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Goal and motivation

m Syntax studies the combination of words in a sentence.

m Syntactic parsing provides information of the combination

Syntactic of words in a sentence (the syntactic structure).
parsing L. . )

e Gttt m Syntactic information is relevant for many NLP
Trees and applications:

Grammars

m Authorship recognition
Constituent .
Parsing m Grammar checking

Ex: 3th-Singular-noun + basic-verb = error
m Machine Translation

Ex: [es] NN+JJ = [en] JJ4+NN
m Information Extraction

Ex: X — [subj] — visited < [dobj] — Y = visit(X,Y)
...

m Goal: find the syntactic structure associated to a
sentence.
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Another Syntactic Tree

S
NP VP
\
PRP
| VBD NP
They ‘
solved /R

DT NN PP

| | TN
the problem [N NNS

with statistics
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Dependency Trees

MTmMM

PRP VBN DT

They

solved
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problem Wlth

StatIStICS



Dependency Trees

rOO
ob
Syntactic

Trees and

Grammars PRP VBN DT
Constituent They solved the problem Wlth statlst|cs
Parsing

MT[F-T \@x

PRP VBN DT
They solved the problem W|th statlstlcs



A “real” sentence

W

Syntactic e e
G T s S

Wt mekoers of 0T WP W Cc W W

Trees and
Grammars

Constituent
Parsing

Influential members of the House Ways and Means Committee
introduced legislation that would restrict how the new
savings-and-loan bailout agency can raise capital, creating another
potential obstacle to the government's sale of sick thrifts.



Theories of Syntactic Structure

Constituent Trees Dependency Trees
S

Syntactic /\
parsing N‘P vP
Trees and PRP
Grammars Th‘ey V?D NP
Constituent solved /’\ sub o o po
Constit 0 -

| | N PRP VBN DT NN IN NN

the problem IN NNS They solved the problem with statistics

with  statistics

® Main element: constituents m Main element: dependency

(or phrases, or bracketings) m Focus on relations between

m Constituents = abstract words

linguistic units m Handles free word order

m Results in nested trees nicely.
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Context Free Grammars (CFGs)

A context-free grammar is defined as a tuple G = (N, X, R, S)
where:

m N is a set of non-terminal symbols
m S € N is a distinguished start symbol
m X is a set of terminal symbols

m R is a set of rules of the form X — Y1Y5...Y,, where
n>0, XeN, ;e NUX
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Context Free Grammars, Example

N = {S,VP,NP,PP,DT, Vi, Vt, NN, IN}!

S = {S}
Y = {sleeps, saw, man, woman, telescope, the, with, in}
S— NP VP Vi — sleeps
S — NP Vi Vt — saw
NP — DT NN NN — man
R o NP — NP PP NN — woman
PP — IN NP NN — telescope
VP — Vt NP DT — the
VP — VP PP IN — with
VP — Vi PP IN — in )

1
S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner,
Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition
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Properties of CFGs

m A CFG defines a set of possible derivations (i.e. unique
trees)

m A sequence of terminals s € 3* is generated by the CFG
(or recognized by it, or belongs to the language defined by
it) if there is at least a derivation that produces s.

m Some sequences of terminals generated by the CFG may
have more than one derivation (ambiguity).
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Ambiguity

NP VP

Mary

saw the man in the mountain with a telescope

Mary used a telescope to see a man who was in the mountain
Mary saw a man who was in the mountain and carried a telescope
Mary was in the mountain and used a telescope to see a man
Mary was in the mountain that has a telescope and saw a man
Mary saw a man who was in the mountain that has a telescope
Mary was in the mountain and saw a man carrying a telescope
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Ambiguity

NP VP

announced a program to promote safety in trucks and vans

She announced a program aimed to make trucks and vans safer

She used trucks and vans to announce a program aimed to promote safety
She announced a program aimed to make trucks safer. She also announced
vans

She used trucks to announce a program aimed to promote safety. She also
announced vans

She announced a program. She did so in order to promote satefy in trucks
and vans

She used trucks and vans to announce a program. She did so in order to
promote satefy
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Ambiguity

Some trees are more likely than others...
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Ambiguity

Some trees are more likely than others...

