Master in Artificial Intelligence

Morphology

Morphological analysis

Spell checkers and spell correctors

Introduction to Human Language Technologies 3 - Morphology

- Morphology
- Morphological analysis
- Spell checkers and spell correctors

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphology
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

- Morphology Motivation
- Morphological analysis
- Spell checkers and spell correctors

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphology
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Motivation

There are lots of NLP tools and applications in which dealing with the morphology of the words is relevant, for instance:

Morphological

Morphology Motivation

analysis

Spell checkers and spell correctors

IR is based on the canonical forms of the words.

'Normally, houses in the Pyrenees are made of stone.'

'A typical pyrenean house has litle windows.'

Spell checkers are based on checking whether words in a document are well-formed or not.

'This could be an alterantive remedy'

 Syntactic parsing requires lexical information derived from morphological analysis

> 'Children are very intelligent' 'Children is very intelligent'

- Morphology
- Morphological analysis
- Spell checkers and spell correctors

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphology
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Definition of morphology

- Study of the structure of words
 - Phonology: word as a combination of phonemes
 - Orthography: word as a combination of graphemes
 - Morphology: word as a combination of morphemes
- Types of morphemes:
 - Stems: (e.g., 'work', 'of', 'mak'[e])
 - Affixes: always occur combined with other morphemes (e.g., -s", 'in-','-able')
 - Prefixes: in + frequent
 - Suffixes: work + s
 - Infixes: [Arabic] ktb + CuCuC → kutub (books)
 - Circumfixes: en+light+en
- The resulting words can be classified into categories known as Part of Speech (POS): Noun, Verb, Adjective, Adverb, Preposition, . . .

Morphology Definitions

Morphological analysis

Morphology
Types of morphology
Morphological

analysis

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphology
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Morphology
Types of morphology

Morphological analysis

Spell checkers and spell correctors Concatenative morphology: builds words up by concatenating morphemes (prefixes, suffixes). Frequent in the Indo-European languages.

■ Inflectional morphology: stem → different forms of the same word

Ex: work \rightarrow worked

Morphology
Types of morphology

Morphological analysis

Spell checkers and spell correctors Concatenative morphology: builds words up by concatenating morphemes (prefixes, suffixes). Frequent in the Indo-European languages.

■ Inflectional morphology: stem → different forms of the same word

 $\mathsf{Ex} \colon \mathsf{work} \to \mathsf{worked}$

■ Derivational morphology: $stem \rightarrow new words$

Ex: frequent \rightarrow infrequent

Morphology
Types of morphology

Morphological analysis

Spell checkers and spell correctors Concatenative morphology: builds words up by concatenating morphemes (prefixes, suffixes). Frequent in the Indo-European languages.

■ Inflectional morphology: stem → different forms of the same word

Ex: work \rightarrow worked

■ Derivational morphology: $stem \rightarrow new words$

 $\mathsf{Ex} \colon \mathsf{frequent} \to \mathsf{infrequent}$

■ Compositional morphology: N words → new word

Ex: fire + man \rightarrow fireman

Concatenative morphology: builds words up by concatenating morphemes (prefixes, suffixes). Frequent in the Indo-European languages.

■ Inflectional morphology: stem → different forms of the same word

Ex: work \rightarrow worked

■ Derivational morphology: $stem \rightarrow new words$

 $\mathsf{Ex} \colon \mathsf{frequent} \to \mathsf{infrequent}$

■ Compositional morphology: N words → new word

Ex: fire + man \rightarrow fireman

- Non-concatenative morphology: builds words by other mechanism (infixes). Frequent in the Semitic languages.
 - Ex: Root-Pattern morphology

Ex: [Arabic] ktb + CaCaCa \rightarrow kataba [en: he wrote]

Morphology Types of morphology

Morphological analysis

Morphology

Morphological analysis

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphology
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Goal of morphological analysis

Morphology

Morphological analysis

Spell checkers and spell correctors

- Morphological recognition Does word w belong to language L?
- Morphological parsing What is the morphological information related to word w ∈ L?

