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Goal

Semantic resources provide the possible senses for each
word (polisemy)

lema PoS sense
dog NN 1. animal

2. (colloquial) wicked person
VB 1. to follow

...

Goal: automatically select the right sense for an
occurrence of a word in a sentence (for NN, JJ, VB and
maybe ADV)
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Motivation

WSD is potentially useful for many NLP applications:

Speech Synthesis and Recognition
Acquisition of Lexical Knowledge
Semantic Parsing
Sentiment Analysis
IR, IE, QA, MT
...

WSD has been defined as AI-complete (Ide & Véronis,
1998)

Unfortunately, this usefulness has not been proven yet
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Motivation

Ex.: Semantic parsing: selecting the right word sense is
needed to build the meaning of the sentence

sense gloss from WordNet 1.5
age 1 the length of time something (or someone) has

existed
age 2 a historic period

He was mad about stars at the age of nine .
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P.e.: MT: selecting the right word sense is needed to translate

a word into the target language.

Source: http://www.spanishdict.com.
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Resources

Sense Definitions

Machine Readable Dictionaries
WordNets

Corpora
Samples with only one word labeled for each sample

SemEval Lexical Sample Task (training/Test corpus)
mainly for supervised Machine Learning algorithms

800004
Mr Purves is tight-lipped about what happens then.
He vexed rumour-mongers, who <tag ’520051’>bet</> on a bid for Midlan sooner.
800005
Mr Jones loses his <tag ’519914’>bet</>:1,000 people attended Cowley pools last year.

Samples with all the words labeled

Semcor, SemEval All Words Task (Test corpus)
mainly for unsupervised algorithms
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Types of WSD Algorithms

Based on corpus:
Supervised approaches:

Occurrences of a particular word in text annotated with
their correct senses
Ex.: Näıve Bayes, kNN or SVM
word embeddings + deep learning, sense embeddings
(to see in AHLT)

Semisupervised approaches:

Some occurrences of the particular word annotated with
their correct senses. Lots of unannotated occurrences.
Ex.: Yarowsky Algorithm (Bootstrapping)

Knowledge-based: from a external knowledge source
Unsupervised approaches
They use lexical knowledge (WordNets, machine readable
dictionaries)
Ex.: Lesk Algorithm (available at NLTK),
UKB (available via TextServer)
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Based on Corpus: Supervised ML Approaches

WSD as a classification problem: learn a model useful to
disambiguate occurrences of a particular word in text

veo un banco de peces desde el banco
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Based on Corpus: Supervised ML Approaches

WSD as a classification problem: learn a model useful to
disambiguate occurrences of a particular word in text

veo un banco de peces desde el banco

↓
Mver

↓
ver1
ver2
ver3
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Based on Corpus: Supervised ML Approaches

WSD as a classification problem: learn a model useful to
disambiguate occurrences of a particular word in text

veo un banco de peces desde el banco

↓ ↓
Mver Mbanco

↓ ↓
ver3 banco1

banco2
banco3
banco4
banco5

. . .
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Based on Corpus: Supervised ML Approaches

WSD as a classification problem: learn a model useful to
disambiguate occurrences of a particular word in text

veo un banco de peces desde el banco

↓ ↓ ↓
Mver Mbanco Mpez

↓ ↓ ↓
ver3 banco4 pez1

pez2
pez3
pez4
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Based on Corpus: Supervised ML Approaches

WSD as a classification problem: learn a model useful to
disambiguate occurrences of a particular word in text

veo un banco de peces desde el banco

↓ ↓ ↓ ↓
Mver Mbanco Mpez Mbanco

↓ ↓ ↓ ↓
ver3 banco4 pez1 banco1

banco2
banco3
banco4
banco5

. . .
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Based on Corpus: Supervised ML Approaches

WSD as a classification problem: learn a model useful to
disambiguate occurrences of a particular word in text

Set of categories:

{sense1 . . ., sensek}
Ex.:

44 different senses of word bajo in Spanish (NN, JJ, VB)

Annotated corpus :

{<occurrencei, contexti, right sensei >}
Ex.:

e+1 e+2
text: el niño bajo toca el bajo
POS: DT NN JJ VB DT NN

01206474-a 02803349-n
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WSD as a classification problem: learn a model useful to
disambiguate occurrences of a particular word in text

Set of categories:

{sense1 . . ., sensek}
Ex.:

44 different senses of word bajo in Spanish (NN, JJ, VB)

Annotated corpus :

{<occurrencei, contexti, right sensei >}
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e+1 e+2
text: el niño bajo toca el bajo
POS: DT NN JJ VB DT NN

01206474-a 02803349-n
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Based on Corpus: Supervised ML Approaches

WSD as a classification problem: learn a model useful to
disambiguate occurrences of a particular word in text

Examples:

{e+}: {<occurencei, contexti, correct sensei >}
{e−}: {<occurencei, contexti, incorrect sensei >}

Representation with feature vectors:

Local context: word+position, lemma+position, POS+position
Ex.: come up with → w+1 up, w+2 with

Global context: bag of words, lemmas, bigrams or collocations
Ex.: I was studing at U.P.C. in Barcelona for 2 years →
l+ year, co+ U.P.C. Barcelona.

