time of the Eisner algorithm is O(n3). Note,
that unlike CFG parsing, there is no grammar con-
stant. This is significant because large scale CFG
parsing can sometimes have a grammar constant in
the thousands.

If we get a tree, STOP. We have found the MST
(after one recursive call we get a tree)

Step 4: reconstruct the original MST by undoing the

contraction operations (saw
30−→ John)

(see (McDonald et al 2005) for details)

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Chu-Liu-Edmonds, example

Step 3: recursively call the algorithm on the new graph

Step 1: for each node, find highest-scoring incoming edge

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A Large Margin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

on this graph. Note that we need to keep track of
the real endpoints of the edges into and out of wjs

for reconstruction later. Running the algorithm, we
must find the best incoming edge to all words,

root

saw

John Mary

40

30
wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge from wjs to Mary originally was from the
word saw, so we include that edge. Furthermore, the
edge from root towjs represented a tree from root to
saw to John, so we include all those edges to get the
MST,

root

saw

John Mary

10

3030

This is obviously the MST for this graph.

B Eisner Algorithm

Here we give a brief description of the Eisner algo-
rithm (Eisner, 1996) for parsing projective depen-
dency/spanning trees.
Let C[s][t][d][c] be a dynamic programming table

that stores the score of the best subtree from position
s to position t, s ≤ t, with direction d and complete
value c. d ∈ {←,→} and indicates the direction of
the subtree (gathering left or right dependents). If
d =← then t must be the head of the subtree and if
d =→ then s is the head. c ∈ {0, 1} indicates if a
subtree is complete (c = 1, no more dependents) or
incomplete (c = 0, needs to be completed). For in-
stance, C[s][t][←][1] would be the score of the best
subtree represented by the item,

s t

and C[s][t][→][0] for the following item,

s t

The Eisner algorithm fills in the dynamic program-
ming table bottom-up just like the CKY parsing al-
gorithm (Younger, 1967) by finding optimal sub-
trees for substrings of increasing increasing length.
Pseudo code for filling up the dynamic programming
table is in Figure 7.
Consider the line in Figure 7 indicated by (*).

This says that to find the best score for an incom-
plete left subtree

s t

we need to find the index s ≤ r < t that leads to
the best possible score through joining two complete
subtrees,

s r r+1 t

The score of joining these two complete subtrees is
the score of these subtrees plus the score of creating
an edge from word xt to word xs. This is guaran-
teed to be the score of the best subtree provided the
table correctly stores the scores of all smaller sub-
trees. This is because by enumerating over all values
of r, we are considering all possible combinations.
By forcing a unique root at the left-hand side of

the sentence, the score of the best tree for the entire
sentence isC[1][n][→][1]. The only remaining prob-
lem is how to extract the best dependency tree after
running the Eisner algorithm. In order to do this we
simply need to maintain back pointers to the sub-
trees that gave rise to the each item in the dynamic
programming table. This is identical to maintaining
back pointers for the Viterbi algorithm for sequences
and the CKY algorithm for parsing.
A quick look at the pseudo-code shows that the

run-time of the Eisner algorithm is O(n3). Note,
that unlike CFG parsing, there is no grammar con-
stant. This is significant because large scale CFG
parsing can sometimes have a grammar constant in
the thousands.

on this graph. Note that we need to keep track of
the real endpoints of the edges into and out of wjs

for reconstruction later. Running the algorithm, we
must find the best incoming edge to all words,

root

saw

John Mary

40

30
wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge from wjs to Mary originally was from the
word saw, so we include that edge. Furthermore, the
edge from root towjs represented a tree from root to
saw to John, so we include all those edges to get the
MST,

root

saw

John Mary

10

3030

This is obviously the MST for this graph.

B Eisner Algorithm

Here we give a brief description of the Eisner algo-
rithm (Eisner, 1996) for parsing projective depen-
dency/spanning trees.
Let C[s][t][d][c] be a dynamic programming table

that stores the score of the best subtree from position
s to position t, s ≤ t, with direction d and complete
value c. d ∈ {←,→} and indicates the direction of
the subtree (gathering left or right dependents). If
d =← then t must be the head of the subtree and if
d =→ then s is the head. c ∈ {0, 1} indicates if a
subtree is complete (c = 1, no more dependents) or
incomplete (c = 0, needs to be completed). For in-
stance, C[s][t][←][1] would be the score of the best
subtree represented by the item,

s t

and C[s][t][→][0] for the following item,

s t

The Eisner algorithm fills in the dynamic program-
ming table bottom-up just like the CKY parsing al-
gorithm (Younger, 1967) by finding optimal sub-
trees for substrings of increasing increasing length.
Pseudo code for filling up the dynamic programming
table is in Figure 7.
Consider the line in Figure 7 indicated by (*).

