Mining Unsupervised Data
5. Word sequences
Outline

1. Word sequences
 - Goal and motivation

2. Methods
 - Hand-crafted rules
 - Discriminative models
 - Conditional Random Fields
Outline

1. Word sequences
 - Goal and motivation

2. Methods
 - Hand-crafted rules
 - Discriminative models
 - Conditional Random Fields
Goal

Some types of word sequences within sentences are significantly relevant to understand Natural Language.

- **Named entities (NEs):** Classically, person, location, organization, date, time, money

 Ex: "[John Smith]/PER was in [Piccadilly Circus]/LOC at [3:00pm]/TIME"

 Ex: "[Heart attack]/DISEASE at [8:30am]/TIME. Admitted to the intensive care unit at [St. James]/HOSPITAL"

- **Noun phrases (NPs):** basic NPs only? complex NPs too?

 Ex: "[Spaniards] usually enjoy [the original dishes] cooked by [Ferràn Adrià]"

 Ex: "[Spaniards] usually enjoy [the original dishes cooked by Ferràn Adrià]"

 ...

- Goal: recognize and classify word sequences of these types (e.g., NERC and NP-chunking)
Examples of applications:

- **Anonymization**: hide personal information occurring in private text
 - **Ex**: Names of person, addresses, telephones, etc. in clinical reports

- **Information Extraction**
 - **Ex**: Extract employees of companies, their positions and their salaries from financial news.

- **Question answering**: find the focus of some question types, or indexing documents
 - **Ex**: Who was [Albert Einstein]?
 - **Ex**: [Albert Einstein] was [the physicist who formulate the theory of relativity]

- **Machine Translation**, . . .
Outline

1. Word sequences
 - Goal and motivation

2. Methods
 - Hand-crafted rules
 - Discriminative models
 - Conditional Random Fields
Methods

Frequently used methods:

- Based on hand-crafted rules
 - Normally used for simple cases (e.g., basic NPs or simple NEs such as telephones, e-mails, ...)
 - Pattern matching is commonly used

- Based on discriminative models:
 - Learnt automatically from training corpus.
 - **Conditional Random Fields (CRFs)** are the most used ones.
 - Others perform well: SVMs, ME, NNs.
1 Word sequences
 - Goal and motivation

2 Methods
 - Hand-crafted rules
 - Discriminative models
 - Conditional Random Fields
Hand-crafted rules for simple cases of NERC

- Patterns match words and/or POS-tags
- Lists of keywords and contextual words can be useful for some NE types

 Ex: Names of months, week days, special days for DATE
Hand-crafted rules for simple cases of NERC

- Patterns match words and/or POS-tags
- Lists of keywords and contextual words can be useful for some NE types
 - Ex: Names of months, week days, special days for DATE

Example of pattern design: (with regular expression)

Input:
"My phone number is 934104433. Call me on Tuesday 13 at 8:00 pm."

Output:
"My phone number is [TEL 934104433]. Call me on [DATE Tuesday 13] at [TIME 8:00 pm]."
Hand-crafted rules for simple cases of NERC

- Patterns match words and/or POS-tags
- Lists of keywords and contextual words can be useful for some NE types

 Ex: Names of months, week days, special days for DATE

Example of pattern design: (with regular expression)

Input:
"My phone number is 934104433. Call me on Tuesday 13 at 8:00 pm."

Output:
"My phone number is [TEL 934104433]. Call me on [DATE Tuesday 13] at [TIME 8:00 pm]."

1. ... phone number is (%d+) ... → ... phone number is [TEL match] ...
Hand-crafted rules for simple cases of NERC

- Patterns match words and/or POS-tags
- Lists of keywords and contextual words can be useful for some NE types

 Ex: Names of months, week days, special days for DATE

Example of pattern design: (with regular expression)

Input:
"My phone number is 934104433. Call me on Tuesday 13 at 8:00 pm."

Output:
"My phone number is [TEL 934104433]. Call me on [DATE Tuesday 13] at [TIME 8:00 pm]."

1. ... phone number is \((\text{\textasciitilde}d+) \) ... \(\rightarrow \) ... phone number is [TEL \textit{match}] ...

2. \textsc{DAY} = \{'Monday|Tuesday|Wednesday| ...\}'

 ... on (\$\textsc{DAY} \text{\textasciitilde}d+) ... \(\rightarrow \) ... on [DATE \textit{match}]
Hand-crafted rules for simple cases of NERC

- Patterns match words and/or POS-tags
- Lists of keywords and contextual words can be useful for some NE types

 Ex: Names of months, week days, special days for DATE

Example of pattern design: (with regular expression)

Input:
"My phone number is 934104433. Call me on Tuesday 13 at 8:00 pm."

