Mining Unstructured Data
Exercises on Dependency Parsing

Exercise 1.

Consider the sentence: John quit his job.
Draw the following dependency parses.

a) (2,1), (0,2), (1,3), (3,4
b) (2,1), (0,2), (2,3), (3,4
o (2,1), (0,2), (2,4), (3,4
d (2,1), (0,2), (2,4, (4,3)
e) (0,1), (1,2), (2,3), (3,4)
* Which are invalid parses and why?

* Which are projective parses?

SOLUTION
a) (2,1), (0,2), (1,3), (3,4) b) (2,1, (0,2), (2,3), (3,4 o (2,1), (0,2), (2,49, 3,4
I/ \1 X/_\ / \|/ VO / \‘l mX
John quit his job John quit his job John quit his job
d (2,1), (0,2), (2,4, (4,3) e) (0,1), (1,2), (2,3), (3,4)
/ \Il m& ‘/ VARYER
John quit his job John quit his job

* All parses are valid, except (c) which is not a tree since node job has two parents).

* Projective parses are (b), (d), and (e). Tree (a) is not projective since the root (0,2) arc crosses the
(1,3) arc.

Exercise 2.

In a global linear model for dependency parsing, the feacture vector f(z,y) for any sentence = paired
with a dependency tree y is defined as:

Z f(z, h,m)

(h,m)€ey

where f(z, h, m) is a function that maps a dependency (h,m) and a sentence x to a local feature vector.
We want the vector f(z,y) to have exactly two dimensions, each dimension having the following
value:

fi(z,y) = num of times a dependency with head car and modifier the is seen in (z, y)
fo(z,y) = num of times a dependency with head part-of-speech NN, modifier part-of-speech DT,
and no adjective (JJ) between the DT and the NN is seen in (z,y)

Assuming that each element in the sentence x; is a pair (word, PoS), and that the functions word(z;)
and pos(x;) return the value for each component of the pair:

1. Give a definition of the function f(z, h,m) = (fi(z, h,m), f3(z, h,m)) that leads to the above defi-
nition of f(z,y).

2. Compute the value of f(x,y) for the following pair (z,y):

x = The/DT car/NN with/IN the/DT red/JJ hood/NN won/VBD the/DT car/NN race/NN
y=1{(2,1),(7,2),(2,3),(3,6),(6,4),(6,5), (0,7),(7,10), (10,8), (10,9) }

SOLUTION

1. Since f(z, h,m) = (f1(z, h,m), f2(x, h,m)), to define f we just need to define the indicator feature
functions f; and f5:

1 if word(xy) = car and word(z,,) = the

fi(z1:n, h,m) :{ 0 otherwise

1 if pos(zp) = NN and pos(z,,) = DT and
fi1(z1.m, hym) = Aim<i<hVh<i<m:pos(x;)=1J]
0 otherwise

2. We need to compute f;(x,h,m) and f;(z, h,m) for each arc in the tree, and then sum them to
obtain the global vector f(z,y).

A AR

The car w1th the red hood won the car race
DT NN DT NN VBD DT NN NN

The given tree y is:

The features we get for each arc are:

g o~ o
1000000__ I

Il
| | | iy
A~~~ N~~~ O 0D
123645710»07
NN NS OSSN~ A
B8 88 88 8 8 8.8
PN N NN AN NN N

o8 6 o8 6f oF 8 o5 8 o8

oM

Z o
—oooooo

o
Il

g
A~~~ N~~~ O 0D
123645710707
NN SISS I~ =~

H 8 8 8 8 8 88 88
BEEERREREEE
— — i — — — — — — —

(1) modifier is the but head is not car

Gl G Gt Gt G G G Gy G Gy

(2) head is NN and modifier is DT but there is a JJ in between.

(1,2).

= (f}, f;) over all arcs, thus f(z,y) =

Finally, f(z,y) is the sum of f

Exercise 3.