This says that to find the best score for an incom-
plete left subtree

s t

we need to find the index s ≤ r < t that leads to
the best possible score through joining two complete
subtrees,

s r r+1 t

The score of joining these two complete subtrees is
the score of these subtrees plus the score of creating
an edge from word xt to word xs. This is guaran-
teed to be the score of the best subtree provided the
table correctly stores the scores of all smaller sub-
trees. This is because by enumerating over all values
of r, we are considering all possible combinations.
By forcing a unique root at the left-hand side of

the sentence, the score of the best tree for the entire
sentence isC[1][n][→][1]. The only remaining prob-
lem is how to extract the best dependency tree after
running the Eisner algorithm. In order to do this we
simply need to maintain back pointers to the sub-
trees that gave rise to the each item in the dynamic
programming table. This is identical to maintaining
back pointers for the Viterbi algorithm for sequences
and the CKY algorithm for parsing.
A quick look at the pseudo-code shows that the

run-time of the Eisner algorithm is O(n3). Note,
that unlike CFG parsing, there is no grammar con-
stant. This is significant because large scale CFG
parsing can sometimes have a grammar constant in
the thousands.

If we get a tree, STOP. We have found the MST
(after one recursive call we get a tree)

Step 4: reconstruct the original MST by undoing the

contraction operations (saw
30−→ John)

(see (McDonald et al 2005) for details)

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Chu-Liu-Edmonds, example

Step 3: recursively call the algorithm on the new graph

Step 1: for each node, find highest-scoring incoming edge

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A Large Margin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

on this graph. Note that we need to keep track of
the real endpoints of the edges into and out of wjs

for reconstruction later. Running the algorithm, we
must find the best incoming edge to all words,

root

saw

John Mary

40

30
wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge from wjs to Mary originally was from the
word saw, so we include that edge. Furthermore, the
edge from root towjs represented a tree from root to
saw to John, so we include all those edges to get the
MST,

root

saw

John Mary

10

3030

This is obviously the MST for this graph.

B Eisner Algorithm

Here we give a brief description of the Eisner algo-
rithm (Eisner, 1996) for parsing projective depen-
dency/spanning trees.
Let C[s][t][d][c] be a dynamic programming table

that stores the score of the best subtree from position
s to position t, s ≤ t, with direction d and complete
value c. d ∈ {←,→} and indicates the direction of
the subtree (gathering left or right dependents). If
d =← then t must be the head of the subtree and if
d =→ then s is the head. c ∈ {0, 1} indicates if a
subtree is complete (c = 1, no more dependents) or
incomplete (c = 0, needs to be completed). For in-
stance, C[s][t][←][1] would be the score of the best
subtree represented by the item,

s t

and C[s][t][→][0] for the following item,

s t

The Eisner algorithm fills in the dynamic program-
ming table bottom-up just like the CKY parsing al-
gorithm (Younger, 1967) by finding optimal sub-
trees for substrings of increasing increasing length.
Pseudo code for filling up the dynamic programming
table is in Figure 7.
Consider the line in Figure 7 indicated by (*).

This says that to find the best score for an incom-
plete left subtree

s t

we need to find the index s ≤ r < t that leads to
the best possible score through joining two complete
subtrees,

s r r+1 t

The score of joining these two complete subtrees is
the score of these subtrees plus the score of creating
an edge from word xt to word xs. This is guaran-
teed to be the score of the best subtree provided the
table correctly stores the scores of all smaller sub-
trees. This is because by enumerating over all values
of r, we are considering all possible combinations.
By forcing a unique root at the left-hand side of

the sentence, the score of the best tree for the entire
sentence isC[1][n][→][1]. The only remaining prob-
lem is how to extract the best dependency tree after
running the Eisner algorithm. In order to do this we
simply need to maintain back pointers to the sub-
trees that gave rise to the each item in the dynamic
programming table. This is identical to maintaining
back pointers for the Viterbi algorithm for sequences
and the CKY algorithm for parsing.
A quick look at the pseudo-code shows that the

run-time of the Eisner algorithm is O(n3). Note,
that unlike CFG parsing, there is no grammar con-
stant. This is significant because large scale CFG
parsing can sometimes have a grammar constant in
the thousands.

