Master in Artificial Intelligence

Word sequences

Introduction to Human Language Technologies 7. Word sequences

Outline

Word sequences

- 1 Word sequences
 - Goal and motivation
 - Hand-crafted rules
 - Discriminative models
 - Conditional Random Fields

Outline

Word sequences Goal and motivation

- 1 Word sequences
 - Goal and motivation
 - Hand-crafted rules
 - Discriminative models
 - Conditional Random Fields

Goal

Word sequences Goal and motivation

- Some types of word sequences within sentences are significantly relevant to understand Natural Language.
 - Named entities (NEs): Classically, person, location, organization, date, time, money
 - Ex: "[John Smith]/PER was in [Picadilli Circus]/LOC at [3:00pm]/TIME"
 - Ex: "[Heart attack]/DISEASE at [8:30am]/TIME. Admitted to the intensive care unit at [St. James]/HOSPITAL
 - Noun phrases (NPs): basic NPs only? complex NPs too?
 - Ex: "[Spaniards] usually enjoy [the original dishes] cooked by [Ferràn Adrià]"
 - Ex: "[Spaniards] usually enjoy [the original dishes cooked by Ferran Adria]"

. . .

 Goal: recognize and classify word sequences of these types (e.g., NERC and NP-chunking)

Motivation

Word sequences Goal and motivation

Examples of applications:

- Anonymization: hide personal information occurring in private text
 - Ex: Names of person, adresses, telephones, etc. in clinical reports
- Information Extraction
 - Ex: Extract employees of companies, their positions and their salaries from financial news.
- Question answering: find the focus of some question types, or indexing documents
 - Ex: Who was [Albert Einstein]?
 - Ex: [Albert Einstein] was [the physicist who formulated the theory of relativity]
- Machine Translation, . . .

Methods

Based on hand-crafted rules:

- Used for robust cases (e.g., basic NPs or simple NEs such as telephones, e-mails, gene and protein names, ...)
- Can also be integrated in machine learning approaches

sequences

Goal and motivation

Word

Methods

Word Goal and motivation

sequences

Based on hand-crafted rules:

- Used for robust cases (e.g., basic NPs or simple NEs such as telephones, e-mails, gene and protein names, ...)
- Can also be integrated in machine learning approaches

Based on machine learning:

- Feature-based methods: Conditional Random Fields (CRFs), SVMs,
- Deep-learning-based methods: data representation + context encoding + entity decoding
 - word embeddings + MLP + softmax
 - word embeddings + BiLSTM + CRF
 - LLMs ... We will study them in AHLT

Methods

Word sequences Goal and motivation

Based on hand-crafted rules:

- Used for robust cases (e.g., basic NPs or simple NEs such as telephones, e-mails, gene and protein names, . . .)
- Can also be integrated in machine learning approaches

Based on machine learning:

- Feature-based methods: Conditional Random Fields (CRFs) , SVMs, ...
- Deep-learning-based methods: data representation + context encoding + entity decoding
 - word embeddings + MLP + softmax
 - word embeddings + BiLSTM + CRF
 - LLMs ...

We will study them in AHLT

CRFs can perform better than deep learning methods in specific domains such as biomedicine.

Deep learning methods require large amounts of training data.

Outline

- 1 Word sequences
 - Goal and motivation
 - Hand-crafted rules
 - Discriminative models
 - Conditional Random Fields

- Patterns match words (and maybe also POS-tags)
- Lists of keywords and contextual words can be useful for some NE types

Ex: Names of months, week days, special days for DATE

- Patterns match words (and maybe also POS-tags)
- Lists of keywords and contextual words can be useful for some NE types

Ex: Names of months, week days, special days for DATE

Example of pattern design: (with regular expression)

Input:

"My phone number is 934104433 . Call me on Tuesday 13 at $8:00~\rm pm$. " Output:

 $^{\prime\prime}$ My phone number is [TEL 934104433] . Call me on [DATE Tuesday 13] at [TIME 8:00 pm] . $^{\prime\prime}$

- Patterns match words (and maybe also POS-tags)
- Lists of keywords and contextual words can be useful for some NE types

Ex: Names of months, week days, special days for DATE

Example of pattern design: (with regular expression)

Input:

"My phone number is 934104433 . Call me on Tuesday 13 at $8:00~\rm pm$. " Output:

 $^{\prime\prime}$ My phone number is [TEL 934104433] . Call me on [DATE Tuesday 13] at [TIME 8:00 pm] . $^{\prime\prime}$

1. ... phone number is $(\d+)$... \rightarrow ... phone number is $[TEL \ match]$...