Can we model that?
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Context Free Grammar (CFGs)

A context-free grammar is defined as a tuple
G = (N,X, R, S) where:

m N is a set of non-terminal symbols
m S € N is a distinguished start symbol
m Y is a set of terminal symbols

m R is a set of rules of the form X — Y1Y5...Y,, where
n>0, XeN, Ve NUX
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Context Free Grammar ( CFGs)

A context-free grammar is defined as a tuple
G=(N,%R,S ) where:

m N is a set of non-terminal symbols
m S € N is a distinguished start symbol
m X is a set of terminal symbols

m R is a set of rules of the form X — Y1Y5...Y,, where
n>0, XeEN, ;e NUX



Probabilistic Context Free Grammar (PCFGs)

A context-free grammar is defined as a tuple
G=(N,%R,S ) where:

SR m N is a set of non-terminal symbols
parsing
Trees and m S € N is a distinguished start symbol
Grammars
R m X is a set of terminal symbols
Parsing .
m R is a set of rules of the form X — Y1Y5...Y,, where

n>0, XeN,YV,e NUY



Probabilistic Context Free Grammar (PCFGs)

A probabilistic context-free grammar is defined as a tuple
G=(N,%R,S ) where:

SR m N is a set of non-terminal symbols
parsing
Trees and m S € N is a distinguished start symbol
Grammars
R m X is a set of terminal symbols
Parsing .
m R is a set of rules of the form X — Y1Y5...Y,, where

n>0, XeN,YV,e NUY



Probabilistic Context Free Grammar (PCFGs)

A probabilistic context-free grammar is defined as a tuple
G =(N,%,R,S,q) where:

SR m N is a set of non-terminal symbols
parsing
Trees and m S € N is a distinguished start symbol
Grammars
R m X is a set of terminal symbols
Parsing .
m R is a set of rules of the form X — Y1Y5...Y,, where

n>0, XeN,YV,e NUY
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Probabilistic Context Free Grammar (PCFGs)

A probabilistic context-free grammar is defined as a tuple

G =

(N,%, R, S, q) where:

N is a set of non-terminal symbols

S € N is a distinguished start symbol
3. is a set of terminal symbols

R is a set of rules of the form X — Y71Y5...Y,, where
n>0, XeEN, ;e NUX

q is a set of non-negative parameters, one for each rule
X — « € R such that, for any X € N,

Z X —-a)=1

(X—a)ER
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Context Free Grammars, Example

N = {S,VP,NP,PP,DT, Vi, Vt, NN, IN}!

s = {8}
¥ = {sleeps, saw, man, woman, telescope, the, with, in}
(S — NP VP Vi — sleeps
S — NP Vi Vt — saw
NP — DT NN NN — man
R NP — NP PP NN — woman
PP — IN NP NN — telescope
VP — Vt NP DT — the
VP — VP PP IN — with
VP — Vi PP IN — in

1
S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner,
Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition




Probabilistic Context Free Grammars, Example

N = {S,VP,NP,PP,DT, Vi, Vt, NN, IN}!

poring S = {s}
(rees and ¥ = {sleeps, saw, man, woman, telescope, the, with, in}
g::ssi:\i;uent (S — NP VP 0.5 Vi — sleeps 1.0
S — NP Vi 0.5 Vt — saw 1.0
NP - DT NN 04 NN — man 0.7
R NP - NP PP 0.6 NN — woman 0.2
PP—-INNP 1.0 NN — telescope 0.1
VP - Vt NP 0.4 DT — the 1.0
VP - VP PP 0.1 IN — with 0.5
VP - ViPP 05 IN — in 0.5

1
S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner,
Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition
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Properties of PCFGs

m The probability of a parse tree t € T is computed as:

p(t) = [Ta(r)

ret

m If there is more than one tree for a sentence, we can rank
them by probability.
m The most likely tree for a sentence s is:

arg max p(t
thT(s)p( )
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Learning Treebank Grammars

m Read the grammar rules from a treebank

S S—NPVP.
N NP — PRP
PRP VED NP . ‘ NP — DT NN
| | T
She heard DT NN VP — VBD NP
the noise PRP — She