Recall the factored linear models for labeled dependency parsing. An arc-factored model

computes:
tree(z1.n) = argmaxw - f(z,y)
yeY(x)
= argmax Z w - f(x, h,m,l) (@)

VEYE) (hm ey

In the function, x1., is an input sentence of n tokens (z; is the i-th token). Y (z) is the set of
all possible dependency trees for = (each y € Y (x) is a dependency tree). The tuple (h, m, 1)
is a labeled dependency: h is is the index of the head word (we have 0 < h < n, and h =0
indicates the root token); m is the index of the modifier word (we have 1 < m < n), and l
is the syntactic label of that dependency (assume L is the set of possible syntactic relations
(e.g. subject, object, modifier; etc.), and that | € L).

In what follows, assume pos(x;) and word(z;) for ¢ € {1...n} return respectively the part-of-speech and
word form in position ¢ in the sentence.

As usual we will define features using feature templates that capture certain syntactic properties. For
example, an important property is to consider the compatibility of head-modifier relations with respect
to part-of-speech tags. As a particular example, a verb will typically have nouns and adverbs as possible
modifiers, but will never have determiners (since these modify nouns).

The following feature template will capture this information:

1 if pos(zp) = a and pos(z,,) = b

fi.0.6 (@1, by, 1) :{ 0 otherwise

In the template above o and b are possible PoS tags. Note that this template ignores the label. We could
have another template that looks at PoS compatibility in conjunction with a label ¢ € L:

1 if pos(zp) = a and pos(z,,) =bandl = ¢

f2,a,b,c(1'1:na h, m, l) = { 0 otherwise

1. Write feature templates that capture the following properties:

(a) Lexical compatibility. For example, “boy” and “dog” are possible subject modifiers for the
verb “eat”, but “stone” or “pizza” are not likely subjects; on the other hand, “pizza” is a likely
modifier for an object relation with “eat”. Write two templates, one ignoring and the other
considering the syntactic label:

* f3 45(21:n, h,m,1) : The head word is a and the modifier is b
* £44pc(®1:m,h,m, 1) : The head word is a, the modifier is b, and the relation is c.

(b) Adjectives in English appear before nouns (“small dog”), while for Spanish and Catalan they
appear after nouns (“gos petit”). Write templates that capture the relative position of the
modifier with respect to the head. Specifically, the features need to capture whether the
modifier is to the left or to the right of the head, and whether the two words are adjacent
or not. Write templates that only captures the relative position, and others that capture the
relative position together with the pos tags or the words.

* f5(x1.n, h,m,l) : The modifier is to the left of the head word.

* f5(x1.n, h,m,1) : The modifier is to the right of the head word.

* f7(x1.n, h,m,1) : The modifier is immediately left of the head word.

* fg(x1.n, h,m,1) : The modifier is imediately right of the head word.

* f54.5(T1:n, h,m, 1) : The head word is a, the modifier is b, and the modifier is to the left of
the head word.

* £10.0,6(1:n, R, m, 1) : The head word is a, the modifier is b, and the modifier is to the right
of the head word.

* £11,0.6(1:n, h,m,) : The head word is a, the modifier is b, and the modifier is immediately
left of the head word.

* £12,4.6(%1:n, h,m,) : The head word is a, the modifier is b, and the modifier is immediately
right of the head word.

* f134.5(1:n, R, m, 1) : The head word PoS is a, the modifier PoS is b, and the modifier is to
the left of the head word.

* f14.4,5(1:, R, m, 1) : The head word PoS is a, the modifier PoS is b, and the modifier is to
the right of the head word.

* f154,5(1:n, R, m,1) : The head word PoS is a, the modifier PoS is b, and the modifier is
immediately left of the head word.

* f16.0,6(T1:n, R, m,1) : The head word PoS is a, the modifier PoS is b, and the modifier is
immediately right of the head word.

(c) In a noun phrase such as “many small hungry dogs” we expect to find a sequence of determin-
ers and adjectives before a noun, and don’t expect to find verbs in the middle of this sequence.
Write feature templates that capture the pos tags of words that appear between the head and
the modifier.

* f174(%1:n, h,m, 1) : The PoS tag a appears between the modifier and the head word.