on this graph. Note that we need to keep track of
the real endpoints of the edges into and out of wjs

for reconstruction later. Running the algorithm, we
must find the best incoming edge to all words,

root

saw

John Mary

40

30
wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge from wjs to Mary originally was from the
word saw, so we include that edge. Furthermore, the
edge from root towjs represented a tree from root to
saw to John, so we include all those edges to get the
MST,

root

saw

John Mary

10

3030

This is obviously the MST for this graph.

B Eisner Algorithm

Here we give a brief description of the Eisner algo-
rithm (Eisner, 1996) for parsing projective depen-
dency/spanning trees.
Let C[s][t][d][c] be a dynamic programming table

that stores the score of the best subtree from position
s to position t, s ≤ t, with direction d and complete
value c. d ∈ {←,→} and indicates the direction of
the subtree (gathering left or right dependents). If
d =← then t must be the head of the subtree and if
d =→ then s is the head. c ∈ {0, 1} indicates if a
subtree is complete (c = 1, no more dependents) or
incomplete (c = 0, needs to be completed). For in-
stance, C[s][t][←][1] would be the score of the best
subtree represented by the item,

s t

and C[s][t][→][0] for the following item,

s t

The Eisner algorithm fills in the dynamic program-
ming table bottom-up just like the CKY parsing al-
gorithm (Younger, 1967) by finding optimal sub-
trees for substrings of increasing increasing length.
Pseudo code for filling up the dynamic programming
table is in Figure 7.
Consider the line in Figure 7 indicated by (*).

This says that to find the best score for an incom-
plete left subtree

s t

we need to find the index s ≤ r < t that leads to
the best possible score through joining two complete
subtrees,

s r r+1 t

The score of joining these two complete subtrees is
the score of these subtrees plus the score of creating
an edge from word xt to word xs. This is guaran-
teed to be the score of the best subtree provided the
table correctly stores the scores of all smaller sub-
trees. This is because by enumerating over all values
of r, we are considering all possible combinations.
By forcing a unique root at the left-hand side of

the sentence, the score of the best tree for the entire
sentence isC[1][n][→][1]. The only remaining prob-
lem is how to extract the best dependency tree after
running the Eisner algorithm. In order to do this we
simply need to maintain back pointers to the sub-
trees that gave rise to the each item in the dynamic
programming table. This is identical to maintaining
back pointers for the Viterbi algorithm for sequences
and the CKY algorithm for parsing.
A quick look at the pseudo-code shows that the

run-time of the Eisner algorithm is O(n3). Note,
that unlike CFG parsing, there is no grammar con-
stant. This is significant because large scale CFG
parsing can sometimes have a grammar constant in
the thousands.

If we get a tree, STOP. We have found the MST
(after one recursive call we get a tree)

Step 4: reconstruct the original MST by undoing the

contraction operations (saw
30−→ John)

(see (McDonald et al 2005) for details)

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Algorithm based on
Maximum-Spanning
Trees

Transition-
Based
Dependency
parsers

Chu-Liu-Edmonds, example

Step 3: recursively call the algorithm on the new graph

Step 1: for each node, find highest-scoring incoming edge

S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell,
andM. Johnson. 2002. Parsing theWall Street Journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proc. ACL.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psych. Rev., 68:386–407.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman.
2002. Automatic paraphrase acquisition from news ar-
ticles. In Proc. HLT.

D. Sleator and D. Temperley. 1993. Parsing english with
a link grammar. In Proceedings of IWPT.

R. Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning
syntactic patterns for automatic hypernym discovery.
In NIPS 2004.

R.E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7:25–35.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Proc. NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A Large Margin Approach. Ph.D. thesis, Stanford.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (cdg) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 12(4):361–379.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Univerzita Karlova, Praha.