0.5
0.5

m Set rule weights by maximum likelihood

Count(a — )

ale = B) = Count(«)

m Smoothing issues apply

m Having the appropriate CFG is critical to success
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Constituent Parsing
m Background
m Chart-based methods
m CKY Algorithm
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Parsing Natural Language Sentences

Possible goals of a parser:

Find all possible trees
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Parsing Natural Language Sentences

Possible goals of a parser:

Find all possible trees, maybe ranked by probability
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Background

Parsing Natural Language Sentences

Possible goals of a parser:

Find all possible trees, maybe ranked by probability or find
the most likely tree.
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Parsing Natural Language Sentences

Possible goals of a parser:

Find all possible trees, maybe ranked by probability or find
the most likely tree.

Parsing performance depends on many aspects:
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Parsing Natural Language Sentences

Possible goals of a parser:

Find all possible trees, maybe ranked by probability or find
the most likely tree.

Parsing performance depends on many aspects:

m Grammar expressivity (combination of symbols)
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Parsing Natural Language Sentences

Possible goals of a parser:

Find all possible trees, maybe ranked by probability or find
the most likely tree.

Parsing performance depends on many aspects:
m Grammar expressivity (combination of symbols)

m Coverage (words)
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Parsing Natural Language Sentences

Possible goals of a parser:

Find all possible trees, maybe ranked by probability or find
the most likely tree.

Parsing performance depends on many aspects:
m Grammar expressivity (combination of symbols)
m Coverage (words)

m Parsing strategy (bottom-up, top-down)
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Parsing Natural Language Sentences

Possible goals of a parser:

Find all possible trees, maybe ranked by probability or find
the most likely tree.

Parsing performance depends on many aspects:
m Grammar expressivity (combination of symbols)
m Coverage (words)
m Parsing strategy (bottom-up, top-down)

m Rule application order (largest rule, most likely rule)
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Parsing Natural Language Sentences

Possible goals of a parser:

Find all possible trees, maybe ranked by probability or find
the most likely tree.

Parsing performance depends on many aspects:

Grammar expressivity (combination of symbols)
Coverage (words)

Parsing strategy (bottom-up, top-down)

Rule application order (largest rule, most likely rule)

Ambiguity management (keep all, select one -
probabilities, semantics, pragmatics)



The problem of repeating derivations

m Top-down and bottom-up strategies both lead to repeated

S— derivations when using backtracking
parsing Ex: "a flight from Indianapolis to Houston [on TWA...]"
Trees and NG — NN
Grammars
Constituent NG — NG PP
Parsing
Background NP
DT NG
\ /\
a
NG PP
| T~
NN

| from Indianapolis
flight



The problem of repeating derivations

m Top-down and bottom-up strategies both lead to repeated
derivations when using backtracking

Syecit Ex: "a flight from Indianapolis to Houston”
parsing NG — NN
(rees and NG — NG PP NP
Constituent
Parsing
Background DT N G
\
a
NG PP
/\ T
H
NG PP to Houston
! A
NN

| from Indianapolis
flight
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Constituent Parsing

m Chart-based methods



Properties

Syntactic

parsing

Lrees and m They avoid re-doing derivations using dynamic
rammars

Constituent programming.

Parsing

m They represent derivations as a directed graph named
chart.

Chart-based methods

m They use a dynamic programming table to build the chart.



Chart

m Nodes: positions between words of the input sentence

m Edges: dotted rules subsuming a sequence of words of the

Syntactic
PRI input sentence
Trees and
Grammars
ggr”:itni;“e”‘ m Dotted rules represent rules states:
G et it m Passive rules: A — B; ... DBye
m Active rules: A — By...B;eB;i1...By
Ex:

eals fish




Chart as a dynamic programming table

NP —= @ dein

NP —=~dzin ®»