Syntax: syntactic functions
Ex.: cats eat fish. → subj cat, obj fish

Semantics: domain, senses of previous words
p.e.: the example is about history → topic history
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Based on Corpus: Supervised ML Approaches

WSD as a classification problem: learn a model useful to
disambiguate occurrences of a particular word in text

Examples:

{e+}: {<occurencei, contexti, correct sensei >}
{e−}: {<occurencei, contexti, incorrect sensei >}

Representation with feature vectors:

Local context: word+position, lemma+position, POS+position
Ex.: come up with → w+1 up, w+2 with

Global context: bag of words, lemmas, bigrams or collocations
Ex.: I was studing at U.P.C. in Barcelona for 2 years →
l+ year, co+ U.P.C. Barcelona.

Syntax: syntactic functions
Ex.: cats eat fish. → subj cat, obj fish

Semantics: domain, senses of previous words
p.e.: the example is about history → topic history



Introduction
to Human
Language

Technologies

Word Sense
Disambiguati-
on

WSD
Approaches

Based on Corpus:
Supervised ML
Approaches

Exercise

We want the sentence below to be represented by local and
topical features and be supplied as example for a ML
algorithm:

Example He was mad about stars at the age of nine .
age.01

+ PoS (’He’, ’PRP’), (’was’, ’VBD’), (’mad’, ’JJ’),
(’about’, ’IN’), (’stars’, ’NNS’), (’at’, ’IN’),
(’the’, ’DT’), (’age’, ’NN’), (’of’, ’IN’),

(’nine’, ’CD’), (’.’, ’.’)

1 Give the bag of open-class words of the left context.

2 Give the local features in a ±2 word window of the word
forms.

3 Give two other possible local or topical features
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Based on Corpus: Supervised ML Approaches

WSD as a classification problem: learn a model useful to
disambiguate occurrences of a particular word in text

Bottleneck:

The lack of models for all the words of a given language

The difficulty of acquiring annotated corpora for learning
models

Alternatives:

Semisupervised methods (few annotated examples and lots
of unannotated ones -ex.: bootstrapping-)

Knowledge-based methods
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WSD as a classification problem: learn a model useful to
disambiguate occurrences of a particular word in text

Bottleneck:

The lack of models for all the words of a given language

The difficulty of acquiring annotated corpora for learning
models

Alternatives:

Semisupervised methods (few annotated examples and lots
of unannotated ones -ex.: bootstrapping-)

Knowledge-based methods
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Lesk Algorithm
UKB
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Based on Knowledge: Lesk Algorithm

Lesk algorithm
Disambiguates just one word within a context

Lesk(w) = argmax
si∈S(L(w))

∀sj∈S(C(w))|Def(si) ∩Def(sj)|

L(w): set of lemmas of word w

C(w): set of lemmas of open-class words in the context of w

S(X): set of senses for all lemmas in X

Def(s): set of lemmas in the definition of sense s
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Based on Knowledge: Lesk Algorithm
Example

Input: ”pine cone”

PINE
1. kinds of evergreen tree with needle-shaped leaves
2. waste away through sorrow or illness

CONE
1. solid body which narrows to a point
2. something of this shape whether solid or hollow
3. fruit of certain evergreen trees

Solution (sin contar las stopwords)
Mejor intersección: Pine#1 ∩ Cone#3 = 2.
sense for
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Based on Knowledge: Lesk Algorithm
Example

Input: ”pine cone”

PINE
1. kinds of evergreen tree with needle-shaped leaves
2. waste away through sorrow or illness

CONE
1. solid body which narrows to a point
2. something of this shape whether solid or hollow
3. fruit of certain evergreen trees

Solution (sin contar las stopwords)
Mejor intersección: Pine#1 ∩ Cone#3 = 2.
sense for ”pine”: Pine#1
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Based on Knowledge: Lesk Algorithm
Example

Input: ”pine cone”

PINE
1. kinds of evergreen tree with needle-shaped leaves
2. waste away through sorrow or illness

CONE
1. solid body which narrows to a point
2. something of this shape whether solid or hollow
3. fruit of certain evergreen trees

Solution (sin contar las stopwords)
Mejor intersección: Pine#1 ∩ Cone#3 = 2.
sense for ”cone”: Cone#3
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Based on Knowledge: Lesk Algorithm
Simplification

Simplified Lesk algorithm

Lesk(w) = argmax
si∈S(L(w))

|Def(si) ∩ C(w)|

L(w): set of lemmas of word w

C(w): set of lemmas of open-class words in the context of w.