APPENDIX
A Chu-Liu-Edmonds Example

We illustrate here the application of the Chu-Liu-
Edmonds algorithm to dependency parsing on the
simple examplex = John saw Mary. We assume
that we know w. The directed graph representation
Gx of sentence x is

root

saw

John Mary

10

9

9

30

3020

3

0

11

The first step of the algorithm is to find, for each
word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result were a tree, it would have to be the
maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

root

saw

John Mary

40

30

31

wjs

The new vertex wjs represents the contraction of
vertices John and saw. The edge from wjs to Mary
is 30 since that is the highest scoring edge from any
vertex in wjs. The edge from root into wjs is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in wjs. The same leads to the edge
from Mary to wjs. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

on this graph. Note that we need to keep track of
the real endpoints of the edges into and out of wjs

for reconstruction later. Running the algorithm, we
must find the best incoming edge to all words,

root

saw

John Mary

40

30
wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge from wjs to Mary originally was from the
word saw, so we include that edge. Furthermore, the
edge from root towjs represented a tree from root to
saw to John, so we include all those edges to get the
MST,

root

saw

John Mary

10

3030

This is obviously the MST for this graph.

B Eisner Algorithm

Here we give a brief description of the Eisner algo-
rithm (Eisner, 1996) for parsing projective depen-
dency/spanning trees.
Let C[s][t][d][c] be a dynamic programming table

that stores the score of the best subtree from position
s to position t, s ≤ t, with direction d and complete
value c. d ∈ {←,→} and indicates the direction of
the subtree (gathering left or right dependents). If
d =← then t must be the head of the subtree and if
d =→ then s is the head. c ∈ {0, 1} indicates if a
subtree is complete (c = 1, no more dependents) or
incomplete (c = 0, needs to be completed). For in-
stance, C[s][t][←][1] would be the score of the best
subtree represented by the item,

s t

and C[s][t][→][0] for the following item,

s t

The Eisner algorithm fills in the dynamic program-
ming table bottom-up just like the CKY parsing al-
gorithm (Younger, 1967) by finding optimal sub-
trees for substrings of increasing increasing length.
Pseudo code for filling up the dynamic programming
table is in Figure 7.
Consider the line in Figure 7 indicated by (*).

This says that to find the best score for an incom-
plete left subtree

s t

we need to find the index s ≤ r < t that leads to
the best possible score through joining two complete
subtrees,

s r r+1 t

The score of joining these two complete subtrees is
the score of these subtrees plus the score of creating
an edge from word xt to word xs. This is guaran-
teed to be the score of the best subtree provided the
table correctly stores the scores of all smaller sub-
trees. This is because by enumerating over all values
of r, we are considering all possible combinations.
By forcing a unique root at the left-hand side of

the sentence, the score of the best tree for the entire
sentence isC[1][n][→][1]. The only remaining prob-
lem is how to extract the best dependency tree after
running the Eisner algorithm. In order to do this we
simply need to maintain back pointers to the sub-
trees that gave rise to the each item in the dynamic
programming table. This is identical to maintaining
back pointers for the Viterbi algorithm for sequences
and the CKY algorithm for parsing.
A quick look at the pseudo-code shows that the

run-time of the Eisner algorithm is O(n3). Note,
that unlike CFG parsing, there is no grammar con-
stant. This is significant because large scale CFG
parsing can sometimes have a grammar constant in
the thousands.

on this graph. Note that we need to keep track of
the real endpoints of the edges into and out of wjs

for reconstruction later. Running the algorithm, we
must find the best incoming edge to all words,

root

saw

John Mary

40

30
wjs

This is a tree and thus the MST of this graph. We
now need to go up a level and reconstruct the graph.
The edge from wjs to Mary originally was from the
word saw, so we include that edge. Furthermore, the
edge from root towjs represented a tree from root to
saw to John, so we include all those edges to get the
MST,

root

saw

John Mary

10

3030

This is obviously the MST for this graph.

B Eisner Algorithm

Here we give a brief description of the Eisner algo-
rithm (Eisner, 1996) for parsing projective depen-
dency/spanning trees.
Let C[s][t][d][c] be a dynamic programming table

that stores the score of the best subtree from position
s to position t, s ≤ t, with direction d and complete
value c. d ∈ {←,→} and indicates the direction of
the subtree (gathering left or right dependents). If
d =← then t must be the head of the subtree and if
d =→ then s is the head. c ∈ {0, 1} indicates if a
subtree is complete (c = 1, no more dependents) or
incomplete (c = 0, needs to be completed). For in-
stance, C[s][t][←][1] would be the score of the best
subtree represented by the item,

s t

and C[s][t][→][0] for the following item,

s t

The Eisner algorithm fills in the dynamic program-
ming table bottom-up just like the CKY parsing al-
gorithm (Younger, 1967) by finding optimal sub-
trees for substrings of increasing increasing length.
Pseudo code for filling up the dynamic programming
table is in Figure 7.
Consider the line in Figure 7 indicated by (*).

