Mining Unstructured Data
1. Document structure and language
Outline

1. Document structure
   - Searching textual zones
   - Tokenization
   - Sentence splitting

2. Language identification
Outline

1. Document structure
   - Searching textual zones
     - Tokenization
     - Sentence splitting

2. Language identification
Document types

- **Documents containing text:**
  - Structured documents (e.g., web pages being tables)
  - Semi-structured documents (e.g., web pages containing pieces of plain text, figures and tables)
  - Documents with plain text only (e.g., text files, emails, tweets, oral transcripts)

Accessing to plain text contained in web pages may be relevant.
Transform an XML/HTML/XHTML document into a tree of standard objects.

Provide an interface to manage that tree.

Textual zones in the document can be extracted from that tree using the interface.

```xml
<?xml version="1.0"?>
<doc type="novel" title="The green apple">
<chapter id="1">
<p>There are lots of trees in Amsteel Hill. I remember going there and spend all the morning climbing those trees, trying to get as many apples as possible.</p>
<p>James always wanted to come with me but he was too young to get climbing.</p>
...
</chapter>
</doc>
```

Using ElementTree.py

```python
for c in root:
    lp=c.findall('p')
    for p in lp:
        print p.text
```
Outline

1. Document structure
   - Searching textual zones
   - Tokenization
   - Sentence splitting

2. Language identification
Goal of tokenization

- **Goal**: split plain text into *basic units*
- **Use**: IR tasks, text categorization, sentence splitting, language identification, text normalization . . .
- **Different *basic units* depending on the task,**
  - *Naïve* tokenizations: split by blanks and punctuation marks occurring after alphanum-string.
  - Complex tokenizations: names, clitics, abbreviations, *collocations* . . .
Goal of tokenization

- Goal: split plain text into *basic units*
- Use: IR tasks, text categorization, sentence splitting, language identification, text normalization . . .
- Different *basic units* depending on the task,
  - *Naïve* tokenizations: split by blanks and punctuation marks occurring after alphanum-string.
  - Complex tokenizations: names, clitics, abbreviations, *collocations* . . .

Relevant definitions:

*Word N-gram*: sequence of words occurring in a text

*Collocation*: sequence of words that frequently occur together. Ex: ”break a leg”, ”On the one hand”
## Examples of tokenization

<table>
<thead>
<tr>
<th>Blanks</th>
<th>outer punct.</th>
<th>Abbr.</th>
<th>Clitics</th>
<th>Colloc.</th>
<th>text normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Of course</td>
<td>Of course</td>
<td>Of course</td>
<td>Of course</td>
<td>Of course</td>
<td>Of course</td>
</tr>
<tr>
<td>I’ll</td>
<td>I’ll</td>
<td>I’ll</td>
<td>I’ll</td>
<td>I</td>
<td>I will</td>
</tr>
<tr>
<td>go</td>
<td>go</td>
<td>go</td>
<td>go</td>
<td>go</td>
<td>go</td>
</tr>
<tr>
<td>to</td>
<td>to</td>
<td>to</td>
<td>to</td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td>’’</td>
<td>’’</td>
<td>’’</td>
<td>’’</td>
<td>’’</td>
<td>’’</td>
</tr>
<tr>
<td>”Daily,</td>
<td>Daily</td>
<td>Daily</td>
<td>Daily</td>
<td>Daily</td>
<td>Daily</td>
</tr>
<tr>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
</tr>
<tr>
<td>Mr.</td>
<td>Mr.</td>
<td>Mr.</td>
<td>Mr.</td>
<td>Mr.</td>
<td>Mister</td>
</tr>
<tr>
<td>John Smith…”</td>
<td>John Smith</td>
<td>John Smith</td>
<td>John Smith</td>
<td>John Smith</td>
<td>John_Smith</td>
</tr>
<tr>
<td>, , ,</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>”</td>
<td>”</td>
<td>”</td>
<td>”</td>
<td>”</td>
<td>”</td>
</tr>
</tbody>
</table>
## Examples of tokenization