- Patterns match words (and maybe also POS-tags)
- Lists of keywords and contextual words can be useful for some NE types

Ex: Names of months, week days, special days for DATE

Example of pattern design: (with regular expression)

Input:

"My phone number is 934104433 . Call me on Tuesday 13 at $8:00~\rm pm$. " Output:

 $^{\prime\prime}$ My phone number is [TEL 934104433] . Call me on [DATE Tuesday 13] at [TIME 8:00 pm] . $^{\prime\prime}$

- 1. ... phone number is $(\d+)$... \rightarrow ... phone number is $[TEL \ match]$...
- 2. DAY= '{Monday|Tuesday|Wednesday| ...}' ... on ($DAY + \cdots \rightarrow \cdots$ on [DATE *match*]

sequences Hand-crafted rules

Word

- Patterns match words (and maybe also POS-tags)
- Lists of keywords and contextual words can be useful for some NE types

Ex: Names of months, week days, special days for DATE

Example of pattern design: (with regular expression)

Input:

"My phone number is 934104433 . Call me on Tuesday 13 at 8:00 pm . " Output:

"My phone number is [TEL 934104433] . Call me on [DATE Tuesday 13] at [TIME $8:00~\mathrm{pm}]$. "

- 1. ... phone number is $(\d+)$... \rightarrow ... phone number is $[TEL \ match]$...
- DAY= '{Monday|Tuesday|Wednesday| ...}'
 ... on (\$DAY \d+) ... → ... on [DATE match]
- 3. $SLOT = '\{pm|p.m.|p.m|am|a.m.|a.m\}'$... at $(d\{1:2\}:dd \SLOT) ... \rightarrow ...$ at $[TIME \mbox{ match}]$...

- Patterns match POS-tags
- Patterns use syntactic information

Word sequences Hand-crafted rules

- Patterns match POS-tags
- Patterns use syntactic information

Example of pattern design: (with regular expression)

Input:

"The:DT cat:NN eats:VBZ in:IN the:DT dark:JJ room:NN "

Output:

"[NP The:DT cat:NN] eats:VBZ in:IN [NP the:DT dark:JJ room:NN] "

sequences Hand-crafted rules

Word

- Patterns match POS-tags
- Patterns use syntactic information

Example of pattern design: (with regular expression)

Input:

"The:DT cat:NN eats:VBZ in:IN the:DT dark:JJ room:NN "

Output:

"[NP The:DT cat:NN] eats:VBZ in:IN [NP the:DT dark:JJ room:NN] "

```
1. ... (\w+:DT \w+:NN) ... \rightarrow ... [NP match] ...
```

2. ... (\w+:DT (\w+:JJ)+ \w+:NN) ...
$$\rightarrow$$
 ... [NP match] ...

Word sequences Hand-crafted rules

- Patterns match POS-tags
- Patterns use syntactic information

Example of pattern design: (with regular expression)

Input:

"The:DT cat:NN eats:VBZ in:IN the:DT dark:JJ room:NN "

Output:

"[NP The:DT cat:NN] eats:VBZ in:IN [NP the:DT dark:JJ room:NN] "

```
1. ... (\w+:DT \w+:NN) ... \rightarrow ... [NP match] ...
```

2. ... (\w+:DT (\w+:JJ)+ \w+:NN) ...
$$\rightarrow$$
 ... [NP match] ...

