Introduction to Human Language Technologies
Outline

1 Introduction
- What is Human Language Technology?
- Which is the general strategy for computing Human Language?
- Why is Human Language difficult to be processed?
- Examples of applications

2 Human Language Technology courses in MAI
- HLT branch
- IHL
Outline

1 Introduction
- What is Human Language Technology?
- Which is the general strategy for computing Human Language?
- Why is Human Language difficult to be processed?
- Examples of applications

2 Human Language Technology courses in MAI
- HLT branch
- IHL
Definition

- HLT is the technology focused on the study of human language from a computational point of view.
- HLT comprises computational methods, resources and models specifically designed to deal with all kind of text:
 - list of words
 - question in natural language
 - document in electronic format (e.g., plain text, web page, sms, tweet, oral transcriptions)
 - **corpus**: collection of documents in electronic format
HLT is a multidisciplinary area:
- Natural Language Processing (NLP)
- Computational Linguistics
- Artificial Intelligence
- Speech Processing
- Cognitive Science, Psychology
- Logic, Mathematics
Outline

1 Introduction
 • What is Human Language Technology?
 • Which is the general strategy for computing Human Language?
 • Why is Human Language difficult to be processed?
 • Examples of applications

2 Human Language Technology courses in MAI
 • HLT branch
 • IHL
The general strategy follows the standard subareas of linguistics:

- **Phonetics**: sounds of human speech.

 E.g., *infrequent* → /ɪnˈfrɪkwənt/

- **Morphology**: structural formation of words.

 E.g., *in-frequent-ly*.

- **Syntax**: structural relations between words in sentences.

 E.g., *a determiner is followed by a common noun*.

- **Semantics**: meanings of words and their composition via syntax.

 E.g., *the president of USA is Donald Trump* → president(USA, Donald_Trump)

- **Pragmatics**: meaning in the context.

 E.g., *He is very well known in his country* [sarcasm]
Introduction to Human Language Technologies

Which is the general strategy for computing Human Language?

Human Language Technology courses in MAI
Introduction to Human Language Technologies

Introduction

Which is the general strategy for computing Human Language?

Human Language Technology courses in MAI

General architecture

- Branches: NL Understanding and NL Generation.
- Approaches: Knowledge-based vs. Statistical-based.
- Shallow methods (lexical overlap, pattern matching) vs. Deep methods (semantic analysis, logical inference)
Outline

1 Introduction
 - What is Human Language Technology?
 - Which is the general strategy for computing Human Language?
 - Why is Human Language difficult to be processed?
 - Examples of applications

2 Human Language Technology courses in MAI
 - HLT branch
 - IHL
Problems

- World-knowledge
 - Representing world-knowledge is mandatory for understanding NL (AI-completeness)
 e.g., Yago - facts, OpenCyc - common sense

- Multilinguality
 - Different languages require different models and resources
 - Use of words from other languages
 Estoy a full! (non-standard Spanish text)

- Evaluation
 - Correctness/suitability of a translation/summary

- Variability
 - Different sentences refer to one meaning
 Where can I get a map?
 I need a map
 need map (non-standard text)

- Ambiguity
 - One sentence refers to different meanings
 Esther said about Alice: ’’I made her duck’’
Ambiguity

E.g., Esther said about Alice: ’’I made her duck’’

- I cooked waterfowl for her
- I cooked the waterfowl she owned
- I created the duck she owns
- I caused her to quickly lower her head or body
- I turned her into waterfowl

<table>
<thead>
<tr>
<th>Word</th>
<th>Ambiguity</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>make</td>
<td>semantic</td>
<td>cook or create</td>
</tr>
<tr>
<td>her</td>
<td>syntactic</td>
<td>possessive or dative pronoun</td>
</tr>
<tr>
<td></td>
<td>pragmatic</td>
<td>Esther or Alice</td>
</tr>
<tr>
<td>duck</td>
<td>synt-sem</td>
<td>noun or verb</td>
</tr>
</tbody>
</table>
Outline

1 Introduction
 - What is Human Language Technology?
 - Which is the general strategy for computing Human Language?
 - Why is Human Language difficult to be processed?
 - Examples of applications

