# Master on Artificial Intelligence

Semantics

WordNet

SentiWordNet

Sentiment analysis

# Introduction to Human Language Technologies 5. Lexical semantics





- 1 Semantics
  - Motivation of lexical semantics
  - Resources
  - 2 WordNet
    - Definition
    - Similarities
  - 3 SentiWordNet
  - 4 Sentiment analysis
    - Definition
    - Examples of methods

### Semantics

### WordNet

SentiWordNet

### Semantics

#### Semantics

WordNet

 ${\sf SentiWordNet}$ 

Sentiment analysis

## Semantics deals with the meaning:

- Lexical semantics: deals with the meaning of individual words
- Compositional semantics: deals with the construction of meaning usually in high concordance with syntax

This session focuses on lexical semantics

- Semantics
- Motivation of lexical semantics
- WordNet
- ${\sf SentiWordNet}$
- Sentiment analysis

- 1 Semantics
  - Motivation of lexical semantics
  - Resources
  - 2 WordNet
    - Definition
    - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
  - Definition
  - Examples of methods

# Motivation of lexical semantics

### Some examples of usefulness:

Discovery of semantic patterns

Ex: USA bombed Hiroshima

They began to bombard the defenses

 $\rightarrow$  A sense\_12533 B

Determine discourse relations

Ex: [Anna will show up later.] [She has missed the train.]  $\rightarrow$ 

explanation

Ex: [Mathew is good cooking.] [Albert fails making every dish]  $\rightarrow$ 

contrast

■ Twitter sentiment analysis

Ex: @vooda1: CNN Declines to Air White House Press Conference Live YES! THANK YOU @CNN FOR NOT LEGITIMI...

positive

Ex: @Slate: Donald Trump's administration: "Government by the worst men."

negative

Semantics

Motivation of lexical semantics

 ${\sf WordNet}$ 

SentiWordNet

- Semantics Resources
- WordNet

SentiWordNet

- 1 Semantics
  - Motivation of lexical semantics
  - Resources
- 2 WordNet
  - Definition
  - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
  - Definition
  - Examples of methods

### Resources of lexical semantics

■ Knowledge-based resources: represented as graphs

Ex: WordNet (English lexical ontology)

SentiWordNet (sentiment polarity into WordNet)

BabelNet (Wikipedia+WordNet)

VerbNet (syntactic/semantic verbal behaviour)

FrameNet (conceptual behaviour –fine-grained event

representation-)

ConceptNet (common sense knowledge)

Semantics

WordNet
SentiWordNet

Sentivolarie

### Resources of lexical semantics

Semantics

WordNet

SentiWordNet

Sentiment analysis

■ Knowledge-based resources: represented as graphs

Ex: WordNet (English lexical ontology)

SentiWordNet (sentiment polarity into WordNet)

BabelNet (Wikipedia+WordNet)

VerbNet (syntactic/semantic verbal behaviour)

FrameNet (conceptual behaviour –fine-grained event

representation-)

ConceptNet (common sense knowledge)

Corpus-based resources: contextual usage of words

Ex: Latent Semantic Analysis (LSA)

Word embeddings , sense embeddings

We will study them in AHLT

# Resources of lexical semantics

Semantics Resources

WordNet

SentiWordNet

| WordNet         | https://wordnet.princeton.edu/               |
|-----------------|----------------------------------------------|
| SentiWordNet    | https://github.com/aesuli/SentiWordNet       |
| BabelNet        | https://babelnet.org/                        |
| VerbNet         | https://verbs.colorado.edu/verbnet/          |
| FrameNet        | https://framenet.icsi.berkeley.edu/fndrupal/ |
| LSA             | accessible from                              |
| Word embeddings | https://radimrehurek.com/gensim/             |

- Semantics
- WordNet

analysis

SentiWordNet

Sentiment

- 1 Semantics
  - Motivation of lexical semantics
  - Resources
- 2 WordNet
  - Definition
  - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
  - Definition
  - Examples of methods

- Semantics
- WordNet Definition
- SentiWordNet
- Sentiment analysis

- 1 Semantics
  - Motivation of lexical semantics
  - Resources
- 2 WordNet
  - Definition
  - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
  - Definition
  - Examples of methods

### WordNet

- Free large lexical database of English
- Contains only nouns, verbs, adjectives and adverbs
- Words are grouped into synonyms sets (*synsets*)
- each synset has an associated gloss and some examples
- synsets are interlinked by means of lexical relations https://en-word.net/lemma/demo