(d) Write feature templates that capture Subject-Verb-Object phenomen and variations (SOV,
SVO, OVS, ...). Try to be general: assume a part of speech of a head word (e.g. verb) and
two syntactic relations (e.g. subject and object), and write templates that can capture the
relative position of the relations with respect to the head word. Illustrate the type of features
that your templates can and can not capture.

* fis(x1.n, h,m,1) : The head is a verb, the modifier is to its left, and it is the subject.

* fi9(x1.n, h,m,1) : The head is a verb, the modifier is to its right, and it is the subject.
* f50(x1.n, h,m,1) : The head is a verb, the modifier is to its left, and it is the object.
()

* f51(x1.n, h,m, 1) : The head is a verb, the modifier is to its right, and it is the object.

2. Using the previous templates, compute the value of f(z,y) for the following pair (z, y):

x = the/DT big/JJ cat/NN eats/VBZ fresh/JJ fish/NN
y = {(3,1,det), (3,2,nmod), (4, 3, subj), (0, 4, root), (6,5, nmod), (4, 6,0bj) }

SOLUTION

1. Feature patterns
(a) Lexical compatibility
* f3,5(21:n, h,m,1) : The head word is a and the modifier is b

1 if word(xy) = a and word(z,,) = b

fg,a,b,(xl:m h; m, l) = { 0 otherwise

* f44pc(®1m, h,m,l) : The head word is a, the modifier is b, and the relation label is ¢

1 if word(xp) = a and word(z,,) =bandl=—c

f3,a.,b,c(x1:n» hv m, l) = { 0 otherwise

(b) head-modifier order
* f5(x1.n, h,m,1) : The modifier is to the left of the head word.

1 ifm<h

f5(x1:0, hym, 1) :{ 0 otherwise

ISee http://en.wikipedia.org/wiki/Subject-verb-object

http://en.wikipedia.org/wiki/Subject-verb-object

fo(21.n, h,m, 1) : The modifier is to the right of the head word.

1 ifm>h

6 (21:n, by m, 1) :{ 0 otherwise

£7(21.n, h,m, 1) : The modifier is immediately left of the head word.

1 fm=h-1

£r (@1, by, 1) :{ 0 otherwise

fs(21.n, h,m, 1) : The modifier is imediately right of the head word.

1 ifm=h+1
fs (21, hym, 1) = { 0 otherwise
f9.0.5(T1:n, b, m, 1) : The head word is a, the modifier is b, and the modifier is to the left of
the head word.

1 if word(xy) = a and word(x,,) =band m < h

£9.0.6(1:m, s, 1) :{ 0 otherwise

10,a,6(%1:n, h,m, 1) : The head word is a, the modifier is b, and the modifier is to the right
of the head word.

1 if word(xp) = a and word(z,,) = band m > h

flO,a,b(xlznv ha m, l) = { 0 otherwise

fi1,0.6(T1:n, b, m, 1) : The head word is a, the modifier is b, and the modifier is immediately
left of the head word.

1 ifword(xy) = a and word(x,,) =band m =h —1

fll,a7b(m1:na h,m, l) = { 0 otherwise

f12,40.6(%1:n, h,m,1) : The head word is a, the modifier is b, and the modifier is immediately
right of the head word.

1 ifword(xy) = a and word(x,,) =band m =h+1

le,a,b(w1:n7 h7 m, l) = { 0 otherwise

f13,4.6(%1:n, h,m,1) : The head word PoS is a, the modifier PoS is b, and the modifier is to
the left of the head word.

1 if pos(zn) = a and pos(x,,) =band m < h

f13,a,b(x1:n7 h,m, l) = { 0 otherwise

fi4,0.6(21:m, h,m, 1) : The head word PoS is a, the modifier PoS is b, and the modifier is to
the right of the head word.

1 if pos(zp) = a and pos(x,,) =band m > h

f14,a,b(-r1:n7 ha m, l) = { 0 otherwise

fi5,4.6(%1:n, h,m,1) : The head word PoS is a, the modifier PoS is b, and the modifier is
immediately left of the head word.

1 if pos(zp) = a and pos(z,,) =band m =h — 1

f15,a,b($1:n7 h,m, l) = { 0 otherwise

f16,4,6(%1:n, h,m,1) : The head word PoS is a, the modifier PoS is b, and the modifier is
immediately right of the head word.