2 Human Language Technology courses in MAI
 - HLT branch
 - IHL
Examples of applications

- Document clustering
- Document classification (e.g. anti-spamming, email routing, sentiment polarity, language identification)
- Information Retrieval
- Text correction
- Plagiarism detection
- Information Extraction
- Automatic Summarization
- Question Answering
- Machine Translation
- Dialog Systems

...
Introduction to Human Language Technologies

Examples of applications

Human Language Technology courses in MAI

Information Retrieval (IR)

- E.g.: Searchers (Google, Yahoo, ...)
- Given a corpus, $D = \{D_i\}$, and a user query (list of words), Q, provide $\hat{D} \subset D$ that better match Q.
- $sim(v(Q), v(D_i))$, where $v(X)$ represents X in a vector space
- What vector space seems better?
 - words? $Q =$"window", $D_i =$"... he closed the windows..."
 - lemmas? $Q =$"window", $D_i =$"... he closed Windows..."
 - compounds? $Q =$"Energie", $D_i =$"... Sonnenenergie..."
- In-depth NLP seems not productive
Information Extraction (IE)

- E.g.: Enriching DBs or KBs with new content. Document collection indexing. Sentiment analysis.

- Extract the **relevant information** contained in text (entities, properties, relationships and events).

- Main subtasks:
 - Named Entity Recognition and Classification (NERC)
 - Slot Filling
 - Relationship Extraction
 - Event Extraction

- Depending on the specific task, more in-depth NLP is required (syntax, semantics, pragmatics, world-knowledge), as well as ML techniques.
Information Extraction (IE)

- Example 1: Member Name, Degree, School and Affiliation from WEB pages.

![Image](image_url)

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree</th>
<th>Affiliation</th>
<th>School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wen-Lan Hsu</td>
<td>PhD, OR, Cornell U., USA</td>
<td>Research Fellow</td>
<td>Inst. Info. Sci. Academia Sinica</td>
</tr>
<tr>
<td>Chen-Seen Hu</td>
<td>PhD, EE, N. Taiwan U.</td>
<td>Prof.</td>
<td>EE, N. Taiwan Inst. Tech</td>
</tr>
<tr>
<td>Hahn-Ming Lee</td>
<td>PhD, CSIE, N. Taiwan U.</td>
<td>Prof.</td>
<td>EE, N. Taiwan Inst. Tech</td>
</tr>
</tbody>
</table>

1. Wen-Lan Hsu (PhD, OR, Cornell U., USA; Research Fellow, Inst. Info. Sci., Academia Sinica)
2. Cheng-Seen Ho, Lifetime Member (PhD, EE, N. Taiwan U.; Prof., EE, N. Taiwan Inst. Tech.)
3. Hahn-Ming Lee (PhD, CSIE, N. Taiwan U.; Assoc. Prof., EE, N. Taiwan Inst. Tech.)
4. Chyungwa Chen (PhD, State U. New York at Stony Brook, USA; Assoc. Prof., EE, N. Taiwan Inst. Tech.)
Information Extraction (IE)

Example 2: incidents from free text (type of incident, perpetrator, target, date, location, effects, instrument).

At 5pm on Thursday, a white Fiat van veered off the road and into a crowd outside the Plaça de Catalunya metro station in Barcelona. The van continued down Las Ramblas for more than 500 metres while crashing into pedestrians. 13 people have been killed. 100 people were injured and 15 are in serious condition. Las Ramblas attacker Younes Abouyaaqoub was killed in Subirats.
Example 2: incidents from free text (type of incident, perpetrator, target, date, location, effects, instrument).