Semantics

WordNet

Definition
SentiWordNet
Sentiment

analysis

# Open English Wordnet

LDMA Search

#### Nouns

(n) demonstration a visual presentation showing how something works: 'the lecture was accompanied by dramatic demonstrations'. 'the lecturer shot off a pietol as a demonstration of the starter response'

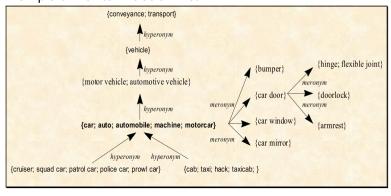
MORE >

#### Verbs

(w) demo, demonstrate, exhibit, present, show give an exhibition of to an interested audience "She shows her dags frequently" "We will demo the new software in Washington"

MREF.

## Lexical relations


### Semantics

WordNet Definition

SentiWordNet

Sentiment analysis

### Example of Lexical Relation Net



# Lexical relations

Semantics

WordNet Definition

SentiWordNet

- Synonym: same meaning. Ex: age historic\_period
- Antonym: opposite meaning. Ex: dark light
- Homophome: same sound. Ex: son sun
- Homograph: same written form. Ex: lead (noun verb)
- Polysemy: different related meaning. Ex: newspaper (paper - firm)
- Homonymy: different unrelated meaning. Ex: position (place status)
- Hypernym: parent. Ex: cat feline
- Hyponym: child. Ex: feline cat
- Holonym: group, whole. Ex: student class
- Meronym: member, part. Ex: class student
- Metonym: substitution of entity. Ex: We ordered many delicious dishes at the restaurant.

- Semantics
- WordNet Similarities
- SentiWordNet

- 1 Semantics
  - Motivation of lexical semantics
  - Resources
- 2 WordNet
  - Definition
  - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
  - Definition
  - Examples of methods

# Similarities in WordNet

■ Shortest Path Length:  $Sim(s_1, s_2) = \frac{1}{SPL(s_1, s_2)}$  where  $SPL(s_1, s_2) =$  Shortest Path Length from  $s_1$  to  $s_2$  as vertex-countings

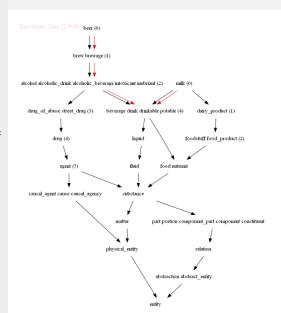
Leacock & Chodorow:  $Sim(s_1, s_2) = -log_2 \frac{SPL(s_1, s_2)}{2 \cdot MaxDepth}$ where depth(s) = SPL(TopSynset, s) $MaxDepth = \max_{s \in MN} depth(s)$ 

Wu & Palmer:  $Sim(s_1, s_2) = \frac{2 \cdot depth(LCS(s_1, s_2))}{depth_{LCS(s_1, s_2)}(s_1) + depth_{LCS(s_1, s_2)}(s_2)}$  where  $LCS(s_1, s_2) = Lowest Common Subsumer of s_1 and s_2$   $depth_{s'}(s) = SPL(TopSynset.s)$  through s'

Lin:  $Sim(s_1, s_2) = \frac{2 \cdot IC(LCS(s_1, s_2))}{IC(s_1) + IC(s_2)}$ where  $IC(s) = -log_2P(s) = \text{information content of s (from frequencies in a corpus)}$ 

### Semantics

Word Net Similarities


analysis

SentiWordNet
Sentiment

# Example / exercise



SentiWordNet



$$spl(beer, milk) = 5$$
  
 $Sim_{spl}(beer, milk) = 0.2$ 

$$Sim_{wp}(beer, milk) = 0.75$$

$$Sim_{spl}(drug, milk)$$
?  $Sim_{wp}(drug, milk)$ ?