<table>
<thead>
<tr>
<th>Blanks</th>
<th>outer punct.</th>
<th>Abbr.</th>
<th>Clitics</th>
<th>Colloc.</th>
<th>text normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Of course</td>
<td>Of course</td>
<td>Of course</td>
<td>Of course</td>
<td>Of course</td>
<td>Of course</td>
</tr>
<tr>
<td>I’ll</td>
<td>I’ll</td>
<td>I’ll</td>
<td>I’ll</td>
<td>I’ll</td>
<td>will</td>
</tr>
<tr>
<td>go</td>
<td>go</td>
<td>go</td>
<td>go</td>
<td>go</td>
<td>go</td>
</tr>
<tr>
<td>to</td>
<td>to</td>
<td>to</td>
<td>to</td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
</tr>
<tr>
<td>”Daily,</td>
<td>Daily</td>
<td>Daily</td>
<td>Daily</td>
<td>Daily</td>
<td>Daily</td>
</tr>
<tr>
<td>Mr.</td>
<td>Mr</td>
<td>Mr</td>
<td>Mr</td>
<td>Mr</td>
<td>Mister</td>
</tr>
<tr>
<td>John Smith...”</td>
<td>John Smith</td>
<td>John Smith</td>
<td>John Smith</td>
<td>John Smith</td>
<td>John_Smith</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
# Examples of tokenization

<table>
<thead>
<tr>
<th>Blanks</th>
<th>outer punct.</th>
<th>Abbr.</th>
<th>Clitics</th>
<th>Colloc.</th>
<th>text normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Of</td>
<td>Of</td>
<td>Of</td>
<td>Of</td>
<td>Of</td>
<td>Of_course</td>
</tr>
<tr>
<td>course</td>
<td>course</td>
<td>course</td>
<td>course</td>
<td>course</td>
<td>course</td>
</tr>
<tr>
<td>I’ll</td>
<td>I’ll</td>
<td>I</td>
<td>I’l</td>
<td>I’l</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>will</td>
</tr>
<tr>
<td>go</td>
<td>go</td>
<td>go</td>
<td>go</td>
<td>go</td>
<td>go</td>
</tr>
<tr>
<td>to</td>
<td>to</td>
<td>to</td>
<td>to</td>
<td>to</td>
<td>to</td>
</tr>
<tr>
<td>.</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
</tr>
<tr>
<td>”Daily,</td>
<td>Daily</td>
<td>Daily</td>
<td>Daily</td>
<td>Daily</td>
<td>Daily</td>
</tr>
<tr>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
</tr>
<tr>
<td>Mr.</td>
<td>Mr</td>
<td>Mr</td>
<td>Mr</td>
<td>Mr</td>
<td>Mr.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>Mister</td>
</tr>
<tr>
<td>John Smith...”</td>
<td>John Smith</td>
<td>John</td>
<td>John</td>
<td>John</td>
<td>John_Smith</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Outline

1. Document structure
   - Searching textual zones
   - Tokenization
   - Sentence splitting

2. Language identification
Goal of sentence splitting

- Goal: Recognition of sentence boundaries in plain text (e.g., '.', '?', '!', '...').

- Language-dependent task
  - Ex: German: "Mein 2. Semester kommt bald zu Ende."
  - Ex: Traditional chinese?

- Domain-dependent task
  - Ex: "It is expressed as (x=1)? T.add(’-’) : T.add(x)."

- Methods:
  - Hand-crafted rules
  - Machine learning methods

- Input:
  - Naïve tokenization that depends on the particular method.
  - For simplicity, we will assume *blanks+outer_punctuation*
    " I’ll go to U.P.C. ” Daily, Mr. John Smith...” ”
    → ” I ’ll go to U.P.C. ” Daily, Mr. John Smith ... ” ”
Problems of sentence splitting

Main problems:

- Abbreviations and acronyms (most difficult one)
  
  Ex: “I will meet with Mr. Smith to talk about it.”
  Ex: “Lisa run 25 km. She ended up in N.Y.”

- How to detect them?

- Ellipsis
  
  Ex: “There’re different methods (A, B, . . . ) but . . . ”

- Internal quotation
  
  Ex: ” ’Stop!’ he shouted.”

