Mining Unstructured Data Exercises on features for learning CRF models to classify word sequences

Features for bigram-factored sequence annotation models

Recall the linear CRF models for sequence prediction, and think of a named entity task. A bigram CRF model computes:

$$
\begin{equation*}
\operatorname{tags}\left(x_{1: n}\right)=\underset{y_{1: n} \in \mathcal{Y}^{n}}{\operatorname{argmax}} \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}\left(x, i, y_{i-1}, y_{i}\right) \tag{1}
\end{equation*}
$$

where $x_{1: n}$ is an input sentence of n tokens (x_{i} is the i-th token), $y_{1: n}$ is an output sequence of n tags (\mathcal{Y} is the set of valid tags). $\mathbf{f}\left(x, i, y_{i-1}, y_{i}\right)$ is a function returning a feature vector of the bigram y_{i-1}, y_{i} at position i of the sentence (assume that y_{0} is a special tag START that indicates the start of the sequence). \mathbf{w} is a vector of parameters of the same dimensionality of the feature vectors.

Exercise 1.

We specify features using templates. For example, the following template captures the current word and the current tag:

$$
\mathbf{f}_{1, l, a}\left(x, i, y_{i-1}, y_{i}\right)= \begin{cases}1 & \text { if } x_{i}=a \text { and } y_{i}=l \\ 0 & \text { otherwise }\end{cases}
$$

Write feature templates that capture the following patterns. Justify your answers if necessary.

- $\mathbf{f}_{2, a}$: the current word is the first of the sentence, it is capitalized, and its tag is a
- $\mathbf{f}_{3, s, a}$: 3-letter prefix of the current word, together with the current tag
- $\mathbf{f}_{4, w, a, b}$: the current word, the current tag, and the previous tag
- $\mathbf{f}_{5, w, v, a}$: the two previous words and the current tag
- $\mathbf{f}_{6, a, b, c}$: the two previous tags and the current tag

SOLUTION

$$
\begin{aligned}
& \mathbf{f}_{2, a}\left(x_{1: n}, i, y_{i-1}, y_{i}\right)= \begin{cases}1 & \text { if } i=1 \text { and capitalized }\left(x_{i}\right) \text { and } y_{i}=a \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{3, s, a}\left(x_{1: n}, i, y_{i-1}, y_{i}\right)= \begin{cases}1 & \text { if prefix }\left(w_{i}\right)=s \text { and } y_{i}=a \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{4, w, a, b}\left(x_{1: n}, i, y_{i-1}, y_{i}\right)= \begin{cases}1 & \text { if } w_{i}=w \text { and } y_{i-1}=a \text { and } y_{i}=b \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{f}_{5, w, v, a}\left(x_{1: n}, i, y_{i-1}, y_{i}\right) & = \begin{cases}1 & \text { if } w_{i-2}=w \text { and } w_{i-1}=v \text { and } y_{i}=a \\
0 & \text { otherwise }\end{cases} \\
\mathbf{f}_{5, a, b, c}\left(x_{1: n}, i, y_{i-1}, y_{i}\right) & = \begin{cases}1 & \text { if } y_{i-2}=a \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Exercise 2.

1. Given the training example the/DT dog/NN saw/VBD the/DT man/nN, if we convert it to pairs (x, y) pairs, where $x=\left(y_{i-2}, y_{i-1}, O, i\right)$ for training a trigram-based CRF model for PoS tagging, which of the following pairs are in the training set?
(a) $x=(\mathrm{DT}, \mathrm{NN}$, the dog saw the man, 3$) ; y=\mathrm{NN}$
(b) $x=(\mathrm{VBD}, \mathrm{DT}$, the dog saw the man, 3$) ; y=\mathrm{VBD}$
(c) $x=(\mathrm{DT}, \mathrm{NN}$, the dog saw the man, 3$) ; y=\mathrm{VBD}$
(d) $x=(\mathrm{DT}, \mathrm{NN}$, the dog saw the man, 4$) ; y=\mathrm{NN}$
2. List all (x, y) pairs that can be generated from this training set. Assume phantom tags $y_{-2}=y_{-1}=$ START.