1 if pos(zp) = a and pos(x,,,) =band m =h+1

flG,a,b(xlzna h, m, l) = { 0 otherwise

(c) Tags between head and modifier

* f17 o(z1:n, h,m, 1) : The PoS tag a appears between the modifier and the head word.

1 if Ji:m<i<hVh<i<m:pos(z;) =a

fi7.0(@1m, hym, D) :{ 0 otherwise

(d) S-V-O variations

* fis(x1.n, h,m,1) : The head is a verb, the modifier is to its left, and it is the subject.

1 if pos(zp) =V and m < h and [= subj

flS(J;l:na h7 m, l) = { 0 otherwise

* f19(21.n, h,m, 1) : The head is a verb, the modifier is to its right, and it is the subject.

1 if pos(zp) =V and m > h and [= subj

f19(x1:na hv m, l) = { 0 otherwise

* f50(x1.n, h,m,1) : The head is a verb, the modifier is to its left, and it is the object.

1 if pos(zp) =V and m < h and | = obj

fao (xlzwu h, m, l) = { 0 otherwise

* £51(¢1.n, h,m, 1) : The head is a verb, the modifier is to its right, and it is the object.

1 if pos(zp) =V and m > h and | = obj

£21(21:n, by, 1) :{ 0 otherwise

2. We need to apply the patterns to each arc in the tree, and sum the binary features to get the feature
vector f(z,y) for the given pair.

The given tree y is:

==

nmod
The blg cat eats fresh fish
DT NN VBZ JJ NN

The features we get for each edge in y are:

edge features

(3,1, det) f1 NN,DTs f2 NN, DT, det; £3,cat,thes fa,cat the,dets T55 £9 cat,thes i3 v, DT5 f17,73

(33 2; and) fl,NN,JJ; f2,NN,JJ,nmod; f3,cat,big; f4,cat,big,nmod; f5’ f7’ fg,cat,big; fll,cat,big;
fi3 nn,305 fis,8N,00

(47 37 subj) f1,\/BZ,NN; fQ,VBZ,NN,subj; f3,eats,cat; f4,eats,cat,subj; f5; f7; f9,eats,cat; fll,eats,cat;
f13,vBz,NN; f15 vBZ,NN; fi8

(074; I’OOt) fL*,VBZ; f2,*,VBZ7r00t; f37*,eats; f4,*,eats,root

(6,5,nmod) | 1 xn,33; 2NN, T nmod; B3, fish, fresns £4, fish, freshnmod; f53 £75 £9, rish, fresns
fi1,fish, freshs f13,8n,33; f15,8N,73

(4,6, 0bj) f1 vBz,NN; 2 VBZ,NN,objs £3,cats, fish; fa.cats, fish.objs £65 £10,cats, fish; f17,55; 21

Thus, the complete f(z,y) vector is:

fi.NNDT
f1.NN,77

i1 vBzZ NN
f1,4,vBz

fo NN, DT, det
2 NN, 77, nmod
f2 VBZ, NN, subj
f2,*,VBZ,root
f5 vBZ,NN,0bj
f3,cat,the
f3,cat,big
f3,eats,cat
f3,*,eats
f3,fish,f7‘esh
f3,eats,fish

R R R R R R R RERNDNRRDNDDNDRE

f4,cat,the,det
f4,cat7big,nm0d
f4,eats,cat,subj

f4,*,eats,root

f4,fish,fresh,nmod

f4,eats,f7,'sh,obj
f5

fo

t7

f9,cat,thc
f9,cat,big
fQ,eats,cat
f97fish7fresh
flO,eats,fish

H R R R PR WRRARRRRFB R &

fll,cat,big
flLeats,cat
fll,fish,f’r‘esh
fi3 nN,DT
fiz.NN, 33
fi3.vBz NN
fiavBz NN
fi5,NN,33
fi5,vBz,NN

fi17.35
fis
f21

HF R NRNRRNRPRP R &

Exercise 4.