OR

```
1. ... (\w+:DT (\w+:JJ)* \w+:NN) ... \rightarrow ... [NP match] ...
```

Exercise

- Provide NERC patterns for expressions similar to the following ones:
 - a) "tomorrow:NN morning::NN", "in:IN the:DT evening:NN", "after:IN this:DT Sunday:NN"
 - b) "5:CD €:NN", "one:CD million:CD dollars:NNS"
 - c) "ana.sanchez@gmail.com", "ana.sanchez at gmail dot com"
- Provide patterns to recognize the basic NP-chunks of the following POS-tagged sentences:
 - d) "We:PRP 're:VB going:VBG to:TO the:DT best:JJ cinema:NN with:IN Gina:NNP 's:RP father:NN and:CC 24:CD friends:NNS"
 - e) "Workers:NNS of:IN car:NN parks:NNS hate:VB working:VBG after:IN 7:00:Z pm:NN "
- 3 Is the use of *hand-crafted rules* a suitable technique for the types of sequences involved in 1 and 2?

Outline

Word sequences Discriminative models

- 1 Word sequences
 - Goal and motivation
 - Hand-crafted rules
 - Discriminative models
 - Conditional Random Fields

Representation of the examples with BIO labels

Manually labelled sentence in training corpus:

$$w_1$$
 w_2 w_3 ... [CLASS w_i w_{i+1}] ... w_n

Is transformed into:

$$w_1: O \ w_2: O \ w_3: O \dots w_i: B\text{-}CLASS \ w_{i+1}: I\text{-}CLASS \dots w_n: O$$

BIO code: B: beginning; I: inside; O: outside

BIOS code: S: single token (many sequences of 1 token)

BIOES code [BILOU]: E: end

Examples:

- "The president of [LOC the US] , [PER D. Trump]"
 "The:O president:O of:O the:B-LOC US:I-LOC ,:O D.:B-PER Trump:I-PER"
- "[NP The president] of [NP the US], [NP D. Trump]"
 "The:B president:I of:O the:B US:I,:O D.:B Trump:I"

Word sequences Discriminative models

Outline

Word sequences

Conditional Random

- 1 Word sequences
 - Goal and motivation
 - Hand-crafted rules
 - Discriminative models
 - Conditional Random Fields

Conditional Random Fields

Word sequences

Conditional Random

- Generalization of HMMs
- HMMs: Naïve Bayes applied to a sequence.
 - Based on join probability (Generative model)

$$P(X|O) \approx P(X,O) = P(X_1,\ldots,X_T) \cdot P(O_1,\ldots,O_T|X_1,\ldots,X_T)$$

- CRFs: logistic regression applied to a sequence
 - Based on conditional probability (Discriminative model)

$$P(X|O) = \frac{1}{Z(O)} \cdot exp(\sum_{t} \sum_{k} \lambda_{k} \cdot f_{k}(x_{t-1}, x_{t}, O, t))$$

$$Z(O) = \sum_{x} exp(\sum_{t} \sum_{k} \lambda_{k} \cdot f_{k}(x_{t-1}, x_{t}, O, t))$$

 f_k are binary feature functions over states $X_{t-1}=s_i$ and $X_t=s_j$ (Markov property) and over observations from O

Learning of parameters λ_i

sequences
Conditional Random

Word

$$P(X|O) = \frac{1}{Z(O)} \cdot exp(\sum_{t} \sum_{k} \lambda_{k} \cdot f_{k}(x_{t-1}, x_{t}, O, t))$$

Briefly:

- Maximize the log-likelihood of labelled sequences occurring in some training data
- Optimization procedures: quasi-Newton methods, conjugate gradient, iterative scaling

This topic is out of this course

Types of feature functions

$$P(X|O) = \frac{1}{Z(O)} \cdot exp(\sum_{t} \sum_{k} \lambda_{k} \cdot f_{k}(x_{t-1}, x_{t}, O, t))$$

1 Of observations:

Ex:
$$f_1(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = s_3 \text{ and attrib}(o_t) = v \\ 0 & \text{otherwise} \end{cases}$$

Word sequences

Conditional Random Fields

Types of feature functions

$$P(X|O) = \frac{1}{Z(O)} \cdot exp(\sum_{t} \sum_{k} \lambda_{k} \cdot f_{k}(x_{t-1}, x_{t}, O, t))$$

Of observations:

Ex:
$$f_1(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = s_3 \text{ and attrib}(o_t) = v \\ 0 & \text{otherwise} \end{cases}$$

2 Of transitions:

Ex:
$$f_2(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = s_3 \text{ and } x_{t-1} = s_6 \\ 0 & \text{otherwise} \end{cases}$$