This says that to find the best score for an incom-
plete left subtree

s t

we need to find the index s ≤ r < t that leads to
the best possible score through joining two complete
subtrees,

s r r+1 t

The score of joining these two complete subtrees is
the score of these subtrees plus the score of creating
an edge from word xt to word xs. This is guaran-
teed to be the score of the best subtree provided the
table correctly stores the scores of all smaller sub-
trees. This is because by enumerating over all values
of r, we are considering all possible combinations.
By forcing a unique root at the left-hand side of

the sentence, the score of the best tree for the entire
sentence isC[1][n][→][1]. The only remaining prob-
lem is how to extract the best dependency tree after
running the Eisner algorithm. In order to do this we
simply need to maintain back pointers to the sub-
trees that gave rise to the each item in the dynamic
programming table. This is identical to maintaining
back pointers for the Viterbi algorithm for sequences
and the CKY algorithm for parsing.
A quick look at the pseudo-code shows that the

run-time of the Eisner algorithm is O(n3). Note,
that unlike CFG parsing, there is no grammar con-
stant. This is significant because large scale CFG
parsing can sometimes have a grammar constant in
the thousands.

If we get a tree, STOP. We have found the MST
(after one recursive call we get a tree)

Step 4: reconstruct the original MST by undoing the

contraction operations (saw
30−→ John)

(see (McDonald et al 2005) for details)

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Outline

1 Dependency Trees

2 Dependency Parsing

3 Graph-based Dependency Parsing
Algorithm based on Maximum-Spanning Trees

4 Transition-Based Dependency parsers
Arc-Standard algorithm

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Transition-Based parsers

The parser has a current state or configuration consisting
of a stack (of tokens processed and tree built so far) and a
buffer (tokens remaining).

At each step, a transition is chosen to alter the
configuration and move (via a classifier).

Parsing stops when a final configuration is reached

No backtracking, cost is O(n)

Different parsers are defined depending on the set of
possible transitions: arc-standard model, arc-eager model,
swap-based model, ...

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Transition-Based parsers

The parser has a current state or configuration consisting
of a stack (of tokens processed and tree built so far) and a
buffer (tokens remaining).

At each step, a transition is chosen to alter the
configuration and move (via a classifier).

Parsing stops when a final configuration is reached

No backtracking, cost is O(n)

Different parsers are defined depending on the set of
possible transitions: arc-standard model, arc-eager model,
swap-based model, ...

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Outline

1 Dependency Trees

2 Dependency Parsing

3 Graph-based Dependency Parsing
Algorithm based on Maximum-Spanning Trees

4 Transition-Based Dependency parsers
Arc-Standard algorithm

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard algorithm

A configuration (S,B,A) of the parser consists of:

A stack S containing seen words
A buffer B containing not-yet seen words
The dependency graph A built so far (not a tree yet)

Initial configuration: ([], [0 . . . n], [])

Final configuration: ([0], [], A)

Possible transitions:

shift: push next word in the buffer onto the stack
left-arc: add an arc from S[0] to S[1] and remove S[1]
from the stack
right-arc: add an arc from S[1] to S[0] and remove S[0]
from the stack

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Transition definitions

shift (sh)
(σ, [i|β], A)⇒ ([σ|i], β, A)
left-arc (la-L)
([σ|i|j], B,A)⇒ ([σ|j], B,A ∪ {j, i, L})
right-arc (ra-L):
([σ|i|j], B,A)⇒ ([σ|i], B,A ∪ {i, j, L})