S(X): set of senses for all lemmas in X

Def(s): set of lemmas in the definition of sense s.

In general, better performance than the general Lesk algorithm
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Based on Knowledge: Lesk Algorithm Exercise

Given the sentence:

I went to the bank to deposit money.

and the definitions of the two first senses of the word bank:

1 sloping land (especially the slope beside a

body of water)

2 a financial institution that accepts deposits

and channels the money into lending activities

apply simplified Lesk algorithm to find the most appropriate
sense among them.
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Based on Knowledge: Lesk’s Algorithm Extensions

Lesk algorithm suffers from low recall

Variants:

Changing the similarity measure: Cosine

Use of WordNet instead of a dictionary

Enrichment with WordNet (Adapted/Extended Lesk)
(Banerjee and Pederson, 2002/2003)

Use examples of Wordnet Synsets
Use the data of hypernyms and/or hyponyms

Enrichment with WordNet and Wikipedia (Enhanced Lesk)
(Basile et al. 2014)
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Based on Knowledge: Lesk’s Algorithm Extensions

Lesk algorithm suffers from low recall

Variants:

Changing the similarity measure: Cosine

Use of WordNet instead of a dictionary

Enrichment with WordNet (Adapted/Extended Lesk)
(Banerjee and Pederson, 2002/2003)

Use examples of Wordnet Synsets
Use the data of hypernyms and/or hyponyms

Enrichment with WordNet and Wikipedia (Enhanced Lesk)
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Based on Knowledge: UKB

Methods to disambiguate one word or all the words at the
same time

Based on PageRank algorithm from Google

input: net of linked webpages
output: relevance of each webpage included in the net

Analogy:

input: ext to disambiguate and graph of word senses
input: defined by their relations (ex. WordNet)
output: relevance of each sense of each word occurrence
output: included in the text
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Based on Knowledge: UKB

Methods to disambiguate one word or all the words at the
same time

Based on PageRank algorithm from Google

input: net of linked webpages
output: relevance of each webpage included in the net

Analogy:

input: text to disambiguate and graph of word senses
input: defined by their relations (ex. WordNet)
output: relevance of each sense of each word occurrence
output: included in the text
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Based on Knowledge: UKB

1. PRELIMINARY: How does PageRank perform?

* Webpage relevance = prob. of being visited following the links

* Find the stationary distribution

v(i+1) = H · vi v0 = [1/n]n

p1

p2

p3

p4 transition matrix

H =


0 1 1/2 0

1/3 0 0 1
1/3 0 0 0
1/3 0 1/2 0


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Based on Knowledge: UKB

1. PRELIMINARY: How does PageRank perform?

* Webpage relevance = prob. of being visited following the links

* Find the stationary distribution

v(i+1) = H · vi v0 = [1/n]n

p1

p2

p3

p4

p1

p2

p3

p4 transition matrix

H =


0 1 1/2 0

1/3 0 0 1
1/3 0 0 0
1/3 0 1/2 0



initial relevance
vector

v0 =


1/4
1/4
1/4
1/4


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Based on Knowledge: UKB

1. PRELIMINARY: How does PageRank perform?

* Webpage relevance = prob. of being visited following the links

* Find the stationary distribution

v(i+1) = H · vi v0 = [1/n]n

p1

p2

p3

p4

v1 =


−
−
−
−

 =


0 1 1/2 0

1/3 0 0 1
1/3 0 0 0
1/3 0 1/2 0

·


1/4
1/4
1/4
1/4


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Based on Knowledge: UKB

1. PRELIMINARY: How does PageRank perform?

* Webpage relevance = prob. of being visited following the links

* Find the stationary distribution

v(i+1) = H · vi v0 = [1/n]n

p1

p2

p3

p4

v1 =


0.375
0.333
0.083
0.208

 =


0 1 1/2 0

1/3 0 0 1
1/3 0 0 0
1/3 0 1/2 0

·


1/4
1/4
1/4
1/4


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Based on Knowledge: UKB

1. PRELIMINARY: How does PageRank perform?

* Webpage relevance = prob. of being visited following the links

* Find the stationary distribution

v(i+1) = H · vi v0 = [1/n]n

p1

p2

p3

p4

v2 =


0.374
0.333
0.125
0.166

 =


0 1 1/2 0

1/3 0 0 1
1/3 0 0 0
1/3 0 1/2 0

·


0.375
0.333
0.083
0.208


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1. PRELIMINARY: How does PageRank perform?

