Introduction to Human Language Technologies

9. Syntactic parsing: parsers
Outline

1. Syntactic parsers
 - Background
 - Chart-based methods

2. CKY algorithm
Outline

1. Syntactic parsers
 - Background
 - Chart-based methods

2. CKY algorithm
Factors in parsing

Parsing performance depends on many aspects:

- Grammar expressivity (combination of symbols)
- Coverage (words)
- Parsing strategy (bottom-up, top-down)
- Rule application order (largest rule, most likely rule)
- Ambiguity management (keep all, select one - probabilities, semantics, pragmatics)
- ...
The problem of repeating derivations

- Top-down and bottom-up strategies both lead to repeated derivations when using backtracking.

Ex: "a flight from Indianapolis to Houston [on TWA...]

NG → NN
NG → NG PP

```
NP
  / \   
DT   NG
  /   / 
 a  NG  PP
     / 
    NN from Indianapolis
     |
  flight
```
The problem of repeating derivations

- Top-down and bottom-up strategies both lead to repeated derivations when using backtracking.

 Ex: "a flight from Indianapolis to Houston"

 NG → NN
 NG → NG PP

 NP
 └── NG
 ├── DT
 │ └── a
 └── NG
 ├── NG
 │ └── flight
 └── PP
 └── to Houston

 └── PP
 └── from Indianapolis
Outline

1. Syntactic parsers
 - Background
 - Chart-based methods

2. CKY algorithm
Properties

- They avoid re-doing derivations using dynamic programming.
- They represent derivations as a directed graph named chart.
- They use a dynamic programming table to build the chart.
Chart

- Nodes: positions between words of the input sentence
- Edges: dotted rules subsuming a sequence of words of the input sentence

Dotted rules represent rules states:
- Passive rules: $A \rightarrow B_1 \ldots B_k \bullet$
- Active rules: $A \rightarrow B_1 \ldots B_i \bullet B_{i+1} \ldots B_k$

Ex:

```
NP \rightarrow \bullet det \ n
```

```
NP \rightarrow det \ n \bullet
```

```
NP \rightarrow det \n \bullet
```

```
NP \rightarrow vi \bullet
```

1 \ the \ 2 \ cat \ 3 \ eats \ 4 \ fish \ 5
Chart as a dynamic programming table

<table>
<thead>
<tr>
<th></th>
<th>NP → _ det n</th>
<th>NP → det n _</th>
<th>NP → det n</th>
<th>NP → vi _</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>_ det n</td>
<td>det n _</td>
<td>det n</td>
<td>vi _</td>
</tr>
<tr>
<td>2</td>
<td>the</td>
<td>cat</td>
<td>eats</td>
<td>fish</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chart-based methods

Syntactic parsers

CKY algorithm
Popular chart-based algorithms

- **CKY algorithm** (Younger, 1967)
 - introduced dynamic programming
 - limited to CFGs in Chomsky Normal Form
 - passive bottom-up chart parser (only passive rules)
 - straightforward probabilistic version

- **Earley algorithm** (Earley, 1970)
 - any CFG
 - active top-down parser (active/passive rules)
 - non-straightforward probabilistic version

- **Generalized chart parsing** (Kay, 1980)
Outline

1. Syntactic parsers
 - Background
 - Chart-based methods

2. CKY algorithm
A CFG $G = (N, \Sigma, R, S)$ expressed in CNF is as follows:

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of two forms:
 - $X \rightarrow Y_1 Y_2$ for $X, Y_1, Y_2 \in N$
 - $X \rightarrow \alpha$ for $X \in N$ and $\alpha \in \Sigma$
- $S \in N$ is a start symbol

Any CFG can be converted into CNF
CNF conversion

1. Convert Hybrid rules: replace terminals with new non-terminals

 Ex: \(INF_{-}VP \rightarrow to \ VP \Rightarrow \)

 \(INF_{-}VP \rightarrow TO \ VP \)

 \(TO \rightarrow to \)

2. Convert non-binary rules:

 Ex: \(S \rightarrow VP \ NP \ PP \Rightarrow \)

 \(S \rightarrow VP \ X \)

 \(X \rightarrow NP \ PP \)