Output:
"My phone number is [TEL 934104433]. Call me on [DATE Tuesday 13] at [TIME 8:00 pm]."

1. ... phone number is (\d+) ... → ... phone number is [TEL match] ...

2. DAY = '{Monday|Tuesday|Wednesday| ...}'
 ... on ($DAY \d+) ... → ... on [DATE match]

3. SLOT = '{pm|p.m.|p.m|am|a.m.|a.m}'
 ... at (\d{1:2}:\d\d $SLOT) ... → ... at [TIME match] ...
Hand-crafted rules for basic-NP chunking

- Patterns match POS-tags
- Patterns use syntactic information
Hand-crafted rules for basic-NP chunking

- Patterns match POS-tags
- Patterns use syntactic information

Example of pattern design: (with regular expression)

Input:

Output:

OR

1. ... (w+:DT w+:NN) ... → ... [NP match] ...
2. ... (w+:DT (w+:JJ)+ w+:NN) ... → ... [NP match] ...

OR
1. ... (w+:DT (w+:JJ)* w+:NN) ... → ... [NP match] ...
Hand-crafted rules for basic-NP chunking

- Patterns match POS-tags
- Patterns use syntactic information

Example of pattern design: (with regular expression)

Input:

Output:

1. ... (\w+:DT \w+:NN) ... → ... [NP match] ...
2. ... (\w+:DT (\w+:JJ)+ \w+:NN) ... → ... [NP match] ...
Hand-crafted rules for basic-NP chunking

- Patterns match POS-tags
- Patterns use syntactic information

Example of pattern design: (with regular expression)

Input:

Output:

1. ... (\w+:DT \w+:NN) ... → ... [NP match] ...
2. ... (\w+:DT (\w+:JJ)+ \w+:NN) ... → ... [NP match] ...

OR
1. ... (\w+:DT (\w+:JJ)* \w+:NN) ... → ... [NP match] ...
Exercise

1. Provide NERC patterns for expressions similar to the following ones:
 a) "during:IN the:DT next:JJ morning::NN", "in:IN the:DT evening:NN","after:IN this:DT Sunday:NN"
 b) "5:CD €:NN", "one:CD million:CD dollars:NNS"
 c) "ana.sanchez@gmail.com", "ana.sanchez at gmail dot com"

2. Provide patterns to recognize the basic NP-chunks of the following POS-tagged sentences:
 e) "Workers:NNS of:IN car:NN parks:NNS hate:VB working:VBG after:IN 7:00:Z pm:NN ”

3. Is the use of hand-crafted rules a suitable technique for all the cases?
Outline

1 Word sequences
 - Goal and motivation

2 Methods
 - Hand-crafted rules
 - Discriminative models
 - Conditional Random Fields
Representation of the examples with BIO labels

Manually labelled sentence in training corpus:

\[w_1 \ w_2 \ w_3 \ldots [\text{CLASS } w_i \ w_{i+1}] \ldots w_n \]

Is transformed into:

\[w_1:O \ w_2:O \ w_3:O \ldots w_i:B-\text{CLASS} \ w_{i+1}:I-\text{CLASS} \ldots w_n:O \]

B: beginning; I: inside; O: outside

Examples:

- **NERC**

 "The president of [LOC the US], [PER D. Trump]"

- **Basic-NP chunking**

 "[NP The president] of [NP the US], [NP D. Trump]"

Outline

1. Word sequences
 - Goal and motivation

2. Methods
 - Hand-crafted rules
 - Discriminative models
 - Conditional Random Fields
Conditional Random Fields

- Generalization of HMMs
- HMMs: Naïve Bayes applied to a sequence.
 - Based on join probability (Generative model)
 \[P(X|O) \approx P(X, O) = P(X_1, \ldots, X_T) \cdot P(O_1, \ldots, O_T|X_1, \ldots, X_T) \]
- CRFs: logistic regression applied to a sequence
 - Based on conditional probability (Discriminative model)
 \[P(X|O) = \frac{1}{Z(O)} \cdot \exp(\sum_t \sum_k \lambda_k \cdot f_k(x_{t-1}, x_t, O, t)) \]
 \[Z(O) = \sum_X \exp(\sum_t \sum_k \lambda_k \cdot f_k(x_{t-1}, x_t, O, t)) \]
 \(f_k \) are binary feature functions over states \(X_{t-1} = s_i \) and \(X_t = s_j \) (Markov property) and over observations from \(O \)
Learning of parameters λ_i

Briefly:

- Maximize the log-likelihood of labelled sequences occurring in some training data.
- Optimization procedures: quasi-Newton methods, conjugate gradient, iterative scaling.