* Webpage relevance = prob. of being visited following the links

* Find the stationary distribution

v(i+1) = H · vi v0 = [1/n]n

p1

p2

p3

p4

v3 =


0.395
0.291
0.125
0.187

 =


0 1 1/2 0

1/3 0 0 1
1/3 0 0 0
1/3 0 1/2 0

·


0.374
0.333
0.125
0.166


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1. PRELIMINARY: How does PageRank perform?

DRAWBACK: webpages without outcoming links and disconnected

graphs

v(i+1) = H · vi v0 = [1/n]n

p1

p2

p3

v1 =

−−
−

 =

0 1 1
0 0 0
0 0 0

·
1/3

1/3
1/3


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1. PRELIMINARY: How does PageRank perform?

DRAWBACK: webpages without outcoming links and disconnected

graphs

v(i+1) = H · vi v0 = [1/n]n

p1

p2

p3

v1 =

0.66
0
0

 =

0 1 1
0 0 0
0 0 0

·
1/3

1/3
1/3


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1. PRELIMINARY: How does PageRank perform?

DRAWBACK: webpages without outcoming links and disconnected

graphs

v(i+1) = H · vi v0 = [1/n]n

p1

p2

p3

v2 =

0
0
0

 =

0 1 1
0 0 0
0 0 0

·
0.66

0
0


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1. PRELIMINARY: How does PageRank perform?

DRAWBACK: webpages without outcoming links and disconnected

graphs

SOLUTION: select a webpage randomly

v(i+1) = H · vi v0 = [1/n]n

M = (1 − α) ·H+ α · B

M: PageRank matrix

H: transition matrix

α: probability of random selection (default 0.15)

B: matrix [1/n]nn
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1. PRELIMINARY: How does PageRank perform?

DRAWBACK: webpages without outcoming links and disconnected

graphs

SOLUTION: select a webpage randomly

v(i+1) =M · vi v0 = [1/n]n

M = (1 − α) ·H+ α · B

M: PageRank matrix

H: transition matrix

α: probability of random selection (default 0.15)

B: matrix [1/n]nn
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2. WSD using PageRank

* Use of WordNet as graph

v(i+1) =MW · vi v0 = [1/|W|]|W|

*

W

coach fleet comprise . . . seat
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2. WSD using PageRank

How does it focus on the synsets of the k input words?

v(i+1) =MW · vi v0 = [1/|W|]|W|

W
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shortest paths
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2. WSD using PageRank

How does it focus on the synsets of the k input words?

OPTION 1. Restrict W to the disambiguation graph D

v(i+1) =MD · vi v0 = [1/|D|]|D|

D

coach fleet comprise . . . seat

shortest paths
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2. WSD using PageRank

How does it focus on the synsets of the k input words?

OPTION 2. Personalize B to the k input words

v(i+1) =MW · vi v0 = [1/|W|]|W|

Add the k words as new nodes linked to their synsets

W

coach fleet comprise . . . seat
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2. WSD using PageRank

How does it focus on the synsets of the k input words?

OPTION 2. Personalize B to the k input words

v(i+1) =MW+ · vi v0 = [1/(|W|+ k)]|W|+k

Add the k words as new nodes linked to their synsets

W+

coach fleet comprise . . . seat
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2. WSD using PageRank

How does it focus on the synsets of the k input words?

OPTION 2. Personalize B to the k input words

MW+ = (1 − α) ·HW+ + α · BW+

Add the k words as new nodes linked to their synsets

W+

coach . . .

HW+ =

0 . . .

1/3 . . .

1/3 . . .

0 . . .
· · ·
0 . . .

1/3 . . .





HW

0 0

 |W|  k


|W|

}
k
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2. WSD using PageRank

How does it focus on the synsets of the k input words?

OPTION 2. Personalize B to the k input words

MW+ = (1 − α) ·HW+ + α · BW+

Concentrate the random selection prob. on the k words

W+

coach fleet comprise . . . seat
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2. WSD using PageRank

How does it focus on the synsets of the k input words?

OPTION 2. Personalize B to the k input words

MW+ = (1 − α) ·HW+ + α · BW+

Concentrate the random selection prob. on the k words

W+

coach . . .

BW+ =

1/n · · · · · · 1/n

· · · · · · · · · · · ·
1/n · · · · · · 1/n





0 0

n = |W|+ k

 |W|  k 
|W|

 k
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