NP —=vi#
Syntactic
arsin
P € the cal eals fish
Trees and 1 2z 3 4 E
Grammars
Constituent
Parsing 5]
Chart-based methods
[1.4] [2.5]
[1.3] [2.4] [3.5]
NP — det n e
[1.2] [2.3] [3.4] [4.5]
NP — det e n VP - vie
[1.1] [2.2] [3.3] [4.4] [5.5]
NP — e det n
1 2 3 2

| the cat eats fish



Popular chart-based algorithms

m CKY algorithm

Syntactic

FREie m introduced dynamic programming

(rees and m limited to CFGs in Chomsky Normal Form

Constituent m passive bottom-up chart parser (only passive rules)
Parsing m straightforward probabilistic version

Chart-based methods

m Earley algorithm

m any CFG
m active top-down parser (active/passive rules)
m non-straightforward probabilistic version

m Generalized chart parsing
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Constituent Parsing

m CKY Algorithm
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CKY Algorithm properties

Bottom-up
Requires a grammar in Chomsky Normal Form (CNF).

Dynammic programming: Store partial results that can be
reused in different candidate solutions.

Analogous to Viterbi in HMMs.

Intermediate results stored in a chart structure.
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Chomsky Normal Form (CNF)

A CFG G = (N, %, R, S) expressed in CNF is as follows:
m N is a set of non-terminal symbols

m X is a set of terminal symbols
m R is a set of rules which take one of two forms:

B X oYY for X, Y, Yo e N
m X saforXeNandaeX

m S € N is a start symbol

Any CFG can be converted into CNF



CNF conversion

Convert Hybrid rules: replace terminals with new

Syntactic .

parsing non—term|na|s

Trees and

Gramrlﬂars Ex: INF.VP s to VP (pl) e INF.VP —-TOVP (pl)
g:::i::;uem TO — to (10)

CKY Algorithm Convert non-binary rules:

Exx S—VPNPPP (p1) = S—=>VPX (p)
X -+ NP PP (1.0)
Convert unit productions: A =* Band B—a = A =«

Exx: NP =N (p1)
N —dog (p2) = NP —dog (p1*p2)



Exercise

Convert the following PCFG to CNF
S— NP VP (1.0)

Syntactic

parsing NP — detn (06)
Crammas NP —n (0.4)

g::ssi:‘i;uent B VP —uvt NP PP (0.7)
CKY Algorithm VP - ,Ui (03)

@ PP — with NP (1.0)

det — thela (0.6]0.4)

B n — cat|fish|knife (0.3]0.5/0.2)
B vt — eats (1.0)

il vi — eats (1.0)
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CKY Algorithm

Chart content:

m Maximum probability of a subtree with root X spanning
words 7. .. J:
(i, 4, X)

m Backpath to recover which rules produced the maximum
probability tree:

¥(i, 4, X)
The goal is to compute:

) =n(1,n,S
't?ﬁf)p() m(1,n,S)

= Y(1,n,5)
m It is possible to use it without probabilities to get all parse
trees (with higher complexity)



Syntactic
parsing

Trees and
Grammars

Constituent
Parsing
CKY Algorithm

CKY Algorithm

Base case: Tree leaves
mYi=1...n, VX s w;, € R, 7(i,i,X)=q(X — w;)
Recursive case: Non-terminal nodes
mYi=1...n,Vj=(i+1)...n, VX EN

(i, g, X) =  max (X = YZ)xn(i.kY) xa(k+1,j,2)
k:i<k<j

¥(i,7,X) = arg X_r)r%/aéceRq(X = YZ)xn(i,k,Y)xm(k+1,7,2)

kia<k<j
X
Y z
T~
¢ © k41 J

Output:
m Return 7(1,n,S) and recover backpath trough ¥(1,n,S)



Syntactic
parsing

Trees and
Grammars

Constituent
Parsing
CKY Algorithm

CKY Algorithm

Supose s = wywowswy and G =< N, X, S, R, q > a PCFG
R={Xy->YsZ;} U{Xy~>a}
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CKY Algorithm

Supose s = wywowswy and G =< N, X, S, R, q > a PCFG

R:{Xk%Kth} U {Xk»a}

Base case:

Vi shot {Xj » w;} to compute 7(4, 7, Xi)

11 22

X w bk {Xi» wa

33

{Xk > W3}k

44

{Xi » wa i

1 2

3

4




CKY Algorithm

Supose s = wywowswy and G =< N, X, S, R, q > a PCFG
R :{Xk > Y;Zt} U {Xk > Oz}
Syntactic

parsing Recursive case:

Trees and Vi shot { Xy » Y5 Z:} to get (4,7, X&) and

Grammars

compute 7 (%, j, Xx)

Constituent

Parsing
CKY Algorithm

12 23 34
11 22 33 44
{Xi > wi i {Xi» wa {Xi» wa i {Xi » wa i

1 2 3 4



CKY Algorithm

Supose s = wywowswy and G =< N, X, S, R, q > a PCFG
R={Xy->YsZ;} U{Xy~>a}

Syntactic .
parsing Recursive case:
esand Vi shot { X+ Vi Zi} to get (i, j, Xx) and
Constituent ComPUte 7T(’L, Js Xk)
Parsing
CKY Algorithm 13 .
12 2 34
1 2 . ”
{ngwl}k {Xk~>W2}k {Xka W3}k {Xk‘>W4}k

1 2 3 4



CKY Algorithm

Supose s = wywowswy and G =< N, X, S, R, q > a PCFG
R={Xy->YsZ;} U{Xy~>a}

Syntactic .
parsing Recursive case:
;o 14
G Vi shot {Xx > Y Zi} to get ¢(i,j, Xx) and
Constituent ComPUte 7T(’L, Js Xk)
Parsing
CKY Algorithm 13 ”
12 23 2
11 2 3 "
{Xk » w1k {Xk + wa bk {Xi » w3 bk X > wa bk

1 2 3 4



CKY Algorithm

Supose s = wywowswy and G =< N, X, S, R, q > a PCFG
R={Xy->YsZ;} U{Xy~>a}

Syntactic .
parsing Recursive case:
g:f;:]';i Vi shot { Xy » Y5 Z:} to get (4,7, X&) and
Constituent compute 7T(’L, I Xk)
Parsing 3 o
CKY Algorithm
’ Example for (1,3) {Xk+ Ys11 Ze 23}k
12 23 34
11 22 33 44
{Xi > wi i {Xi+ wa {Xi+ wa i {Xi» wa i

1 2 3 4



CKY Algorithm

Supose s = wywowswy and G =< N, X, S, R, q > a PCFG
R={Xy->YsZ;} U{Xy~>a}

Syntactic .

parsing Recursive case:

iz i Vi shot { Xy » Y5 Z:} to get (4,7, X&) and

Grammars

Constituent compute 7T(’L, I Xk)

Parsing 3 o

CKY Algorithm

’ Example for (1,3) {Xk+ Ys12 Zt 33}k
12 23 34

11 22 83 44
{Xi > wi i {Xi+ wa X+ wa i {Xi» wa i

1 2 3 4
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Exercise

Compute the best parse tree and its probability for the
following input sentence using the PCFG:

“the woman saw the man with the telescope”

S — NP VP

S — NP Vi

NP — DT NN
NP — NP PP
PP — IN NP
VP — Vt NP
VP — VP PP
VP — Vi PP

0.5
05
0.4
0.6
1.0
0.4
0.1
0.5

Vi — sleeps

Vt — saw

NN — man

NN — woman
NN — telescope
DT — the

IN — with

IN — in

1.0
1.0
0.7
0.2
0.1
1.0
05
0.5
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CKY Algorithm - Example

S — NP VP 0.5 Vi — sleeps 1.0

S — NP Vi 0.5 Vt — saw 1.0

NP — DT NN 0.4 NN — man 0.7

NP — NP PP 0.6 NN — woman 0.2

PP — IN NP 1.0 NN — telescope 0.1

VP — Vt NP 0.4 DT — the 1.0

VP — VP PP 0.1 IN — with 0.5

VP — Vi PP 0.5 IN — in 0.5

1 2 3 “ 55 o n 8

DT - the NN = woman Vit + saw DT - the NN = man IN » with DT -+ the NN - telescope
1.0 0.2 1.0 1.0 0.7 0.5 1.0 .1