At 5pm on Thursday, a white Fiat van veered off the road and into a crowd outside the Plaça de Catalunya metro station in Barcelona. The van continued down Las Ramblas for more than 500 metres while crashing into pedestrians. 13 people have been killed. 100 people were injured and 15 are in serious condition. Las Ramblas attacker Younes Abouyaaqoub was killed in Subirats.

type of incident = crash
location = Las Ramblas (Barcelona)
date = 17/8/2017
perpetrator = Younes Abouyaaqoub
target = pedestrians
instrument = white Fiat van
effects = 13 people killed, 100 people injured, 15 people in serious condition
Automatic Summarization

- E.g.: Generate biographies, minutes of a meeting, abstracts or extracts of written documents
- Given a document or a corpus, generate an extract or an abstract consisting of the most relevant content.
- Abstractive methods:
 - Generate new text from the conceptual representation of the important information contained in the input text.
 - Require language understanding and generation
- Extractive methods:
 - Select the most important sentences in the input text and produce a summary.
 - The set of sentences should maximize overall importance and coherency and minimize the redundancy.
- How are importance and redundancy computed?
- Semantics and ML techniques help
Question Answering (QA)

- E.g.: Questions answered by intelligent cars and rooms.
- Given a corpus, $D = \{D_i\}$, and a question, Q, extract the exact answer for Q from D.
 - Factoid QA: answers are exact facts
 - E.g.: Who was the president of the USA in 1987?
 - Non-factoid QA: a definition, an explanation of how or why, a biography summary, ...
 - E.g.: Tell me what has been said so far in the meeting

- Main subtasks:
 - Document indexing
 - Question processing (question type, question focus)
 - Answer extraction

- more in-depth NLP is required as well as ML techniques. Information extraction and Automatic Summarization help.
Machine Translation (MT)

- E.g.: Translation of written documents, help in human-human communication by mobile, online translation of broadcast news.
- Different MT models differ from the level of NLP they use:
 - Transfer model is the most frequently used
 - In general, the results are not comparable to human translation
Machine Translation (MT)

Examples of drawbacks: (with Google Translate)

- **Working sentence by sentence: lack of context**

 ES: Ana no aprobó el examen. Su amigo sí.
 EN: Ana did not pass the exam. **Your** friend **yes**.
 ok: Ana did not pass the exam. **Her** friend **did**.

- **Lack of world-knowledge: Named entities**

 ES: Disfrutar es el mejor nuevo restaurante de Europa
 EN: **Enjoy** is the best new restaurant in Europe
 ok: **Disfrutar** is the best new restaurant in Europe

- **Restricted domains: terminology**

 ES: El níscalo se cría bajo pinos
 EN: **The níscalo** grows under pines
 ok: Red pine **mushroom** grows under pines

 ES: Los níscalos se crían bajo pinos
 EN: **The chanterelles are raised** under pines
 ok: Red pine **mushrooms** grow under pines
Dialog Systems

- E.g.: chatbots, dialog-driven QA in smart cars and rooms, health-care assistance
- Help users to achieve specific goals by means of natural language interaction
- Main subtasks:
 - Interpreting user intervention
 - Determining the next system’s action considering the user intention (answer a question, ask for more info, suggest alternatives, …)
 - Generating system’s intervention
- High complexity: Natural language understanding and generation is required
Outline

1 Introduction
- What is Human Language Technology?
- Which is the general strategy for computing Human Language?
- Why is Human Language difficult to be processed?
- Examples of applications

2 Human Language Technology courses in MAI
- HLT branch
- IHL
Outline

1. Introduction
 - What is Human Language Technology?
 - Which is the general strategy for computing Human Language?
 - Why is Human Language difficult to be processed?
 - Examples of applications

2. Human Language Technology courses in MAI
 - HLT branch
 - IHL
IHLT AHLT HLE

- **IHLT**: the foundations of NLP interpretation, focusing on possible simple applications (spelling correction, text classification, paraphrase detection, text anonymization, …)

- **AHLT**: more in-depth study of ML techniques for NLP interpretation (especially for syntactic and semantic parsing)

- **HLE**: review of complex applications of HLT (MT, IE, QA, Summ, Dialog)
1. Introduction
 - What is Human Language Technology?
 - Which is the general strategy for computing Human Language?
 - Why is Human Language difficult to be processed?
 - Examples of applications

2. Human Language Technology courses in MAI
 - HLT branch
 - IHL
Content

Here you can find the schedule of the course. You can also find the URL of this schedule in the Racó.
Evaluation procedure

- Final exam: all the content, exam period
- Lab sessions: groups of 2 students
 - Development of one project
 - Some deliverables of lab exercises
- Final mark = 50% Exam + 40% Project + 10% Lab deliverables