- Semantics
- WordNet
- ${\sf SentiWordNet}$

- 1 Semantics
  - Motivation of lexical semantics
  - Resources
  - 2 WordNet
    - Definition
    - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
  - Definition
  - Examples of methods

### Definition

Extension of wordnet that adds for each synset 3 measures:

- positive\_score
- negative\_score
- objective\_score = 1 positive\_score negative\_score

Wordnet SentiWordnet Antonym Synsets Gloss obi pos neg bad a 01 having undesirable or negative qualities 0.375 0.0 0.625 good.a.01 having desirable or positive qualities... 0.25 0.75 0.0 bad.n.01 that which is below standard or 0.125 0.0 0.875 expectations as of ethics or decency good.n.03 that which is pleasing, valuable, useful 0.375 0.625 0.0

#### Semantics

WordNet

 ${\sf SentiWordNet}$ 

- Semantics WordNet

analysis

SentiWordNet

Sentiment

- 1 Semantics
  - Motivation of lexical semantics
  - Resources
  - 2 WordNet
    - Definition
    - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
  - Definition
  - Examples of methods

- Semantics
- WordNet

SentiWordNet

Sentiment analysis Definition

- 1 Semantics
  - Motivation of lexical semantics
  - Resources
  - 2 WordNet
    - Definition
    - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
  - Definition
  - Examples of methods

# Sentiment analysis

#### Semantics

WordNet

SentiWordNet

Sentiment analysis Definition

### Different subtasks:

- Opinion detection: given a piece of text (document or sentence), is it an objective text or a subjective one?
- Polarity classification: given a subjective piece of text, is it a positive opinion or a negative one?
- Opinion extraction: given a subjective piece of text, recognise the focuses of the opinion (templates <entity, aspect, polarity>).

- Semantics
- WordNet

 ${\sf SentiWordNet}$ 

Sentiment analysis

analysis

Examples of methods

- 1 Semantics
  - Motivation of lexical semantics
  - Resources
  - 2 WordNet
    - Definition
    - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
  - Definition
  - Examples of methods

# Unsupervised sentiment analysis

### Possible solution:

$$h(D) = \sum_{s \in \hat{D}} score(s)$$

 $\hat{D}$  is usually the set of synsets related to adjectives, or to nouns and adjectives, or to nouns, verbs, adjectives and adverbs.

Opinion detection:

$$\mathit{score}(s) = 1 - \mathit{obj}_s \quad \mathit{or} \quad \mathit{score}(s) = \mathit{obj}_s$$

Polarity classification:

$$score(s) = pos_s - neg_s$$

Pros:

no need for training corpora

Cons:

- low results
- need for POS and WSD taggers

### Semantics

#### ${\sf WordNet}$

SentiWordNet

Sentiment analysis

Examples of methods

# Supervised sentiment analysis

### Possible solution:

Bag of words with Naïve Bayes

$$h(D) = h(w_1, \ldots, w_n) = \underset{y}{\operatorname{argmax}} P(y) \prod_{i=1}^{n} P(w_i|y)$$

where y is the category (positive/negative, subjective/objective), and  $w_1, \ldots, w_n$  is the bag of words related to D

- lacksquare Given a training corpus  $C=\{d_i\}$  partitioned into subsets  $Y_1$  and  $Y_2$ 
  - $P(y) \approx P_{MLE}(y) = \frac{|Y_i|}{|C|}$

$$P(w_i|y) \approx P_{MLE}(w_i|Y_j) = \frac{c(w_i,Y_j)}{\sum_{w_i \in Y_j} c(w_i,Y_j)}$$

#### Pros:

- higher results
- no need for POS and WSD taggers

#### Cons:

need for training corpora

### Semantics

 $\mathsf{Word}\mathsf{Net}$ 

 ${\sf SentiWordNet}$ 

Sentiment analysis Examples of methods

# Hybrid approach for sentiment analysis

#### Semantics

WordNet

SentiWordNet

Sentiment

analysis Examples of methods

### Possible solution:

- Combine two supervised methods with SentiWordnet method
- I.e., consensuate the output of the three methods, using voting, for instance:

if at least 2 of the methods answer y then output y else output the answer of the method with better accuracy in the training corpus

The combination improves the results of the isolated methods

# Annex

■ Base on the Bayes' theorem:

$$P(y|x_1,\ldots,x_n)=\frac{P(y)P(x_1,\ldots,x_n|y)}{P(x_1,\ldots,x_n)}$$

■ Naïve assumption of independence between features:

$$P(y|x_1,\ldots,x_n)\approx P(y)\prod_{i=1}^n P(x_i|y)$$

- Maximum likelihood estimation of P(y) and  $P(x_i|y)$  as training model
- Test prediction as:

$$h(x_1,\ldots,x_n) = \operatorname*{argmax}_{y} P(y) \prod_{i=1}^{n} P(x_i|y)$$

Need a smoothing technique to avoid zero counts: in NLTK never seen features are discarded

### Semantics

WordNet SentiWordNet

Sentiment

analysis

Examples of methods