- Ordinal numbers (German)

- Special cases:
  
  Ex: ” We have some variables. \( x \) stands for the weight,”
Hand-crafted rules for sentence splitting

- Specific hand-crafted rules for specific cases
  - Abbreviation classes (Lists of abbreviations)
    (month name, unit-of-measure, title, address name, . . .)
    Ex: TITLE=(‘Mr’, ’Mrs’, ’Dr’, . . .)
  - Regular expressions for general cases, abbreviations, ellipsis, . . .
    Ex: / ([?!]+) / → t ∈ s_boundary
    Ex: / (\.)\{3\} [A-Z]/ → t ∈ s_boundary
    Ex: / ([?!.]) [A-Z]/ → t ∈ s_boundary
    Ex: / ($TITLE) \. / → t ∉ s_boundary
    Ex: / [A-Z] \. / → t ∉ s_boundary

- Problem:
  - Highly expensive adaptation to new languages
    (rules and abbreviation classes)
Supervised ML for sentence splitting

- The most frequently used (ME, SVM, CRF, …)
- Require manually annotated corpora. Commonly, $e^+, e^- = ['.','!','?']$ and some preceding and following tokens
- Represent each $e$ as a set of features. Depends on the approach, the language and the domain, although normally they tend to be binary features.
- Problem:
  - Require very large sets of examples (tens of thousands to hundreds of thousands)
Supervised ML for sentence splitting

- Examples of features used in the state of the art
  - tok-1_X: 1st token before ‘.’ is X
  - tok-2_X: 2nd token before ‘.’ is X
  - tok+1_X: 1st token after ‘.’ is X
  - len_tok-1_X: length of 1st token before ‘.’ is X
  - len_tok-2_X: length of 2nd token before ‘.’ is X
  - len_tok+1_X: length of 1st token after ‘.’ is X
  - [up|lo|cap|num]_tok-1: 1st token before ‘.’ is Upper, Lower, CAP, Numbers
  - [up|lo|cap|num]_tok-2: same for 2nd token before ‘.’
  - [up|lo|cap|num]_tok+1: same for 1st token after ‘.’
  - class_tok-1_X: abbreviation class of 1st token before ‘.’ is X
  ...

Document structure
Sentence splitting
Language identification
Supervised ML for sentence splitting

Example of annotation and binary features extraction

I’ll go to U.P.C " Daily, Mr John Smith ... ”

<table>
<thead>
<tr>
<th>e+</th>
<th>tok-1_U.P.C</th>
<th>e−</th>
<th>tok-1_Mr</th>
</tr>
</thead>
<tbody>
<tr>
<td>len_tok-1_3</td>
<td>CAP_tok-1</td>
<td>len_tok-1_2</td>
<td>up_tok-1</td>
</tr>
<tr>
<td>tok-2_to</td>
<td></td>
<td>tok-2,</td>
<td></td>
</tr>
<tr>
<td>len_tok-2_2</td>
<td>lo_tok-2</td>
<td>len_tok-2_1</td>
<td></td>
</tr>
<tr>
<td>tok+1_”</td>
<td></td>
<td>class_tok-1_title</td>
<td></td>
</tr>
<tr>
<td>len_tok+1_1</td>
<td></td>
<td>tok+1_John</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>len_tok+1_4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>up_tok+1</td>
<td></td>
</tr>
</tbody>
</table>
Unsupervised ML for sentence splitting

- Based on corpus statistics
- Easily adaptable to new languages
  - They require large unannotated training corpora
- Mainly focus on abbreviations and ellipsis
- Heuristics and statistics calculated from the training corpus to decide:
  1. Which tokens are abbreviations?
  2. When the final period of the elements is a sentence boundary?
- Example: Punkt [Kiss and Strunk, 2006] included in NLTK python package
Unsupervised ML for sentence splitting

1 Punkt: Is token $t$ considered an abbreviation?

Measured by considering the following heuristics:

- $t' = <t, .>$ should be a collocation
- the length of $t$ should be short
- $t$ could include periods (acronyms)
- $t$ is not ordinary word preceeding a period most of the times. (e.g., verbs in Turkish)
Unsupervised ML for sentence splitting