1 3 4 5 6 7 8




CKY Algorithm - Example

S — NP VP 0.5 Vi — sleeps 1.0
S — NP Vi 0.5 Vt — saw 1.0
NP — DT NN 0.4 NN — man 0.7
NP — NP PP 0.6 NN — woman 0.2
PP — IN NP 1.0 NN — telescope 0.1
VP — Vt NP 0.4 DT — the 1.0
Syntactic VP — VP PP 0.1 IN — with 0.5
parsing VP — Vi PP 0.5 IN — in 0.5
Trees and
Grammars
Constituent
Parsing
CKY Algorithm
12
NP+ DT1:NN22
0.4%1.0%0.2=0.08
1 2 3 m 55 o6 7 0
DT -+ the NN - woman |Vt » saw DT -+ the NN » man IN » with DT - the NN - telescope
10 0.2 10 1.0 07 05 1.0 0.1
1 2 3 4 5 6 7 8




CKY Algorithm - Example

S — NP VP 0.5 Vi — sleeps 1.0
S — NP Vi 0.5 Vt — saw 1.0
NP — DT NN 0.4 NN — man 0.7
NP — NP PP 0.6 NN — woman 0.2
PP — IN NP 1.0 NN — telescope 0.1
VP — Vt NP 0.4 DT — the 1.0
Syntactic VP — VP PP 0.1 IN — with 0.5
parsing VP — Vi PP 0.5 IN — in 0.5
Trees and
Grammars
Constituent
Parsing
CKY Algorithm
2 2
NP+ DT1:NN22
0.4%1.0%0.2=0.08
11 2 £ m 55 o6 7 0
DT - the NN - woman |Vt + saw DT -+ the NN » man IN » with DT - the NN - telescope
10 0.2 10 1.0 07 05 1.0 0.1
1 2 3 4 5 6 7 8




CKY Algorithm - Example
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0.5%0.08%0.112= 4.48e-3 0.6%0.28%0.02=3.3p¢-3
1 B 3% I E)
) 2% 35 I 57 o
VP = Vtz3sNPss PP - INgsNP7g
0.4%1.0%0.28=0.11p 1.0%0.5%0.04=0.02)
2 b 3a = 5 o 7
NP+ DT1:NN22 NP+ DT44NNss NP+ DT77NNgg
0.4%1.0%0.2=0.08 0.4%1.0%0.7=0.28 0.4%1.0%0.1=0.04
1 ) 33 M 5 o [ )
DT - the NN - woman |Vt » saw DT -+ the NN » man IN » with DT - the NN - telescope
1.0 02 1.0 1.0 07 05 1.0 .1
1 2 3 4 5 6 7 8
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CKY Algorithm - Example

1.34e-3

e-3

S — NP VP 0.5 Vi — sleeps 1.0
S — NP Vi 0.5 Vt — saw 1.0
NP — DT NN 0.4 NN — man 0.7
NP — NP PP 0.6 NN — woman 0.2
PP — IN NP 1.0 NN — telescope 0.1
VP — Vt NP 0.4 DT — the 1.0
VP — VP PP 0.1 IN — with 0.5
VP — Vi PP 0.5 IN — in 0.5
T 7 8
VP » VtssNPag
0.4%1.0*3.36e-3=
I I ] =
S+ NP12VP35 NP =+ NP4sPPeg
0.5%0.08%0.112= 4.48e-3 0.6%0.28%0.02=3.3
1 B 3% I E)
3 2 3 3 B )
VP = Vt3sNPys PP - INgsNP7g
0.4%1.0%0.28=0.11p 1.0%0.5%0.04=0.02)
2 b 3a = 5 o 7
NP+ DT1:NN22 NP+ DT44NNss NP+ DT77NNgg
0.4%1.0%0.2=0.08 0.4%1.0%0.7=0.28 0.4%1.0%0.1=0.04
1 ) 33 M 5 o [ )
DT - the NN - woman |Vt » saw DT - the NN + man IN -+ with DT - the NN - telescope
1.0 02 1.0 1.0 07 05 1.0 .1
1 2 3 4 5 6 7 8
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CKY Algorithm - Example