Ex: word POS+Gen+Num+Case+Tense+... LEMMA (stem) men Noun+M+PL man

Resources required for morphological analysis

Lists of regular (Reg) stems (ambiguities)

EX: Reg_V: walk
Reg_N: cat, fox, walk

Morphology

Morphological analysis

Spell checkers

and spell

Lists of irregular (Irreg) stems (ambiguities)

Ex: Irreg_pres_V: sing ...Irreg_past_V: sang sing Irreg_sg_N: mouse ...Irreg_pl_N: mice

 List of suffixes and prefixes (dealing with concatenative morphology)

Ex: Inflec: s suffix, ing suffix
Deriv: able suffix, un prefix

Morphotactics: general rules for combining morphomes

Ex: $Reg_N + s \rightarrow PL$ $Reg_V + ing \rightarrow Gerund$

Spelling rules: orthographic rules for combining letters

Ex: E-insertion: $-(z,x,s,sh,ch)^s \rightarrow -(z,x,s,sh,ch)$ es Consonant-doubling: -1^i ing $\rightarrow -1$ ling

Types of morphological processors

Morphology

Morphological analysis

Spell checkers and spell correctors Based on dictionaries: list of word forms [with their corresponding morphological information]

```
Ex: (write VPrI write, writes VPrI3S write, wrote VPsI write, ...)
```

- + efficiency
- + can be automatically generated/maintained from the resources
- + language with 'simple' morphology (e.g., English)
- languages with complex morphology (e.g., German, Finish, ...)

Types of morphological processors

Morphology

Morphological analysis

Spell checkers and spell correctors Based on dictionaries: list of word forms [with their corresponding morphological information]

```
Ex: (write VPrI write, writes VPrI3S write, wrote VPsI write, ...)
```

- + efficiency
- + can be automatically generated/maintained from the resources
- + language with 'simple' morphology (e.g., English)
- languages with complex morphology (e.g., German, Finish, ...)
- Based on finite state automata (FSAs)
 - only for lexical recognition

Types of morphological processors

Morphology

Morphological analysis

Spell checkers and spell correctors

```
    Based on dictionaries: list of word forms [with their
corresponding morphological information]
```

Ex: (write VPrI write, writes VPrI3S write, wrote VPsI write, ...)

- + efficiency
- + can be automatically generated/maintained from the resources
- + language with 'simple' morphology (e.g., English)
- languages with complex morphology (e.g., German, Finish, ...)
- Based on finite state automata (FSAs)
 - only for lexical recognition
- Based on finite state tranducers (FSTs)
 - + useful for morphological analysis

Morphology

Morphological analysis Finite-state

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphology
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Finite state automata (FSA)

A FSA defines a function over words w of a regular language L.

 $M_L: w \rightarrow \{\textit{true}, \textit{false}\}$

$$M = \langle Q, \Sigma, q_0, F, \sigma \rangle$$

$$Q = \{q_0, \ldots, q_n\}$$
 finite set of states

$$\Sigma = \{s_0, \ldots, s_k\}$$
 finite set of simbols

 $q_0 \in Q$ start state

 $F \subset Q$ final states

 $\sigma: Qx\Sigma \to [Q \lor 2^Q]$ deterministic \lor non-det. transition function

Morphology

Morphological analysis Finite-state

Spell checkers and spell correctors

automata

Morphology

Morphological analysis Finite-state

Spell checkers and spell correctors An FSA can be the union/concatenation of different FSAs:

- FSAs generated from morphological rules
- FSAs generated from spelling rules
- FSAs generated from derivational rules
- FSAs generated from compositional rules

Example: FSA for English number nominal inflection

Finite-state automata Spell checkers

Morphological analysis

Spell checkers and spell correctors

Examples of lists of stems

Reg_N	Irreg_sg_N	Irreg_pl_N
dog	mouse	mice
fox	foot	feet
tax		
donkey		

Example: FSA for English number nominal inflection

 ${\sf Morphology}$

Morphological analysis Finite-state

Spell checkers and spell correctors

Morphotactics: List Irreg_N

Morphotatics: noun + s = PL over list Reg_N

SHOULD CORRECT WITH:

Spelling rule: [s,x,z,sh,ch}^s=[s,x,z,sh,ch]es over list Reg_N

- Morphology
- Morphological analysis Finite-state automata
- Spell checkers and spell correctors

- FSAs can be useful for recognising words
- FSAs are not able to output a word analysis