1. **Punkt: Is token** \(t\) **considered an abbreviation?**
   Measured by considering the following heuristics:
   - \(t' = <t, .>\) should be a collocation
   - the length of \(t\) should be short
   - \(t\) could include periods (acronyms)
   - \(t\) is not ordinary word preceding a period most of the times. (e.g., verbs in Turkish)

2. **Punkt: Is the final period of abbreviation** \(t' = <t, .>\) **considered sentence boundary?**
   Either one of the following heuristics must be true:
   - \(t'' = following(t')\) is a frequent sentence (from [1]) starter
   - \(t''\) is uppercase, occurs at least once in lowercase in the training corpus but never in uppercase inside sentences (from [1])
Exercise

Explain why Punkt fails (red) or not (blue) with the following texts:

- ""Good night!", said Laura. ""
- ""Abbrev. is a common abbreviation of abbreviation. ""
- ""We are meeting with our mr. You are late! ""
- ""We are meeting with our Mr. However, we’ll finish soon."

Demo Punkt sentence splitter + different tokenizers: http://text-processing.com/demo/tokenize/
Outline

1  Document structure
   ■ Searching textual zones
   ■ Tokenization
   ■ Sentence splitting

2  Language identification
Goal of language identification

- Can be seen as a particular classification problem.
- Given a document, $d$, and a set of languages, $L = \{l_1, \ldots, l_k\}$, assign $l_i$ to $d$.
- Method:
  - $\hat{d} = \text{representation}(d)$
  - $M(\hat{d}) \rightarrow l_i$
- Model $M$ can be learned from training corpus $T = \{T_i\}_{1 \ldots k}$ where $T_i = \{d_x|d_x \text{ written in } l_i\}$:
  - Supervised Machine Learning methods
  - **Statistical Language models**

Language models for language identification

Method with language models:

\[ M = \{ P_{l_i} \}_{l_i \in L} \]

\[ P_{l_i}(\hat{d}) : \text{probability of } \hat{d} \text{ to belong to } l_i \]

\[ l_i = \arg\max_{l \in L} (P^l(\hat{d})) \]

\[ P^l(\hat{d}) \approx P^{T_i}(\hat{d}) : \text{probability of } \hat{d} \text{ observing data from } T_i \]
Method with language models:

\[ M = \{ P_{l_i} \}_{l_i \in L} \]

\[ P_{l_i}(\hat{d}) : \text{probability of } \hat{d} \text{ to belong to } l_i \]

\[ l_i = \arg\max_{l \in L} (P^l(\hat{d})) \]

\[ P^l_{l_i}(\hat{d}) \approx P^{T_i}(\hat{d}) : \text{probability of } \hat{d} \text{ observing data from } T_i \]

1. Which is the representation \( \hat{d} \)?
2. How is \( P^{T_i}(\hat{d}) \) computed?
Language models for language identification

Method with language models:

\[ M = \{P^l_i\}_{i \in L} \]

\[ P^l_i(\hat{d}): \text{probability of } \hat{d} \text{ to belong to } l_i \]

\[ l_i = \arg\max_{l \in L} (P^l(\hat{d})) \]

\[ P^l_i(\hat{d}) \approx P^{T_i}(\hat{d}): \text{probability of } \hat{d} \text{ observing data from } T_i \]

1. Which is the representation \( \hat{d} \)?
2. How is \( P^{T_i}(\hat{d}) \) computed?

They depend on the particular type of model. Most frequently used: unigram language models
Unigram language models for language identification

1. Which is the representation \( \hat{d} \)?
   
   \[ \hat{d} = e_1, \ldots, e_s \]
   
   being the occurrences of unigrams:
   
   - Words (after Naïve tokenization) or
   - Characters \( n \)-grams (tokenization is not required)
     
     - \( n \) fixed (the most frequently used) or
     - \( n \) variable (improves accuracy, lower efficiency)
Unigram language models for language identification

1. **Which is the representation $\hat{d}$?**
   $\hat{d} = e_1, \ldots, e_s$ being the occurrences of unigrams:
   - Words (after Naïve tokenization) or
   - Characters $n$-grams (tokenization is not required)
     - $n$ fixed (the most frequently used) or
     - $n$ variable (improves accuracy, lower efficiency)