S — NP VP 0.5 Vi — sleeps 1.0
S — NP Vi 0.5 Vt — saw 1.0
NP — DT NN 0.4 NN — man 0.7
NP — NP PP 0.6 NN — woman 0.2
PP — IN NP 1.0 NN — telescope 0.1
VP — Vt NP 0.4 DT — the 1.0 "
VP — VP PP 0.1 IN — with 0.5 S - NP1,VPsg
VP — Vi PP 0.5 IN — in 0.5 0.5%0.08*1.34e-3=p.38e-5
7 2%
1 2 38
VP » VtasNPag
0.4%1.0%3.36e-3={1.34e-3
15 s 37 m
S+ NP12VP35 NP =+ NP4sPPeg
0.5%0.08%0.112= 448e-3 0.6*0.28%0.02=3.3pe-3
1 2 36 a7 58
) 2% 3 I 57 &
VP = Vt3sNPss PP = INssNP7g
0.4%1.0%0.28=0.11p 1.0%0.5%0.04=0.02)
12 ) % s 56 o7 7
NP+ DT1:NN22 NP+ DT44NNss NP+ DT77NNgg
0.4%1.0%0.2=0.08 0.4%1.0%0.7=0.28 0.4%1.0%0.1=0.04
11 2 ) m 55 o6 7 0
DT - the NN - woman |Vt » saw DT - the NN + man IN » with DT - the NN - telescope
10 02 10 1.0 07 05 1.0 .1
1 2 3 4 5 6 7 8



CKY Algorithm - Example

1.34e-3

be-3

S — NP VP 0.5 Vi — sleeps 1.0
S — NP Vi 0.5 Vt — saw 1.0
NP — DT NN 0.4 NN — man 0.7
NP — NP PP 0.6 NN — woman 0.2
PP — IN NP 1.0 NN — telescope 0.1
VP — Vt NP 0.4 DT — the 1.0
Syntactic VP — VP PP 0.1 IN — with 0.5
. VP — Vi PP 0.5 IN — in 0.5 L
parsing S+ NP12VP3g
Final result 0.5%0.08%1.34¢-3=5.38¢-5
Trees and = o
Grammars
Constituent 16 27 38
Parsing VP » VtssNPag
0.4%1.0*3.36e-3=]
CKY Algorithm
15 m 37 a8
S+ NP1VPss NP -+ NP4sPPgs
0.5%0.08%0.112= 4{48e-3 0.6%0.28%0.02=3.3}
i % 36 a 58
3 2% 3 s 57 68
VP = Vit33NPys PP - INgsNP7g
0.4%1.0%0.28=0.11p 1.0%0.5%0.04=0.02]
12 ) 3 a5 56 o7 1
NP + DT1:NN2» NP + DT4sNNss NP - DT77NNgs
0.4%1.0%0.2=0.08 0.4%1.0%0.7=0.28 0.4*1.0%0.1=0.04
1 22 33 44 55 66 m 88
DT - the NN + woman Vt + saw DT - the NN = man IN = with DT - the NN - telescope
10 0.2 10 1.0 07 05 1.0 0.1
1 2 3 4 5 6 7 8
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Why context-free 7

m Context-free means context independent, i.e, assumes that
any expansion of a non-terminal is applicable, regardless of
the context in which it occurs.

/\
‘ /\

PRP  vBD
| | /\
She  heard DT NN
| |

the cat

S

T

NP VP

PN P
DT NN VBD NP
\ \ \ \
The «cat heard PRP

she
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Natural Language is not Context-Free

m NP expansion (for instance) is highly dependent on the
parent of the NP

All NPs NPs under S NPs under VP
23%
21%
1% 9% 9% 9% %
. . 6% = 4%
NPPP DTNN PRP NP PP DTNN PRP NPPP DTNN PRP

m Complete context independence is a too strong
independence assumption for natural language.
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Natural Language is not Context-Free

m The application of a rule may affect the applicability of

others
S s
NP VP NP VP
\
pip PRP
\ |
She
' vep PP PP VED PP PP
[ — ﬂ‘
flew from Indianapolis  to Houston W from Indianapolis  from Houston
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Natural Language is not Context-Free

m May contain non-projective structures:

John saw the dog yesterday which was a Yorkshire Terrier
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