That topic is out of this course.
Modeling NERC with CRFs

- States s_i are tags B-CLASS, I-CLASS, O for all possible NE classes.
- Feature templates can be designed as feature function generalizations.

 Ex: The current word is capitalized and its tag is a

 $$f_{1,a}(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = a \text{ and } \text{capitalized}(o_t) \\ 0 & \text{otherwise} \end{cases}$$

- Feature functions are automatically generated from feature templates. Some of them will be irrelevant ($\lambda_i = 0$)

 Ex: Two feature function generated from $f_{1,a}$

 $$f_{1,\text{B-PER}}(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = \text{B-PER} \text{ and } \text{capitalized}(o_t) \\ 0 & \text{otherwise} \end{cases}$$

 $$f_{1,\text{O}}(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = \text{O} \text{ and } \text{capitalized}(o_t) \\ 0 & \text{otherwise} \end{cases}$$
Modeling NP-chunking with CRFs

- States s_i are tags B, I, O as there is only one class (NP).
- Feature templates.

 Ex: The POS of the current word is a and the current tag is b

 \[
 f_{1,a,b}(x_{t-1}, x_t, O, t) = \begin{cases}
 1 & \text{if } \text{pos}(o_t) = a \text{ and } x_t = b \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Feature functions.

 Ex: Three feature functions automatically generated from $f_{1,a,b}$:

 \[
 f_{1,DT,B}(x_{t-1}, x_t, O, t) = \begin{cases}
 1 & \text{if } \text{pos}(o_t) = DT \text{ and } x_t = B \\
 0 & \text{otherwise}
 \end{cases}
 \]

 \[
 f_{1,NN,I}(x_{t-1}, x_t, O, t) = \begin{cases}
 1 & \text{if } \text{pos}(o_t) = NN \text{ and } x_t = I \\
 0 & \text{otherwise}
 \end{cases}
 \]

 \[
 f_{1,VB,O}(x_{t-1}, x_t, O, t) = \begin{cases}
 1 & \text{if } \text{pos}(o_t) = VB \text{ and } x_t = O \\
 0 & \text{otherwise}
 \end{cases}
 \]
Exercise

Write the feature templates for the following descriptions. Provide examples of feature functions generated from them.

Usually for NERC:

- The previous tag is a, the current tag is b and the current word is capitalized
- The current tag is a and the next word is w
- A person name can be preceded by a title (mr., dr., . . .)

Usually for NP-chunking:

- The POS of the current word is a and the current tag is b
- The POS of the previous word is a, the previous tag is b and the current tag is c
How is the best sequence found?

- We want to find
 \[\hat{X} = \arg\max_X P(X|O, \lambda) = \arg\max_X \exp \sum_t \sum_k \lambda_k \cdot f_k(y_{t-1}, y_t, O, t) \]

- Viterbi algorithm can be easily modified for CRFs

Trellis of a fully connected CRF.

A node \(\{s_j, t\} \) of the trellis stores information about states sequences which include \(X_t = s_j \).

\[
\{s_j, t\} : \quad \delta_t(j) = \max_{X_1, \ldots, X_{t-1}} P(X_1, \ldots, X_{t-1}, s_j|O, \lambda) \\
\varphi_t(j) = last(\arg\max_{X_1, \ldots, X_{t-1}} P(X_1, \ldots, X_{t-1}, s_j|O, \lambda))
\]
How is the best sequence found?

- We want to find
 \[
 \hat{X} = \arg \max_X P(X|O, \lambda) = \arg \max_X \exp \sum_t \sum_k \lambda_k \cdot f_k(y_{t-1}, y_t, O, t)
 \]

- Viterbi algorithm can be easily modified for CRFs

 1. Initialization: \(\forall j = 1 \ldots N \)
 \[
 \delta_1(j) = \exp \sum_k \lambda_k^\text{init} \cdot f_k(x_1 = s_j, O, t)
 \]

 2. Induction: \(\forall j = 1 \ldots N \)
 \[
 \delta_t(j) = \max_i [\delta_{t-1}(i) \cdot \exp \sum_k \lambda_k \cdot f_k(x_{t-1} = s_i, x_t = s_j, O, t)]
 \]
 \[
 \varphi_t(j) = \arg \max_i [\delta_{t-1}(i) \cdot \exp \sum_k \lambda_k \cdot f_k(x_{i-1} = s_i, x_i = s_j, O, t)]
 \]

 3. Termination:
 \[
 \hat{X}_T = \arg \max_i \delta_T(i)
 \]

 4. Backward path readout:
 \[
 \hat{X}_t = \varphi_{t+1}(\hat{X}_{t+1})
 \]