Word sequences

Conditional Random

Types of feature functions

$$P(X|O) = \frac{1}{Z(O)} \cdot exp(\sum_{t} \sum_{k} \lambda_{k} \cdot f_{k}(x_{t-1}, x_{t}, O, t))$$

1 Of observations:

Ex:
$$f_1(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = s_3 \text{ and attrib}(o_t) = v \\ 0 & \text{otherwise} \end{cases}$$

2 Of transitions:

Ex:
$$f_2(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = s_3 \text{ and } x_{t-1} = s_6 \\ 0 & \text{otherwise} \end{cases}$$

3 Hybrid:

Ex:
$$f_3(x_{t-1}, x_t, O, t) =$$

$$\begin{cases} 1 & \text{if } x_t = s_3 \text{ and } x_{t-1} = s_6 \text{ and attrib}(o_t) = v \\ 0 & \text{otherwise} \end{cases}$$

Word sequences

Conditional Random Fields

Feature Templates

$$P(X|O) = \frac{1}{Z(O)} \cdot exp(\sum_{t} \sum_{k} \lambda_{k} \cdot f_{k}(x_{t-1}, x_{t}, O, t))$$

1 Of observations:

Ex:
$$f_{1,a,b_i}(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = a \text{ and attrib}(o_t) = b_i \\ 0 & \text{otherwise} \end{cases}$$

2 Of transitions:

Ex:
$$f_{2,\mathbf{a},\mathbf{c}}(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = \mathbf{a} \text{ and } x_{t-1} = \mathbf{c} \\ 0 & \text{otherwise} \end{cases}$$

3 Hybrid:

$$f_{3,\mathbf{a},b_{i},c}(x_{t-1},x_{t},O,t) = \begin{cases} 1 & \text{if } x_{t} = \mathbf{a} \text{ and } x_{t-1} = \mathbf{c} \text{ and attrib}(o_{t}) = b_{i} \\ 0 & \text{otherwise} \end{cases}$$

Word sequences

Conditional Random Fields

Correct functions vs. useful functions

sequences
Conditional Random

Word

$$P(X|O) = \frac{1}{Z(O)} \cdot exp(\sum_{t} \sum_{k} \lambda_{k} \cdot f_{k}(x_{t-1}, x_{t}, O, t))$$

- Correct functions:
 - \mathbf{x}_t defined
 - other elements apart from parameters are not included
- Useful function:
 - it makes sense for the task
 - $\lambda_i \neq 0$

Modeling NERC with CRFs

- States s_i are tags B-CLASS, I-CLASS (for each NE classes) and O.
- Feature templates can be designed as feature function generalizations.

Ex: The current word is capitalized and its tag is a

$$f_{1,a}(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = a \text{ and capitalized}(o_t) \\ 0 & \text{otherwise} \end{cases}$$

Word sequences

Conditional Random

Modeling NERC with CRFs

- States s_i are tags B-CLASS, I-CLASS (for each NE classes) and O.
- Feature templates can be designed as feature function generalizations.

Ex: The current word is capitalized and its tag is a

$$f_{1,a}(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = a \text{ and capitalized}(o_t) \\ 0 & \text{otherwise} \end{cases}$$

■ Feature functions are automatically generated from feature templates. Some of them will be irrelevant $(\lambda_i = 0)$

Ex: Two feature function generated from $f_{1,a}$

$$f_{1,\text{B-PER}}(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = \text{B-PER and capitalized}(o_t) \\ 0 & \text{otherwise} \end{cases}$$

$$f_{1,O}(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } x_t = O \text{ and capitalized}(o_t) \\ 0 & \text{otherwise} \end{cases}$$

Word

Conditional Random

Modeling NP-chunking with CRFs

- States s_i are tags B, I, O as there is only one class (NP).
- Feature templates.

Ex: The POS of the current word is a and the current tag is b

$$f_{1,a,b}(x_{t-1},x_t,O,t) =$$

$$\begin{cases} 1 & \text{if pos}(o_t)=a \text{ and } x_t=b \\ 0 & \text{otherwise} \end{cases}$$

Word sequences Conditional Random

Modeling NP-chunking with CRFs

- States s_i are tags B, I, O as there is only one class (NP).
- Feature templates.