3. Convert unit productions: \(A \rightarrow^{*} B \) and \(B \rightarrow \alpha \Rightarrow A \rightarrow \alpha \)

 Ex: \(NP \rightarrow N \) and \(N \rightarrow dog \Rightarrow NP \rightarrow dog \)
Exercise

Covert the following CFG to CNF

1. \(S \rightarrow NP \ VP \)
2. \(NP \rightarrow det \ n \)
3. \(NP \rightarrow n \)
4. \(VP \rightarrow vt \ NP \ PP \)
5. \(VP \rightarrow vi \)
6. \(PP \rightarrow with \ NP \)
7. \(det \rightarrow the | a \)
8. \(n \rightarrow cat | fish | knife \)
9. \(vt \rightarrow eats \)
10. \(vi \rightarrow eats \)
CKY Algorithm

Chart content:

- Maximum probability of a subtree with root X spanning words $i \ldots j$:
 \[\pi(i, j, X) \]

- Backpath to recover which rules produced the maximum probability tree:
 \[\psi(i, j, X) \]

The goal is to compute:

- \(\max_{t \in \mathcal{T}(s)} p(t) = \pi(1, n, S) \)
- \(\psi(1, n, S) \)
- It is possible to use it without probabilities to get all parse trees (with higher complexity)
CKY Algorithm

Base case: Tree leaves
- $\forall i = 1 \ldots n, \forall X \rightarrow w_i \in R, \pi(i, i, X) = q(X \rightarrow w_i)$

Recursive case: Non-terminal nodes
- $\forall i = 1 \ldots n, \forall j = (i + 1) \ldots n, \forall X \in N$
 $$\pi(i, j, X) = \max_{X \rightarrow YZ \in R, k:i \leq k < j} q(X \rightarrow YZ) \times \pi(i, k, Y) \times \pi(k + 1, j, Z)$$

 $$\psi(i, j, X) = \arg \max_{X \rightarrow YZ \in R, k:i \leq k < j} q(X \rightarrow YZ) \times \pi(i, k, Y) \times \pi(k + 1, j, Z)$$

Output:
- Return $\pi(1, n, S)$ and recover backpath through $\psi(1, n, S)$
CKY Algorithm

Suppose $s = w_1w_2w_3w_4$ and $G = \langle N, \Sigma, S, R, q \rangle$ a PCFG

$R = \{ X_k \rightarrow Y_s Z_t \} \cup \{ X_k \rightarrow \alpha \}$
CKY Algorithm

Suppose $s = w_1 w_2 w_3 w_4$ and $G = < N, \Sigma, S, R, q >$ a PCFG

$R = \{ X_k \rightarrow Y_s Z_t \} \cup \{ X_k \rightarrow \alpha \}$

Base case:
$\forall_k \text{ shot } \{ X_k \rightarrow w_i \}$ to compute $\pi(i, i, X_k)$
CKY Algorithm

Suppose $s = w_1w_2w_3w_4$ and $G = \langle N, \Sigma, S, R, q \rangle$ a PCFG

$R = \{ X_k \Rightarrow Y_s Z_t \} \cup \{ X_k \Rightarrow \alpha \}$

Recursive case:

$\forall k$ shot $\{ X_k \Rightarrow Y_s Z_t \}$ to get $\varphi(i, j, X_k)$ and compute $\pi(i, j, X_k)$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>${ X_k \Rightarrow w_1 }_k$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>${ X_k \Rightarrow w_2 }_k$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>${ X_k \Rightarrow w_3 }_k$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>${ X_k \Rightarrow w_4 }_k$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suppose \(s = w_1 w_2 w_3 w_4 \) and \(G = \langle N, \Sigma, S, R, q \rangle \) a PCFG

\[
R = \{ X_k \rightarrow Y_s Z_t \} \cup \{ X_k \rightarrow \alpha \}
\]

Recursive case:

\(\forall k \) shot \(\{ X_k \rightarrow Y_s Z_t \} \) to get \(\varphi(i, j, X_k) \) and compute \(\pi(i, j, X_k) \)
CKY Algorithm