2. **How is $P^{T_i}(\hat{d})$ computed?**
   Each $e_j$ is independent from the rest
   \[
   P^T(\hat{d}) = P^T(e_1, \ldots, e_s) = \prod_{j=1}^{s} P^T(e_j)
   \]
   \[
   \log P^T(\hat{d}) = \sum_{j=1}^{s} \log P^T(e_j)
   \]
   Possible estimators of $P^T(e_j)$:
   - Maximum Likelihood Estimator (MLE)
   - Smoothing techniques.
Unigram language models for language identification

Maximum Likelihood Estimator

\[ P^T(e_j) \approx P^T_{MLE}(e_j) = \frac{c_T(e_j)}{N_T} \]

- \( c_T(x) \): \#observed occurrences of \( x \) in training corpus \( T \)
- \( N_T \): \#observed occurrences of elements in training corpus \( T \)

Problem: data sparseness. Unseen \( e_j \) causes the model to fail. MLE is unsuitable for NLP.

Example:

\[ P^\text{[en]}(\text{The doctor tell us about his quadriplegia})? \]

\[ c^\text{[en]}(\text{'quadriplegia'}) = 0 = \Rightarrow P^\text{[en]}_{MLE}(\text{'quadriplegia'}) = 0 = \Rightarrow P^\text{[en]}(\text{The doctor tell us about his quadriplegia}) = 0 !!! \]
Unigram language models for language identification

Maximum Likelihood Estimator

\[ P_T(e_j) \approx P_{MLE}^T(e_j) = \frac{c_T(e_j)}{N_T} \]

- \( c_T(x) \): #observed occurrences of \( x \) in training corpus \( T \)
- \( N_T \): #observed occurrences of elements in training corpus \( T \)

- Problem: data sparseness. Unseen \( e_j \) causes the model to fail. MLE is unsuitable for NLP.
Unigram language models for language identification

Maximum Likelihood Estimator

\[ P^T(e_j) \approx P^T_{MLE}(e_j) = \frac{c_T(e_j)}{N_T} \]

- \( c_T(x) \): \#observed occurrences of \( x \) in training corpus \( T \)
- \( N_T \): \#observed occurrences of elements in training corpus \( T \)

**Example:**

\[ P^{[en]}('The doctor tell us about his quadriplegia')? \]

\[ c_{[en]}('quadriplegia') = 0 \implies P^{[en]}_{MLE}('quadriplegia') = 0 \implies P^{[en]}('The doctor tell us about his quadriplegia') = 0 !!! \]
Unigram language models for language identification

Smoothing Techniques:

Keep some probability mass for $e_j$ unseen in $T_i$;

E.g., Lidstone’s Law (LID)

$$P^T(e_j) \approx P^T_{LID}(e_j) = \frac{c_T(e_j) + \lambda}{N_T + \lambda B}$$

usually, $\lambda = 0.5$

$B$: #bins (potentially observable unigrams)
Suppose we have a Language Identifier for English and Catalan, based on unigram language models with words and the following statistics:

<table>
<thead>
<tr>
<th>$w_i$</th>
<th>a</th>
<th>he</th>
<th>mail</th>
<th>sent</th>
<th>to</th>
<th>mordorian</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_{[en]}(w_i)$</td>
<td>17.000</td>
<td>10.000</td>
<td>3.900</td>
<td>850</td>
<td>25.000</td>
<td>0</td>
</tr>
<tr>
<td>$N_{[en]}=1,300,000$</td>
<td>$B_{[en]}=22,600$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_{[ca]}(w_i)$</td>
<td>21.000</td>
<td>11.900</td>
<td>420</td>
<td>910</td>
<td>750</td>
<td>0</td>
</tr>
<tr>
<td>$N_{[ca]}=1,100,000$</td>
<td>$B_{[ca]}=36,800$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Compute $P_{[en]}$ and $P_{[ca]}$ using MLE and LID for the following texts:
  - "he"
  - "he sent a"
  - "he sent a mail"
  - "he sent a mail to a mordorian"

- What language is identified by each estimator for each of the previous texts?

- Explain the effects of the text size.