SOLUTION

1. (a) does not match because position 3 is has $y=$ VBD and not NN. Similarly, (d) is discarded because position 4 has $y=$ DT and not NN. Pattern (b) is not matched because previous tags y_{i-2}, y_{i-1} for position 3 are DT and NN respectively, and not VBD and DT. The only pair matching the trainig set is (c), since the tag for word 3 is $y=$ VBD, and the previous tags y_{i-2}, y_{i-1} are DT and NN respectively.
2. Pairs generated by this training set are:

$$
\begin{aligned}
& x=(\mathrm{START}, \mathrm{START}, \text { the dog saw the man, } 1) ; y=\mathrm{DT} \\
& x=(\mathrm{START}, \mathrm{DT}, \text { the dog saw the man, } 2) ; y=\mathrm{NN} \\
& x=(\mathrm{DT}, \mathrm{NN}, \text { the dog saw the man, } 3) ; y=\mathrm{VBD} \\
& x=(\mathrm{NN}, \mathrm{VBD}, \text { the dog saw the man, } 4) ; y=\mathrm{DT} \\
& x=(\mathrm{VBD}, \mathrm{DT}, \text { the dog saw the man, } 5) ; y=\mathrm{NN}
\end{aligned}
$$

Exercise 3.

We want to approach a PoS tagging task with a bigram-based CRF model that will compute the tag for each word as:

$$
\operatorname{tag}\left(x_{1: n}, i\right)=\underset{y_{i} \in \mathcal{Y}}{\operatorname{argmax}} w \cdot f\left(x_{1: n}, i, y_{i-1}, y_{i}\right)
$$

We have defined the following feature function types:

- Type 1: Current tag is a :

$$
f_{1, a}\left(x_{1: n}, i, y_{i-1}, y_{i}\right)= \begin{cases}1 & \text { if } y_{i}=a \\ 0 & \text { otherwise }\end{cases}
$$

- Type 2: Current word is capitalized and current tag is a :

$$
f_{2, a}\left(x_{1: n}, i, y_{i-1}, y_{i}\right)= \begin{cases}1 & \text { if } x_{i} \text { is capitalized and } y_{i}=a \\ 0 & \text { otherwise }\end{cases}
$$

- Type 3: Previous tag is a and current tag is b :

$$
f_{3, a, b}\left(x_{1: n}, i, y_{i-1}, y_{i}\right)= \begin{cases}1 & \text { if } y_{i-1}=a \text { and } y_{i}=b \\ 0 & \text { otherwise }\end{cases}
$$

1. Propose values for appropriate features in vector w that will correctly classify all words in the following sentences. Try to set the minimum number of non-zero weights. Proof or justification of the chosen values is required.

SOLUTION

- $w_{1, \mathrm{v}}=1$ will score +1 for any word to be tagged as a verb. This will solve correctly all verbs, and introduce a wrong biass in the other words.
- $w_{3, V, N}=2$ will score +2 in favor of tag N for any word after a V . This will overcome the first feature and correctly solve the noun results in the last sentence.
- $w_{3, S T A R T, N}=3$ will score +3 in favor of tag N for any word at the begining of the sentence. This will overcome the first feature and solve correctly the noun programs in the last sentence. If we used +2 here, we would get a tie between combinations V-N and $\mathrm{N}-\mathrm{V}$ at sentence begining, so we use +3 .
- $w_{2, \mathrm{E}}=4$ will score +4 for all capitalized words to be tagged E . This will overcome the previous features and solve properly all occurrences of John and Mary.
Let's apply Viterbi algorithm to check these weights work for all given sentences:

	John	programs	bugs
	Mary	runs	programs
E	E:4	E-E: $4+0=4$	E-E-E: $4+0=4$
		N-E: $3+0=3$	E-N-E: $4+0=4$
		V-E $1+0=1$	E-V-E: $5+0=5$
N	$\mathrm{N}: 3$	E-N: 4+0=4	E-E-N: $4+0=0$
		N-N: $3+0=3$	E-N-N: 4+0 $=0$
		V-N: $1+2=3$	E-V-N: 5+2=7
V	V: 1	E-V: $4+1=5$	E-E-V: $4+1=5$
		$\mathrm{N}-\mathrm{V}: 3+1=4$	E-N-V: $4+1=5$
		V-V: $1+1=2$	E-V-V: $5+1=6$

For sentences John programs bugs and Mary runs programs, the best sequence is $\mathrm{E}-\mathrm{V}-\mathrm{N}$ with a score of 7 , higher than any other combination.