Input word (surface form)	Output analysis (lexical form)		
dog dogs	dog+N+SG dog+N+PL		
(word form)	(lemma+Features)		

A more sophisticated technique is required: FSTs

Morphology

Morphological analysis Finite-state transducers

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphology
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Finite state transducers (FSTs)

A FST defines a relation between regular languages L_1 and L_2 .

$$T = \langle Q, \Sigma, \Delta, q_0, F, \sigma, \delta \rangle$$

 $Q = \{q_0, \dots, q_n\}$ finite set of states

 $\Sigma = \{s_0, \ldots, s_k\}$ finite set of input simbols

 $\Delta = \{t_0, \ldots, t_m\}$ finite set of output simbols

 $q_0 \in Q$ start state

 $F \subset Q$ final states

 $\sigma: \textit{Qx}\Sigma \to 2^{\textit{Q}}$ transition function

 $\delta: Q \times \Sigma \to \Delta$ output function

$d (cb)+a\{0,1\}$	$a (bc)+d\{0,1\}$
d	a
cb	bc
cba	bcd
cbcb	bcbc
cbcba	bcbcd

Morphology

Morphological analysis Finite-state transducers

Finite state transducers (FSTs)

Morphology

Morphological analysis Finite-state transducers

Spell checkers and spell correctors Invertion: $T: L_1 \to L_2 \Longrightarrow T^{-1}: L_2 \to L_1$

$$T: b:c \Longrightarrow c \to b \Longrightarrow Ex: cbcb \to bcbc$$

 $T^{-1}: b:c \Longrightarrow b \to c \Longrightarrow Ex: bcbc \to cbcb$

h:c

- Composition: $T_a: L_1 \to L_2 \land T_b: L_2 \to L_3 \Longrightarrow T_a \circ T_b: L_1 \to L_3$
- x:x = x
- Non-consumption symbol: $\epsilon \in \Sigma$, $\epsilon \in \Delta$

Morphology

Morphological analysis Finite-state transducers

Spell checkers and spell correctors We want a FST being a relation between

- Surface form: $L_1 = \{w | w \text{ is word form}\}$
- Lexical form: $L_2 = \{ \langle I, F \rangle | I \text{ is lemma } \land F \text{ are morphological features} \}$

So that we get a morphological parser

Ex:
$$dogs \rightarrow dog+N+PL$$

Ex: $dog \rightarrow dog+N+SG$

Inverting that FST, we get a word forms generator

■ Ex:
$$dog+N+PL \rightarrow dogs$$

Ex: $dog+N+SG \rightarrow dog$

Two-level construction:

1 T_{lex} : A FST that computes morphotactics

Ex: $Reg_N^s \# \rightarrow Reg_N^+ + N + PL$.

Ex: dog^s# \rightarrow dog+N+PL, fox^s# \rightarrow fox+N+PL

2 T_{inter}^i : FSTs each computing a spelling rule (orthographic regularization)

Ex: $-\{z,x,s,sh,ch\}$ es $\rightarrow -\{z,x,s,sh,ch\}$ s#

Morphology

Morphological analysis Finite-state transducers

Two-level construction:

II T_{lex} : A FST that computes morphotactics

Ex: $Reg_N^s \# \rightarrow Reg_N^+ + N + PL$.

Ex: $dog^s\# \rightarrow dog+N+PL$, $fox^s\# \rightarrow fox+N+PL$

 T_{inter}^{i} : FSTs each computing a spelling rule (orthographic regularization)

Ex: $-\{z,x,s,sh,ch\}$ es $\rightarrow -\{z,x,s,sh,ch\}$ $\hat{s}\#$

Two-level processing:

surface level $T_{inter}^1, \dots, T_{inter}^k$ intermediate level T_{lex} lexical level

Morphology

Morphological analysis Finite-state transducers

1 T_{lex} : FST that computes morphotactics Example: FST for English number nominal inflection

T_{num_nouns}

Examples of lists of stems/forms

Reg_N	$Irreg_sg_N$	Irreg_pl_N
dog	mouse	m o:i u:€ s:c e
fox	foot	f o:e o:e t
tax		
donkey		

Morphology

Morphological analysis

Finite-state transducers

1 T_{lex} : FST that computes morphotactics Example: FST for English number nominal inflection

T = T o T num_nouns

 $fox^s \# \to fox+N+PL !!$ (requires spelling rules)