Given the sentence natural language technology courses are fun,
1. Draw unlabeled dependency trees for the following interpretations

(a) technology courses about natural language are fun
(b) courses about technology on natural language are fun
(c) natural courses about language technology are fun
(d) courses about natural technology for language are fun
2. Emulate the behaviour of a transition dependency parser using an arc-standard model (i.e. with
operations shift, left-arc, and right-arc between the two topmost stack elements). List the interme-

diate stack/buffer contents and the selected action at each step needed to obtain the tree for each
of the interpretations above.

SOLUTION

1. (a) technology courses about natural language are fun

N e

natural language technology courses are fun

(b) courses about technology on natural language are fun

Y \/ YRRV

natural language technology courses are fun

(c) natural courses about language technology are fun

[/ \/ “J W

natural language technology courses are fun

(d) courses about natural technology for language are fun

[/ Ql YRRV

natural language technology courses are fun

2. Transition sequences to build each tree

(a) technology courses about natural language are fun

Stack | Buffer Transition | Edges
* | natural language technology courses are fun | sh {}
* natural | language technology courses are fun sh {}
* natural language | technology courses are fun l-arc {}
* language | technology courses are fun sh {@,D}
* language technology | courses are fun sh {2, D}
* language technology courses | are fun l-arc {@2,D}
* language courses | are fun l-arc {(2,1),(4,3)}
* courses | are fun sh {(2,1),(4,3),(4,2)}
* courses are | fun l-arc {(2,1),(4,3),(4,2)}
*are | fun sh {2,1),(4,3),(4,2),(54)}
* are fun r-arc {(2,1),(4,3),(4,2),(5,4)}
* are r-arc {(2,1),(4,3),(4,2),(5,4),(5,6)}
* stop {(2,1),(4,3),(4,2),(5,4),(5,6),(0,5)}
(b) courses about technology on natural language are fun
Stack | Buffer Transition | Edges
* | natural language technology courses are fun | sh {}
* natural | language technology courses are fun sh {3}
* natural language | technology courses are fun l-arc {3}
* language | technology courses are fun sh {(2,D}
* language technology | courses are fun l-arc {2,D}
* technology | courses are fun sh {(2,1),(3,2)}
* technology courses | are fun l-arc {(2,1),(3,2)}
* courses | are fun sh {(2,1),(3,2),(4,3)}
* courses are | fun l-arc {(2,1),(3,2),(4,3)}
*are | fun sh {(2,1),(3,2),(4,3),(54)}
* are fun r-arc {2,1),(3,2),(4,3),(5,9)}
* are r-arc {(2,1),(3,2),(4,3),(5,4),(5,6) }
stop {(2,1),(3,2),(4,3),(5,4),(5,6),(0,5)}
(c) natural courses about language technology are fun
Stack | Buffer Transition | Edges
* | natural language technology courses are fun | sh {}
* natural | language technology courses are fun sh {}
* natural language | technology courses are fun sh {}
* natural language technology | courses are fun l-arc {3
* natural technology | courses are fun sh {(8,2)}
* natural technology courses | are fun l-arc {(B,2)}
* natural courses | are fun l-arc {(3,2),(4,3)}
* courses | are fun sh {(3,2),(4,3),(4,1)}
* courses are | fun l-arc {(3,2),(4,3),(4,1),(5,4)}
*are | fun sh {(3,2),(4,3),(4,1),(5,4)}
* are fun r-arc {(3,2),(4,3),(4,1),(5,4)}
* are r-arc {(3,2),(4,3),(4,1),(5,4),(5,6) }
stop {(3,2),(4,3),(4,1),(5,4),(5,6),(0,5)}
(d) courses about natural technology for language are fun
Stack | Buffer Transition | Edges
* | natural language technology courses are fun | sh {}
* natural | language technology courses are fun sh {}
* natural language | technology courses are fun sh {3
* natural language technology | courses are fun l-arc {}
* natural technology | courses are fun l-arc {(3,2)}
* technology | courses are fun sh {(3,2),(3,1)}
* technology courses | are fun l-arc {(3,2),(3,1)}
* courses | are fun sh {(3,2),(3,1),(4,3)}
* courses are | fun l-arc {(3,2),(3,1),(4,3),(5,4)}
* are | fun sh {(3,2),(3,1),(4,3),(5,4)}
* are fun r-arc {(3,2),(3,1),(4,3),(5,4)}
* are r-arc {(3,2),(3,1),(4,3),(5,4),(5,6) }
* stop {(3,2),(3,1),(4,3),(5,4),(5,6),(0,5) }