	Mary	bugs	John
E	E: 4	E-E: $4+0=4$ N-E: $3+0=3$ V-E $1+0=1$	E-E-E: 4+4=8
		E-N-E: $4+4=8$	
E-V-E: $\mathbf{5 + 4}=\mathbf{4}$			

For sentence Mary bugs John, the best sequence is E-V-E with a score of 9 , higher than any other combination.

	programs	print	results
E	E: 0	$\begin{aligned} & \text { E-E: } 0+0=0 \\ & \text { N-E: } 3+\mathbf{0}=\mathbf{3} \\ & \text { V-E } 1+0=1 \end{aligned}$	N-E-E: $3+0=3$ N-N-E: $3+0=3$ N-V-E: $4+0=4$
N	N: 3	$\begin{aligned} & \text { E-N: } 0+0=0 \\ & \text { N-N: } \mathbf{3 + 0}=\mathbf{3} \\ & \text { V-N: } \mathbf{1 + 2}=\mathbf{3} \end{aligned}$	N-E-N: $3+0=3$ $\mathrm{N}-\mathrm{N}-\mathrm{N}: 3+0=0$ N-V-N: 4+2=6
V	V: 1	$\begin{aligned} & \text { E-V: } 0+1=1 \\ & \mathrm{~N}-\mathrm{V}: \mathbf{3 + 1}=\mathbf{4} \\ & \text { V-V: } 1+1=2 \end{aligned}$	$\begin{aligned} & \text { N-E-V: } 3+1=4 \\ & \mathrm{~N}-\mathrm{N}-\mathrm{V}: 3+1=4 \\ & \mathrm{~N}-\mathrm{V}-\mathrm{V}: 4+1=5 \end{aligned}$

For sentence programs print results, the best sequence is $\mathrm{N}-\mathrm{V}$ N with a score of 6 , higher than any other combination.

Exercise 4.

We are performing PoS tagging with a trigram-factored CRF, using tagset $\mathcal{T}=\{\mathrm{DT}, \mathrm{V}, \mathrm{NN}, \mathrm{ADV}, \mathrm{PREP}\}$, and we defined a history as $h=\left\langle t_{i-2}, t_{i-1}, w_{[1: n]}, i\right\rangle$.

1. How many possible histories are there for a given input sequence \mathcal{X} and a fixed value of i ?
2. Which of the following are valid features?

$$
\begin{aligned}
& \mathbf{f}_{1}(h, t)= \begin{cases}1 & \text { if } t=\mathrm{V} \text { and } t_{i-1}=\mathrm{PREP} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{2}(h, t)= \begin{cases}1 & \text { if } t=\mathrm{V} \text { and } w_{i-2}=\mathrm{dog} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{3}(h, t)= \begin{cases}1 & \text { if } t=\mathrm{V} \text { and } t_{i-3}=\mathrm{NN} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{4}(h, t)= \begin{cases}1 & \text { if } t=\mathrm{V} \text { and } t_{i+1}=\operatorname{PREP} \text { and } w_{2}=\mathrm{cow} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

3. Compute the global feature vector $\mathbf{f}(\mathcal{X}, \mathcal{Y})$ for the input sequence is $\mathcal{X}=$ the dog walked to a park and the tag sequence $\mathcal{Y}=\mathrm{DT}$ NN V PREP DT NN, when using the following features:

$$
\begin{aligned}
& \mathbf{f}_{1}(h, t)= \begin{cases}1 & \text { if } t=\text { NN and } w_{i}=\operatorname{dog} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{2}(h, t)= \begin{cases}1 & \text { if } t=\text { NN and } t_{i-1}=\mathrm{DT} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{3}(h, t)
\end{aligned}= \begin{cases}1 & \text { if } t=\text { NN and } t_{i-1}=\mathrm{DT} \text { and } w_{i-1}=\text { the } \\
0 & \text { otherwise }\end{cases}
$$