Ex: The POS of the current word is a and the current tag is b

$$f_{1,a,b}(x_{t-1}, x_t, O, t) =$$

$$\begin{cases} 1 & \text{if pos}(o_t) = a \text{ and } x_t = b \\ 0 & \text{otherwise} \end{cases}$$

■ Feature functions.

Ex: Three feature functions automatically generated from $f_{1,a,b}$:

$$f_{1,\mathsf{DT},\mathsf{B}}(x_{t-1},x_t,O,t) = egin{cases} 1 & \mathsf{if}\;\mathsf{pos}(o_t) = \mathsf{DT}\;\mathsf{and}\;x_t = \mathsf{B} \\ 0 & \mathsf{otherwise} \end{cases}$$

$$f_{1,\text{NN,I}}(x_{t-1}, x_t, O, t) = \begin{cases} 1 & \text{if } pos(o_t) = \text{NN and } x_t = \text{I} \\ 0 & \text{otherwise} \end{cases}$$

$$f_{1,VB,O}(x_{t-1}, x_t, O, t) =$$

$$\begin{cases} 1 & \text{if pos}(o_t) = VB \text{ and } x_t = O \\ 0 & \text{otherwise} \end{cases}$$

Word sequences

Conditional Random Fields

Exercise

Write the feature templates for the following descriptions. Provide examples of feature functions generated from them.

Usually for NERC:

- The previous tag is a, the current tag is b and the current word is capitalized
- The current tag is a and the next word is w
- A person name can be preceded by a title (mr., dr.,...)

Usually for NP-chunking:

- The POS of the current word is a and the current tag is b
- The POS of the previous word is *a*, the previous tag is *b* and the current tag is *c*

Word sequences Conditional Random

How is the best sequence found?

We want to find

$$\begin{split} \hat{X} &= \operatorname*{argmax}_{X} P(X|O,\lambda) = \operatorname*{argmax}_{X} \exp \sum_{t} \sum_{k} \lambda_{k} \cdot f_{k}(x_{t-1},x_{t},O,t) \\ &= \operatorname*{argmax}_{X} \sum_{t} \sum_{k} \lambda_{k} \cdot f_{k}(x_{t-1},x_{t},O,t) \end{split}$$

Viterbi algorithm can be easily modified for CRFs

Trellis of a fully connected CRF.

A node $\{s_j, t\}$ of the trellis stores information about states sequences which include $X_t = s_j$.

$$\begin{aligned} \{s_j, t\} : \quad & \delta_t(j) = \max_{X_1, \dots, X_{t-1}} P(X_1, \dots, X_{t-1}, s_j | O, \lambda) \\ & \varphi_t(j) = last(\underset{X_1, \dots, X_{t-1}}{\operatorname{argmax}} P(X_1, \dots, X_{t-1}, s_j | O, \lambda)) \end{aligned}$$

Word sequences

Conditional Random Fields

How is the best sequence found?

We want to find

$$\hat{X} = \underset{X}{\operatorname{argmax}} \sum_{t} \sum_{k} \lambda_{k} \cdot f_{k}(x_{t-1}, x_{t}, O, t)$$

- Viterbi algorithm can be easily modified for CRFs
 - **1** Initialization: $\forall i = 1 \dots N$

$$\delta_1(j) = \sum_k \lambda_k \cdot f_k(x_0 = *, x_1 = s_j, O, t)$$

2 Induction: $\forall j = 1 \dots N$

$$\delta_t(j) = \max_i \ [\delta_{t-1}(i) + \sum_k \lambda_k \cdot f_k(x_{t-1} = s_i, x_t = s_j, O, t)]$$

$$\varphi_t(j) = \textit{last} \operatorname*{argmax}_i \left[\delta_{t-1}(i) + \sum_k \lambda_k \cdot f_k(x_{i-1} = s_i, x_i = s_j, O, t) \right]$$

3 Termination:

$$\hat{X}_T = \operatorname*{argmax}_{\cdot} \delta_T(i)$$

4 Backward path readout:

$$\hat{X}_t = \varphi_{t+1}(\hat{X}_{t+1})$$

Word sequences

Conditional Random