Master in Artificial Intelligence

Syntactic parsers

CKY algorithm

Introduction to Human Language Technologies 9. Syntactic parsing: parsers

Outline

Syntactic parsers CKY algorithm

- 1 Syntactic parsers
 - Background
 - Chart-based methods

Outline

Syntactic parsers Background

CKY algorithm

- Syntactic parsers
 - Background
 - Chart-based methods

Factors in parsing

Syntactic parsers Background

CKY algorithm Parsing performance depends on many aspects:

- Grammar expressivity (combination of symbols)
- Coverage (words)
- Parsing strategy (bottom-up, top-down)
- Rule application order (largest rule, most likely rule)
- Ambiguity management (keep all, select one probabilities, semantics, pragmatics)
- . . .

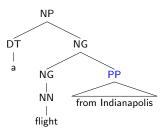
The problem of repeating derivations

 Top-down and bottom-up strategies both lead to repeated derivations when using backtracking

Ex: "a flight from Indianapolis to Houston [on TWA...]"

NG o NN

 $\mathsf{NG} \to \mathsf{NG} \; \mathsf{PP}$



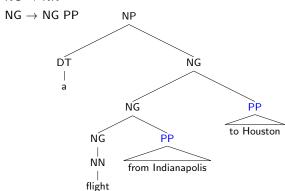
Syntactic parsers Background

The problem of repeating derivations

 Top-down and bottom-up strategies both lead to repeated derivations when using backtracking

Ex: "a flight from Indianapolis to Houston"

 $NG \rightarrow NN$



Syntactic parsers Background

Outline

Syntactic parsers

- Chart-based methods
- Background CKY algorithm
 - Chart-based methods

2 CKY algorithm

Syntactic parsers

Properties

Syntactic parsers
Chart-based methods
CKY

algorithm

- They avoid re-doing derivations using dynamic programming.
- They represent derivations as a directed graph named chart.
- They use a dynamic programming table to build the chart.

Chart

Syntactic parsers Chart-based methods

CKY algorithm

- Nodes: positions between words of the input sentence
- Edges: dotted rules subsuming a sequence of words of the input sentence
- Dotted rules represent rules states:
 - Passive rules: $A \rightarrow B_1 \dots B_k$ ●
 - Active rules: $A \rightarrow B_1 \dots B_i \bullet B_{i+1} \dots B_k$

Ex:

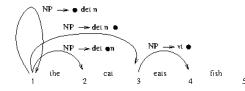
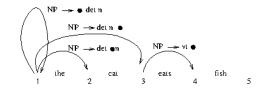
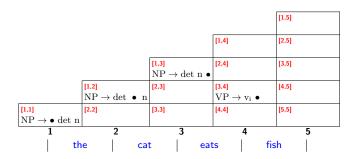


Chart as a dynamic programming table



Syntactic parsers
Chart-based methods



Popular chart-based algorithms

Syntactic
parsers
Chart-based methods
CKY

algorithm

- CKY algorithm (Younger, 1967)
 - introduced dynamic programming
 - limited to CFGs in Chomsky Normal Form
 - passive bottom-up chart parser (only passive rules)
 - straightforward probabilistic version
- Earley algorithm (Earley, 1970)
 - any CFG
 - active top-down parser (active/passive rules)
 - non-straightforward probabilistic version
- Generalized chart parsing (Kay, 1980)

Outline

Syntactic parsers

CKY algorithm

- 1 Syntactic parsers
 - Background
 - Chart-based methods

Chomsky Normal Form (CNF)

Syntactic

CKY algorithm A CFG $G = (N, \Sigma, R, S)$ expressed in CNF is as follows:

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of two forms:
 - $X \rightarrow Y_1 Y_2$ for $X, Y_1, Y_2 \in N$
 - $X \to \alpha$ for $X \in N$ and $\alpha \in \Sigma$
- $S \in N$ is a start symbol

Any CFG can be converted into CNF

CNF conversion

Syntactic parsers

CKY algorithm 1 Convert Hybrid rules: replace terminals with new non-terminals

Ex:
$$INF_VP \rightarrow to VP \Longrightarrow INF_VP \rightarrow TO VP$$

 $TO \rightarrow to$

Convert non-binary rules:

Ex:
$$S \rightarrow VP \ NP \ PP \Longrightarrow$$

 $S \rightarrow VP \ X$
 $X \rightarrow NP \ PP$

3 Convert unit productions: $A \to^* B$ and $B \to \alpha \Longrightarrow A \to \alpha$ Ex: $NP \to N$ and $N \to dog \Longrightarrow NP \to dog$

Exercise

Convert the following CFG to CNF

- 1 $S \rightarrow NP VP$
- 2 $NP \rightarrow det n$
- $NP \rightarrow n$
- 4 $VP \rightarrow vt NP PP$
- $VP \rightarrow vi$
- **6** $PP \rightarrow with NP$
- 7 $det \rightarrow the|a$
- 8 $n \rightarrow cat | fish | knife$
- 9 $vt \rightarrow eats$
- 10 $vi \rightarrow eats$

Syntactic parsers

Syntactic

CKY algorithm

Chart content:

Maximum probability of a subtree with root X spanning words i...j:

$$\pi(i,j,X)$$

Backpath to recover which rules produced the maximum probability tree:

$$\psi(i,j,X)$$

The goal is to compute:

- $\max_{t \in \mathcal{T}(s)} p(t) = \pi(1, n, S)$
- $\psi(1, n, S)$
- It is possible to use it without probabilities to get all parse trees (with higher complexity)

Base case: Tree leaves

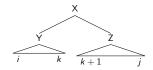
$$\forall i = 1 \dots n, \ \forall X \rightarrow w_i \in R, \quad \pi(i, i, X) = q(X \rightarrow w_i)$$

Recursive case: Non-terminal nodes

$$\forall i = 1 \dots n, \ \forall j = (i+1) \dots n, \ \forall X \in \mathbb{N}$$

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in \mathbb{R} \\ k \neq i \neq k \neq i}} q(X \to YZ) \times \pi(i,k,Y) \times \pi(k+1,j,Z)$$

$$\psi(i,j,X) = \arg\max_{\substack{X \to YZ \in R \\ k:i < k < i}} q(X \to YZ) \times \pi(i,k,Y) \times \pi(k+1,j,Z)$$



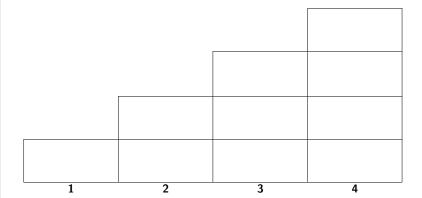
Output:

■ Return $\pi(1, n, S)$ and recover backpath through $\psi(1, n, S)$

Syntactic parsers

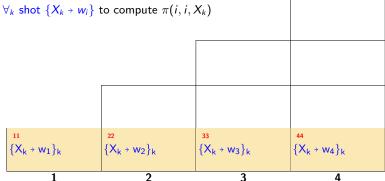
Supose
$$s = w_1w_2w_3w_4$$
 and $G = \langle N, \Sigma, S, R, q \rangle$ a PCFG $R = \{X_k + Y_s Z_t\} \cup \{X_k + \alpha\}$

Syntactic parsers



Supose
$$s=w_1w_2w_3w_4$$
 and $G=< N, \Sigma, S, R, q>$ a PCFG $R=\{X_k \rightarrow Y_s \ Z_t\} \cup \{X_k \rightarrow \alpha\}$

Syntactic Base case:



Supose $s=w_1w_2w_3w_4$ and $G=< N, \Sigma, S, R, q>$ a PCFG $R=\{X_k \nrightarrow Y_s Z_t\} \cup \{X_k \nrightarrow \alpha\}$

Recursive case:

 $\{X_k \ni w_1\}_k$

 $\forall_k \text{ shot } \{X_k o Y_s Z_t\}$ to get $\varphi(i,j,X_k)$ and compute $\pi(i,j,X_k)$

2 3 4

 $\{X_k \rightarrow w_3\}_k$

 $\{X_k \rightarrow w_4\}_k$

 $\{X_k \rightarrow w_2\}_k$

Syntactic parsers
CKY

algorithm

Supose $s=w_1w_2w_3w_4$ and $G=< N, \Sigma, S, R, q>$ a PCFG $R=\{X_k \rightarrow Y_s Z_t\} \cup \{X_k \rightarrow \alpha\}$

Recursive case:

 $\forall_k \text{ shot } \{X_k \to Y_s Z_t\} \text{ to get } \varphi(i,j,X_k) \text{ and}$ compute $\pi(i,j,X_k)$ $13 \qquad 24$ $12 \qquad 23 \qquad 34$ $\{X_k \to w_1\}_k \qquad \{X_k \to w_2\}_k \qquad \{X_k \to w_3\}_k \qquad \{X_k \to w_4\}_k$ $1 \qquad 2 \qquad 3 \qquad 4$

Syntactic parsers

CKY algorithm

Supose $s = w_1w_2w_3w_4$ and $G = \langle N, \Sigma, S, R, q \rangle$ a PCFG $R = \{X_k + Y_s Z_t\} \cup \{X_k + \alpha\}$

Recursive case:

 $\forall_k \text{ shot } \{X_k \rightarrow Y_s Z_t\} \text{ to get } \varphi(i,j,X_k) \text{ and}$ $\text{compute } \pi(i,j,X_k)$ 13 12 24 12 23 34 $\{X_k \rightarrow w_1\}_k$ $\{X_k \rightarrow w_2\}_k$ $\{X_k \rightarrow w_3\}_k$ $\{X_k \rightarrow w_4\}_k$

3

4

2

Syntactic parsers

CKY algorithm

Supose $s=w_1w_2w_3w_4$ and $G=< N, \Sigma, S, R, q>$ a PCFG $R=\{X_k \rightarrow Y_s Z_t\} \cup \{X_k \rightarrow \alpha\}$

Syntactic parsers
CKY

CKY algorithm

Recursive case:

 $\forall_k \text{ shot } \{X_k \rightarrow Y_s \ Z_t\} \text{ to get } \varphi(i,j,X_k) \text{ and }$ compute $\pi(i,j,X_k)$ Example for (1,3) $13 \\ \{X_k \rightarrow Y_{s,11} \ Z_{t,23}\}_k$ 24 23 34 $\{X_k \rightarrow w_1\}_k$ $\{X_k \rightarrow w_2\}_k$ $\{X_k \rightarrow w_3\}_k$ $\{X_k \rightarrow w_4\}_k$

1

2

3

4

Recursive case:

Supose $s=w_1w_2w_3w_4$ and $G=< N, \Sigma, S, R, q>$ a PCFG $R=\{X_k \rightarrow Y_s Z_t\} \cup \{X_k \rightarrow \alpha\}$

parsers CKY

algorithm

Syntactic

3

4

2

Syntactic

parsers CKY algorithm **Input:** a sentence $s = x_1 \dots x_n$, a PCFG $G = (N, \Sigma, S, R, q)$. **Initialization:**

Initialization:

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Algorithm:

• For $l = 1 \dots (n-1)$

- For
$$i = 1 \dots (n - l)$$

* Set
$$i = i + l$$

* For all $X \in N$, calculate

$$\pi(i,j,X) = \max_{\substack{X \rightarrow YZ \in R,\\ s \in \{i...(j-1)\}}} \left(q(X \rightarrow YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

and

$$bp(i,j,X) = \arg\max_{\substack{X \to YZ \in \mathbb{R}, \\ s \in \{i,...(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

Output: Return $\pi(1, n, S) = \max_{t \in \mathcal{T}(s)} p(t)$, and backpointers bp which allow recovery of $\arg \max_{t \in \mathcal{T}(s)} p(t)$.

Exercise

Compute the best parse tree and its probability for the following input sentence using the PCFG:

"the woman saw the man with the telescope"

$S \to NP VP$	0.5	$Vi \rightarrow sleeps$	1.0
$S \to NP Vi$	0.5	$Vt \to saw$	1.0
$\mathrm{NP} \to \mathrm{DT} \ \mathrm{NN}$	0.4	$\mathrm{NN} \to \mathrm{man}$	0.7
$\mathrm{NP} \to \mathrm{NP} \ \mathrm{PP}$	0.6	$NN \to woman$	0.2
$\mathrm{PP} \to \mathrm{IN} \ \mathrm{NP}$	1.0	$\mathrm{NN} \to \mathrm{telescope}$	0.1
$\mathrm{VP} \to \mathrm{Vt} \ \mathrm{NP}$	0.4	$\mathrm{DT} \to \mathrm{the}$	1.0
$\mathrm{VP} \to \mathrm{VP} \; \mathrm{PP}$	0.1	$IN \rightarrow with$	0.5
$\mathrm{VP} \to \mathrm{Vi}\ \mathrm{PP}$	0.5	$\mathrm{IN} \to \mathrm{in}$	0.5

Syntactic parsers