4. Given the history $h=\left(t_{i-2}, t_{i-1}, w_{[1: n]}, 5\right)=(\mathrm{V}, \mathrm{DT}$, the man saw the dog in the park, 5$)$, which of the following features yield $\mathbf{f}(h, \mathrm{NN})=1$?

$$
\begin{aligned}
& \mathbf{f}_{1}(h, t)= \begin{cases}1 & \text { if } t=\text { NN and } w_{i}=\operatorname{dog} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{2}(h, t)= \begin{cases}1 & \text { if } t=\mathrm{DT} \text { and } w_{i}=\operatorname{dog} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{3}(h, t)= \begin{cases}1 & \text { if } t=\text { NN and } w_{i+1}=\operatorname{dog} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{4}(h, t)= \begin{cases}1 & \text { if } t=\text { NN and } t_{i-1}=\mathrm{DT} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

SOLUTION

1. Each history has the form $h=\left\langle t_{i-2}, t_{i-1}, w_{[1: n]}, i\right\rangle$. If we fix $\mathcal{X}=w_{[1: n]}$ and the position i, there are only two parameters left: t_{i-2} and t_{i-1}. Since each of them can take any of the possible five PoS tag values $\{\mathrm{DT}, \mathrm{V}, \mathrm{NN}, \operatorname{ADV}, \mathrm{PREP}\}$, the number of posible combinations is $5 \times 5=25$.
2. Features f_{1} and f_{2} are valid beacuse they use elements in h (i.e. t_{i-1} and w_{i-2}, respectively). Feature f_{3} is invalid because t_{i-3} is not included in h. Feature f_{4} is not valid beacuse t_{i+1} is not included in h
3. Given the values of \mathcal{X} and \mathcal{Y}, for each word we obtain the following features:

\mathcal{X}	the	dog	walked	to	a	park
\mathcal{Y}	DT	NN	V	PREP	DT	NN
Features		f_{1}				
	-	f_{2}	-	-	-	f_{2}
		f_{3}				

Thus, the vector resulting of applying given features is: $\left(f_{1}, f_{2}, f_{3}\right)=(1,2,1)$
4. Position $i=5$ corresponds to word dog in the sentence. Thus, when evaluating each feature for $t=$ nN, we get that:

$$
\begin{aligned}
& f_{1}(h, \mathrm{NN})=1, \text { since } t=\mathrm{NN} \text { and } w_{5}=\operatorname{dog} \\
& f_{2}(h, \mathrm{NN})=0, \text { since } t \neq \mathrm{DT} \\
& f_{3}(h, \mathrm{NN})=0, \text { since } w_{6} \neq \text { dog } \\
& f_{4}(h, \mathrm{NN})=1, \text { since } t=\text { NN and } t_{i-1}=\mathrm{DT}
\end{aligned}
$$

Exercise 5.

We want to address a Named Entity Recognition task consisting in identifying diseases in medical texts. For this, we want to train a sequence classifier such as a CRF using bigram factorization (i.e. only previous and current tag hypothesis are considered). Thus, the used context is $h=\left(t_{i-1}, w_{[1: n]}, \operatorname{pos}_{[1: n]}, i\right)$.

We use the following feature templates:

$$
\begin{aligned}
\mathbf{f}_{1, a}(h, t) & = \begin{cases}1 & \text { if } \text { pos }_{i-1}=\mathrm{N} \text { and } t_{i-1}=\mathrm{O} \text { and } t=a \\
0 & \text { otherwise }\end{cases} \\
\mathbf{f}_{2}(h, t) & = \begin{cases}1 & \text { if } \text { suf }\left(w_{i-1}\right)=^{\prime} \mathrm{ing}^{\prime} \text { and } t=\mathrm{B} \\
0 & \text { otherwise }\end{cases} \\
\mathbf{f}_{3, a, b}(h, t) & = \begin{cases}1 & \text { if } w_{i-1}=a \text { and } t=b \\
0 & \text { otherwise }\end{cases} \\
\mathbf{f}_{4, a, b, c}(h, t) & = \begin{cases}1 & \text { if } w_{i-1}=a \text { and } t=b \text { and } \operatorname{pos}_{i}=c \\
0 & \text { otherwise }\end{cases} \\
\mathbf{f}_{5, a, b}(h, t) & = \begin{cases}1 & \text { if } w_{i}=a \text { and capitalized }\left(w_{i-1}\right) \text { and } t=b \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Given the above templates, and the training sentence:

| i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| w | Fragile-X | syndrome | is | an | inherited | form | of | mental | retardation | involving | mitral | valve | prolapse |
| $p o s$ | N | N | V | D | JJ | N | P | JJ | N | V | JJ | N | N |
| t | B | I | O | 0 | 0 | 0 | 0 | O | O | O | B | I | I |