10

Exercise 5. Parsing

Given the sentence John ate a delicious vanilla flavour cookie,
1. Draw unlabeled dependency trees for the following interpretations

(a) John ate a cookie with flavour of delicious vanilla
(b) John ate a delicious cookie with vanilla flavour
(c¢) John ate a delicious and flavoured cookie made of vanilla

(d) John ate a cookie with a delicious flavour of vanilla

A=A

John ate a delicious vanilla flavour cookie

2. Given the tree

(a) Explain the interpretation encoded by this tree avoiding any ambiguities.

(b) Emulate the behaviour that would result in this tree for a transition dependency parser using
an arc-standard model (i.e. with operations shift, left-arc, and right-arc between the two
topmost stack elements). List the intermediate stack/buffer contents and the required action
at each step to obtain the final tree.

SOLUTION
1.
(a) (b)
m[f Yy \1 m” [f_\ﬂl
John ate a delicious wvanilla flavour cookie John ate a delicious wvanilla flavour cookie
(@

d)

(
»l \ [[j ; W‘ John ate a delicious wvanilla flavour cookie

John ate a delicious wvanilla flavour cookie

(a) The tree represents the interpretation where John ate a flavoured cookie made of delicious
vanilla.

(b) The behaviour of an arc-based transition parser to obtain this interpretation would be the
following:

11

%

Stack | Buffer Transition | Edges
* | John ate a delicious vanilla flavour cookie | sh {}
* John | ate a delicious vanilla flavour cookie sh {}
* John ate | a delicious vanilla flavour cookie l-arc {@2,D}
* ate | a delicious vanilla flavour cookie sh {2,D}
* ate a | delicious vanilla flavour cookie sh {(2,1D}
*ate a delicious | vanilla flavour cookie sh {@,D}
* ate a delicious vanilla | flavour cookie l-arc {(2,1D),5,4)}
* ate a vanilla | flavour cookie sh {21,549}
* ate a vanilla flavour | cookie sh {2,1D),5,49}
ate a vanilla flavour cookie l-arc {(2,1),(5:4),(7,6)}
* ate a vanilla cookie l-arc {@2,1),(5,4,(7,6),(7,5)}
* ate a cookie l-arc {(2,1,(5,4),(7,6),(7,5),(7,3)}
* ate cookie r-arc {2,1),(5,9),(7,6),(7,5),(7,3),(2,7)}
* ate r-arc {(2,1,(5,9,(7,6),(7,5),(7,3),(2,7),(0,2) }
stop {(2,1),(5,4),(7,6),(7,5),(7,3),(2,7),(0,2) }

12

Exercise 6.
Given the sentence I had oysters with champagne from France.

1. Draw unlabeled dependency trees for the following interpretations:

(a) Thad oysters which had champagne on them. The champagne was from France.
(b) Ihad oysters which had champagne on them. The oysters were from France.

(c) Ihad oysters while having also champagne. The champagne was from France.
(d) Thad oysters while having also champagne. The oysters were from France.

2. Is any of the obtained trees non-projective? Justify your answer.

SOLUTION

1. Draw unlabeled dependency trees for the following interpretations:

(a) Thad oysters which had champagne on them. The champagne was from France.

Y A A YA YA

I had oysters with champagne fom France

(b) Ihad oysters which had champagne on them. The oysters were from France.

A/ I

I had oysters with champagne fom France

(c) Ihad oysters while having also champagne. The champagne was from France.

N & VN A

I had oysters with champagne fom France

(d) Ihad oysters while having also champagne. The oysters were from France.

/) RF\/—\ lm

I had oysters with champagne fom France

2. Structure (d) is non-projective, since there are crossing arcs.

13

	
	
	
	
	
	
	Parsing
	