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses

sh
* the woman saw the man with glasses sh

* the woman saw the man with glasses la-det
* woman saw the man with glasses sh

* woman saw the man with glasses la-subj
* saw the man with glasses sh

* saw the man with glasses sh
* saw the man with glasses la-det

* saw man with glasses ra-dobj
* saw with glasses sh

* saw with glasses sh
* saw with glasses ra-pmod

* saw with ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses

sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh

* the woman saw the man with glasses la-det
* woman saw the man with glasses sh

* woman saw the man with glasses la-subj
* saw the man with glasses sh

* saw the man with glasses sh
* saw the man with glasses la-det

* saw man with glasses ra-dobj
* saw with glasses sh

* saw with glasses sh
* saw with glasses ra-pmod

* saw with ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses

la-det
* woman saw the man with glasses sh

* woman saw the man with glasses la-subj
* saw the man with glasses sh

* saw the man with glasses sh
* saw the man with glasses la-det

* saw man with glasses ra-dobj
* saw with glasses sh

* saw with glasses sh
* saw with glasses ra-pmod

* saw with ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses

sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det

nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh

* woman saw the man with glasses la-subj
* saw the man with glasses sh

* saw the man with glasses sh
* saw the man with glasses la-det

* saw man with glasses ra-dobj
* saw with glasses sh

* saw with glasses sh
* saw with glasses ra-pmod

* saw with ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det

nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses

la-subj
* saw the man with glasses sh

* saw the man with glasses sh
* saw the man with glasses la-det

* saw man with glasses ra-dobj
* saw with glasses sh

* saw with glasses sh
* saw with glasses ra-pmod

* saw with ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det

nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det

nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses

sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh

* saw the man with glasses sh
* saw the man with glasses la-det

* saw man with glasses ra-dobj
* saw with glasses sh

* saw with glasses sh
* saw with glasses ra-pmod

* saw with ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses

sh
* saw the man with glasses la-det

* saw man with glasses ra-dobj
* saw with glasses sh

* saw with glasses sh
* saw with glasses ra-pmod

* saw with ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses

la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det

* saw man with glasses ra-dobj
* saw with glasses sh

* saw with glasses sh
* saw with glasses ra-pmod

* saw with ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det nsubj

det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses

ra-dobj
* saw with glasses sh

* saw with glasses sh
* saw with glasses ra-pmod

* saw with ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses

sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh

* saw with glasses sh
* saw with glasses ra-pmod

* saw with ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses

sh
* saw with glasses ra-pmod

* saw with ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses

ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod

* saw with ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with

ra-madj
* saw ra-root

* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw

ra-root
* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madj

root

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root

* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madj

root

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
*

stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Arc-Standard Example

Stack Buffer Transition
* the woman saw the man with glasses sh

* the woman saw the man with glasses sh
* the woman saw the man with glasses la-det

* woman saw the man with glasses sh
* woman saw the man with glasses la-subj

* saw the man with glasses sh
* saw the man with glasses sh

* saw the man with glasses la-det
* saw man with glasses ra-dobj

* saw with glasses sh
* saw with glasses sh

* saw with glasses ra-pmod
* saw with ra-madj

* saw ra-root
* stop

* the woman saw the man with glasses

det nsubj det

dobj

pmod

madjroot

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Transition Selection

On the contrary to graph-based parsers, only one tree is
produced. How to handle ambiguity?

Add probabilities to select which transition to apply at
each step

Similar to CKY with PCFGs, but greedy search
May be made less greedy with e.g. beam-search

Use ML to learn a model for taking the decision

Given that we apply local search, we can achieve a valid
projective parse, but can be suboptimal.

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Transition Selection

Classifier: predicts the next transition (class) given the
current configuration

Learn the classification model from <configuration,
transition> pairs annotated by hand in a treebank.

Need to model the configurations as feature vectors and
use ML.

Typical features:

word/lemma/PoS for S[0], S[1], B[0], B[1]
morphological features (gender, number, mode, tense, etc)
in S[0], B[0]
number of children of S[0]
dependency labels of S[0] children
..etc

We can use SVM, perceptron, MBL, DT, ... any
feature-based ML classifier, or deep learning as well

Mining
Unstructured

Data

Dependency
Trees

Dependency
Parsing

Graph-based
Dependency
Parsing

Transition-
Based
Dependency
parsers

Arc-Standard
algorithm

Variants of Transition-based Parsing

Stack-stack arcs

Arc-standard (shift, left-arc, right-arc)
Non-projective (shift, swap, left-arc, right-arc)

Stack-buffer arcs

Arc-eager (shift, reduce, left-arc, right-arc)
Arc-standard variant (shift, left-arc, right-arc)

	Dependency Trees
	Dependency Parsing
	Graph-based Dependency Parsing
	Algorithm based on Maximum-Spanning Trees

	Transition-Based Dependency parsers
	Arc-Standard algorithm