List which feature instances would be generated for words:
a) $i=2$ (syndrome)
b) $i=10$ (involving)
c) $i=11$ (mitral)

SOLUTION

a) Features for $i=2$ (syndrome): $\left(f_{3, \text { Fragile-X,I }}, f_{4, \text { Fragile-X,I,N }}, f_{5, \text { syndrome }, I}\right)$
b) Features for $i=10$ (involving): $\left(f_{1, O}, f_{3, \text { retardation, } 0}, f_{4, \text { retardation, } O, \mathrm{v}}\right)$
c) Features for $i=11$ (mitral): $\left(f_{2}, f_{3, \text { involving, } \mathrm{B}}, f_{4, \text { involving }, B, \mathrm{JJ}}\right)$

Exercise 6. Features for log linear sequence annotation models

We are performing PoS tagging for a recently discovered alien language, using a trigram-factored CRF, using tagset $\mathcal{T}=\{\mathrm{D}, \mathrm{V}, \mathrm{N}, \mathrm{A}, \mathrm{P}\}$, and we defined a history as $h=\left\langle t_{i-2}, t_{i-1}, w_{[1: n]}, i\right\rangle$.

1. How many possible histories are there for a given input sequence \mathcal{X} and a fixed value of i ? Justify your answer.
2. Which of the following are valid features and which are not? Justify your answer.

$$
\begin{aligned}
& \mathbf{f}_{1}(h, t)= \begin{cases}1 & \text { if } t=\mathrm{V} \text { and } t_{i-1}=\mathrm{N} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{2}(h, t)= \begin{cases}1 & \text { if } t=\mathrm{K} \text { and } w_{i-2}=\mathrm{skjkeg} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{3}(h, t)= \begin{cases}1 & \text { if } t=\mathrm{N} \text { and } t_{i-3}=\mathrm{P} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{4}(h, t)= \begin{cases}1 & \text { if } t=\mathrm{V} \text { and } t_{i+1}=\mathrm{A} \text { and } w_{2}=\text { wuakla } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

3. Compute the feature vectors $\mathbf{f}(h, t)$ for each position i, and the global feature vector $\mathbf{f}(\mathcal{X}, \mathcal{Y})$ for the input sequence $\mathcal{X}=$ grufp umdk wuakla du blha skjkeg and the tag sequence $\mathcal{Y}=$ $\mathrm{P} V \mathrm{~N} D \mathrm{~N} \mathrm{~A}$, when using the following features:

$$
\begin{aligned}
& \mathbf{f}_{1}(h, t)= \begin{cases}1 & \text { if } t=\mathrm{N} \text { and } w_{i}=\text { wuakla } \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{2}(h, t)= \begin{cases}1 & \text { if } t=\mathrm{N} \text { and } t_{i-1} \neq \mathrm{A} \\
0 & \text { otherwise }\end{cases} \\
& \mathbf{f}_{3}(h, t)= \begin{cases}1 & \text { if } t=\mathrm{N} \text { and } t_{i-1}=\mathrm{V} \text { and } w_{i-1}=\mathrm{umdk} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