Suppose \(s = w_1 w_2 w_3 w_4 \) and \(G = \langle N, \Sigma, S, R, q \rangle \) a PCFG

\[R = \{ X_k \rightarrow Y_s Z_t \} \cup \{ X_k \rightarrow \alpha \} \]

Recursive case:

\(\forall_k \) shot \(\{ X_k \rightarrow Y_s Z_t \} \) to get \(\varphi(i, j, X_k) \) and compute \(\pi(i, j, X_k) \)

Example for (1,3):

\(\{ X_k \rightarrow w_1 \}_k \) \(\{ X_k \rightarrow w_2 \}_k \) \(\{ X_k \rightarrow w_3 \}_k \) \(\{ X_k \rightarrow w_4 \}_k \)
CKY Algorithm

Suppose $s = w_1 w_2 w_3 w_4$ and $G = \langle N, \Sigma, S, R, q \rangle$ a PCFG

$R = \{ X_k \rightarrow Y_s Z_t \} \cup \{ X_k \rightarrow \alpha \}$

Recursive case:

$\forall k \text{ shot } \{ X_k \rightarrow Y_s Z_t \}$ to get $\varphi(i,j,X_k)$ and compute $\pi(i,j,X_k)$

Example for $(1,3)$

\[
\begin{array}{c|c|c|c|c}
 & 1 & 2 & 3 & 4 \\
\hline
11 & \{ X_k \rightarrow w_1 \}_k & 12 & 13 & \{ X_k \rightarrow Y_s,11 Z_{t,23} \}_k \\
\hline
22 & \{ X_k \rightarrow w_2 \}_k & 23 & 24 & \\
\hline
33 & \{ X_k \rightarrow w_3 \}_k & & & \\
\hline
44 & \{ X_k \rightarrow w_4 \}_k & & & \\
\end{array}
\]
CKY Algorithm

Suppose $s = w_1 w_2 w_3 w_4$ and $G = \langle N, \Sigma, S, R, q \rangle$ a PCFG

$R = \{X_k \rightarrow Y_s Z_t\} \cup \{X_k \rightarrow \alpha\}$

Recursive case:

$\forall k \text{ shot } \{X_k \rightarrow Y_s Z_t\}$ to get $\varphi(i, j, X_k)$ and compute $\pi(i, j, X_k)$

Example for $(1,3)$

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>${X_k \rightarrow w_1}_k$</td>
<td>${X_k \rightarrow w_2}_k$</td>
<td>${X_k \rightarrow w_3}_k$</td>
<td>${X_k \rightarrow w_4}_k$</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>13</td>
<td>23</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>${X_k \rightarrow Y_{s,12} Z_{t,33}}_k$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CKY Algorithm

Input: a sentence $s = x_1 \ldots x_n$, a PCFG $G = (N, \Sigma, S, R, q)$.

Initialization:
For all $i \in \{1 \ldots n\}$, for all $X \in N$,

$$\pi(i, i, X) = \begin{cases} q(X \rightarrow x_i) & \text{if } X \rightarrow x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Algorithm:
- For $l = 1 \ldots (n - 1)$
 - For $i = 1 \ldots (n - l)$
 * Set $j = i + l$
 * For all $X \in N$, calculate
 $$\pi(i, j, X) = \max_{X \rightarrow YZ \in R, \ s \in \{i \ldots (j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))$$

and

$$bp(i, j, X) = \arg \max_{X \rightarrow YZ \in R, \ s \in \{i \ldots (j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))$$

Output: Return $\pi(1, n, S) = \max_{t \in T(s)} p(t)$, and backpointers bp which allow recovery of $\arg \max_{t \in T(s)} p(t)$.

Exercise

Compute the best parse tree and its probability for the following input sentence using the PCFG:

“the woman saw the man with the telescope”

S → NP VP 0.5 Vi → sleeps 1.0
S → NP Vi 0.5 Vt → saw 1.0
NP → DT NN 0.4 NN → man 0.7
NP → NP PP 0.6 NN → woman 0.2
PP → IN NP 1.0 NN → telescope 0.1
VP → Vt NP 0.4 DT → the 1.0
VP → VP PP 0.1 IN → with 0.5
VP → Vi PP 0.5 IN → in 0.5