Morphology

Morphological analysis Finite-state transducers

2 T_{inter}^{i} : FSTs that compute spelling rules Example: FST for E-insertion rule

Morphological analysis
Finite-state transducers

Spell checkers and spell correctors

##. E 7 ##. E 7

Morphology

'?': other symbol		
e-insertion cases		
foxes → fox^s#		
$bosses \to boss^s\#$		
flashes \rightarrow flash $^s\#$		
regular cases		
$dogs \to dog^s\#$		

 $2 T_{inter}^{i}$: FST that computes spelling rules

Morphology

Morphological analysis Finite-state transducers

Spell checkers and spell correctors Some other examples of spelling rules:

- Consonant doubling: two-syllable word stressed in the last one with ending CVC pattern double last consonant before -ing/-ed EX: control → controlling
- E-deletion: Silent -e removed before -ing/-ed

EX: $remove \rightarrow removed$

- E-insertion: -e added after ending -s,-z,-x,-ch,-sh, before -s EX: flash → flashes
- Y-replacement: -y changes to -ie before -s or to -i before -ed EX: cry → cries, cried
- K-insertion: verbs ending with 1-vowel+c add -k before -ed EX: panic → panicked

Exercise

Morphology

Morphological analysis Finite-state transducers

- Generate a FST for the inflection of verbs *sing* and *work*
- Add the inflection of verb *make* to the previous FST

Morphology

Morphological analysis

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphology
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Spell checkers

Morphology

Morphological analysis

- **Goal**: given a piece of text, recognise the word forms that do not belong to the text language *L*
- Possible approach:

```
FSA_L \text{ OR } FST_L
S = Tokenizer(text) \text{ (sequence of forms)}
\text{for each } x \in S
\text{if } FSA_L(x) \text{ then print("x")}
\text{else print("**x**")}
```

Spell correctors

- **Goal**: given a word form, provide a list of possible correct forms.
- Possible approach:

```
D = \{y_i : y_i \in L\} generated by applying FST_L
S = Tokenizer(text) (sequence of forms)
      for each x \in S
         if x \in D then print(x)
         else
           D' = \{ v \in D : |length(x) - length(v)| \leq \gamma \}
           C = \emptyset
           for each v \in D'
             d = distance(x, y)
             if (d \leq \delta) then
               C = C + \{ \langle v, d \rangle \}
           print_Nbest_candidates(C,N)
\delta = 2 and \gamma = 2 seem to be enough for standard text
```

Morphology

Morphological analysis

Spell correctors

Morphology

Morphological analysis

- Edit distance: minimum number of insertions, deletions, swaps to achieve *y* from *x*
- Weighted edit distance: minimum cost of insertions, deletions, swaps to achieve *y* from *x*
 - Cost of insertion/deletion = 1
 - Cost of swap = s(a, b): (typo Manhattan distance in a keyboard)
 - Total cost = d(x, y):
 - Compute cost matrix E, with dimension mXn (lengths of x and y) using dynamic programming
 - d(x,y) = E(m,n)

Spell correctors

Cost matrix computation

Morphology

Morphological analysis

Spell checkers and spell correctors

		у1	y 2	у3	у4	_
	0	1	2	3	4	
x 1	1					
x 2	2			$\overline{}$	→ i	nsertion (+1)
х3	3		3.5	↓	* S1	vap
,			ue.	(+1))	$+s(x_i, y_j)$

$$E(i,j) = \min(\mathit{Cost}_\mathit{del}, \mathit{Cost}_\mathit{ins}, \mathit{Cost}_\mathit{swap})$$

$$\begin{cases} \textit{Cost}_{\textit{del}} = \textit{E}\left(i-1,j\right) + 1 \\ \textit{Cost}_{\textit{ins}} = \textit{E}\left(i,j-1\right) + 1 \\ \textit{Cost}_{\textit{swap}} = \textit{E}\left(i-1,j-1\right) + \textit{s}(\textit{x}_{\textit{i}},\textit{y}_{\textit{j}}) \end{cases}$$

 $s(x_i, y_j)$ normalised to 1.0

Exercise

Morphology

Morphological analysis

Spell checkers and spell correctors Compute the weighted edit distance between 'dom' and 'come'