SOLUTION

1. For fixed \mathcal{X} and i, the only varible elements of the history are t_{i-2} and t_{i-1}. Since each of them may have any value in \mathcal{T}, the number of different possible histories is $|\mathcal{T}|^{2}=5^{2}=25$
2. f_{1} is valid, since it depends only on t and t_{i-1}, which is included in h.
f_{2} is not valid, since $\mathrm{K} \notin \mathcal{T}$.
f_{3} is not valid, since t_{i-3} is not included in h.
f_{4} is not valid, since t_{i+1} is not included in h.
3. for $i=1$, we have $h=\langle\operatorname{START}, \operatorname{START}, \mathcal{X}, 1\rangle$, and $\mathbf{f}(h, t)=\left(\mathbf{f}_{1}(h, \mathrm{P}), \mathbf{f}_{2}(h, \mathrm{P}), \mathbf{f}_{3}(h, \mathrm{P})\right)=(0,0,0)$
for $i=2$, we have $h=\langle\operatorname{START}, \mathrm{P}, \mathcal{X}, 2\rangle$, and $\mathbf{f}(h, t)=\left(\mathbf{f}_{1}(h, \mathrm{~V}), \mathbf{f}_{2}(h, \mathrm{~V}), \mathbf{f}_{3}(h, \mathrm{~V})\right)=(0,0,0)$
for $i=3$, we have $h=\langle\mathrm{P}, \mathrm{V}, \mathcal{X}, 3\rangle$, and $\mathbf{f}(h, t)=\left(\mathbf{f}_{1}(h, \mathrm{~N}), \mathbf{f}_{2}(h, \mathrm{~N}), \mathbf{f}_{3}(h, \mathrm{~N})\right)=(1,1,1)$
for $i=4$, we have $h=\langle\mathrm{V}, \mathrm{N}, \mathcal{X}, 4\rangle$, and $\mathbf{f}(h, t)=\left(\mathbf{f}_{1}(h, \mathrm{D}), \mathbf{f}_{2}(h, \mathrm{D}), \mathbf{f}_{3}(h, \mathrm{D})\right)=(0,0,0)$
for $i=5$, we have $h=\langle\mathrm{N}, \mathrm{D}, \mathcal{X}, 5\rangle$, and $\mathbf{f}(h, t)=\left(\mathbf{f}_{1}(h, \mathrm{~N}), \mathbf{f}_{2}(h, \mathrm{~N}), \mathbf{f}_{3}(h, \mathrm{~N})\right)=(0,1,0)$
for $i=6$, we have $h=\langle\mathrm{D}, \mathrm{N}, \mathcal{X}, 6\rangle$, and $\mathbf{f}(h, t)=\left(\mathbf{f}_{1}(h, \mathrm{~A}), \mathbf{f}_{2}(h, \mathrm{~A}), \mathbf{f}_{3}(h, \mathrm{~A})\right)=(0,0,0)$
Thus the global feature vector is the sum of the factored vectors: $\mathbf{f}(\mathcal{X}, \mathcal{Y})=(1,2,1)$

Exercise 7.

Negation detection is a task consisting in identifying which phrases in a sentence are affected by a negation. It is a vital task e.g. in applications related to the processing of medical documents.

The task is often modeled as a B-I-O labeling task, and solved using sequence-labeling algorithms such as CRFs.
We have the following training data:

\mathcal{X}	The	patient	does	not	show	any	lung	symptoms	.		
\mathcal{Y}	0	0	0	B	I	I	I	I	0		
\mathcal{X}	Dark	spots	were	observed	in	lung	X-ray	imaging	.		
\mathcal{Y}	0	0	0	0	0	0	0	0	0		
\mathcal{X}	Exhoglovifin	never	caused	adverse	reactions	and	should	not	be	banned	
\mathcal{Y}	0	B	I	I	I	0	0	B	I	I	0

And the following feature templates:

$$
\begin{aligned}
\mathbf{f}_{1, a, l}(\mathcal{X}, i, t) & = \begin{cases}1 & \text { if } w_{i}=a \wedge t=l \\
0 & \text { otherwise }\end{cases} \\
\mathbf{f}_{2, l}(\mathcal{X}, i, t) & = \begin{cases}1 & \text { if } w_{i-1} \in\{\text { no, not, never, any }\} \wedge t=l \\
0 & \text { otherwise }\end{cases} \\
\mathbf{f}_{3, l}(\mathcal{X}, i, t) & = \begin{cases}1 & \text { if punctuation }\left(w_{i}\right) \wedge t=l \\
0 & \text { otherwise }\end{cases} \\
\mathbf{f}_{4, l}(\mathcal{X}, i, t) & = \begin{cases}1 & \text { if } w_{i-1}=\text { dark } \wedge w_{i}=\text { spots } \wedge t=l \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

1. Which is the dimension of the feature space instantiated by this dataset? Justify your answer.
2. Given the following test sentence \mathcal{X} and hypothesis tag sequence \mathcal{Y} :

\mathcal{X}	X-Ray	results	do	not	show	any	dark	spots	.
\mathcal{Y}	0	0	0	B	I	I	I	I	0

compute the feature vectors $\mathbf{f}(\mathcal{X}, i, t)$ for each position i, and the global feature vector $\mathbf{f}(\mathcal{X}, \mathcal{Y})$. Highlight which features in the global vector that are present in the vector space instantiated by the three training sentences above.

SOLUTION

1. Feature f_{1} is instantiated for each combination word-label seen in the training data. Sentence 1 contains 9 combinations. Sentence 2 contains 8 new combinations -combination (.,0) is repeated. Sentence 3 contains 9 new combinations -combinations (not,B) and (.,0) are repeated. Total $9+8+9=26$ feature instances for template f_{1}.
Feature f_{2} is instantiated for each occurrence of not, never, or any combined with a label. Sentence 1 contains one occurrence (with label B), sentence 2 does not contain any, and sentence 3 contains two more occurrences, also with label B , so they generate the same feature $f_{2, B}$. Total, 1 feature instances for template f_{2}.
Feature f_{3} is instantiated for each occurrence of a punctuation sign combined with a label. Each sentence has one occurrence of the combination (.,0), thus only one instance is generated for f_{3}.

Feature f_{4} is instantiated for each occurrence of dark spots combined with a label. This only happens once in sentence 2 (with label 0), thus only one instance is generated for f_{4}.
So, the total number of generated features (i.e. our feature space dimension) is $26+1+1+1=29$.
2. Feature vectors for each position are:

$$
\begin{aligned}
& \mathbf{f}(\mathcal{X}, 1,0)=\left\{f_{1, \text { X Ray }, O}\right\} \\
& \mathbf{f}(\mathcal{X}, 2,0)=\left\{f_{1, \text { results }, O}\right\} \\
& \mathbf{f}(\mathcal{X}, 3,0)=\left\{f_{1, \text { do }, O}\right\} \\
& \mathbf{f}(\mathcal{X}, 4, \mathrm{~B})=\left\{f_{1, \text { not }, B}\right\} \\
& \mathbf{f}(\mathcal{X}, 5, \mathrm{I})=\left\{f_{1, \text { show }, I}, f_{2 . I}\right\} \\
& \mathbf{f}(\mathcal{X}, 6, \mathrm{I})=\left\{f_{1, \text { any }, I}\right\} \\
& \mathbf{f}(\mathcal{X}, 7, \mathrm{I})=\left\{f_{1, \text { dark }, I}, f_{2, I}\right\} \\
& \mathbf{f}(\mathcal{X}, 8, \mathrm{I})=\left\{f_{1, \text { spots }, I}, f_{4, I}\right\} \\
& \mathbf{f}(\mathcal{X}, 9, \mathrm{O})=\left\{f_{\left.1, ., O, f_{3, O}\right\}}\right.
\end{aligned}
$$

Thus, the global feature vector $\mathbf{f}(\mathcal{X}, \mathcal{Y})=\sum_{i} \mathbf{f}\left(\mathcal{X}, i, \mathcal{Y}_{i}\right)$ is:

feature	value	in training feature space?
$f_{1, X \text { Ray }, O}$	1	\checkmark
$f_{1, \text { results }, I}$	1	\times (word results is not in training)
$f_{1, \text { do }, O}$	1	\times (word do is not in training)
$f_{1, \text { not }, B}$	1	\checkmark
$f_{1, \text { show }, I}$	1	\checkmark
$f_{2, I}$	2	\checkmark
$f_{1, \text { any }, I}$	1	\checkmark
$f_{1, \text { dark }, I}$	1	$\times\left(f_{1, \text { dark }, O}\right.$ appears in training, but $f_{1, \text { dark }, I}$ does not)
$f_{1, \text { spots }, I}$	1	$\times\left(f_{1, \text { spots, } O}\right.$ appears in training, but $f_{1, \text { spots, } I}$ does not)
$f_{4, I}$	1	$\times\left(f_{4, O}\right.$ appears in training, but $f_{4, I}$ does not)
$f_{1, ., O}$	1	\checkmark
$f_{3, O}$	1	\checkmark

