1

In her seminal paper on learning from queries, Angluin [Ang87] showed
that algorithms using Equivalence queries can be rewritten as PAC algo-
rithms. Her simulation uses a worst-case sample O(%2 In £) to achieve (e, §)-
confidence from an algorithm using ) Equivalence queries, but it is not
difficult to show that in her same simulation, sample size O(% In %) suffices.

Note: More Efficient Conversion of
Equivalence-Query Algorithms to PAC
Algorithms

Ricard Gavalda*
Department of Software (LSI)

LARCA Research Group
Universitat Politecnica de Catalunya

May 8th, 2008

Abstract
We present a method for transforming an Equivalence-query algo-
rithm using @ queries into a PAC-algorithm using % + O(Q2/3 log %)

€
examples in expectation. The method is a variation of that by Schuur-
mans and Greiner which provides, for each v > 0, an algorithm using
(1+ ’y)% + O(% log %) examples in expectation. In other words, we
show that the constant in front of the dominating term /e can be

made 1+ o(1).

Introduction

*Partially supported by the EU PASCAL2 Network of Excellence, and by the Span-
ish Ministry of Education through the MOISES-BAR project, TIN2005-08832-C03-03.

gavalda@lsi.upc.edu, http://www.lsi.upc.edu/ gavalda.



It was shown later that, with a diferent algorithm, that the dependence
on n can be made linear. Specifically, Littlestone [Lit89] showed that there is
a simulation using a worst-case sample size 4 £ + O(2 In¢)) (his simulation
was phrased in terms of on-line learning rather than Equivalence queries,
but the distinction is irrelevant for our purpose). Schuurmans and Greiner
[SG95, Sch96] showed how to build, for every constant v > 0, a simulation
that uses expected sample size (1 + ) % +c(y)t In % Here ¢(7y) is constant
for each ~, but tends to infinity as v tends to 0.

In this note we show that the leading constant in front of the (/e term
can be made 1+ o(1), that is, arbitrarily close to 1 as @ grows. In fact, our
algorithm is essentially the same as the Schuurmans-Greiner one, except that
instead of using a fixed value for v a priori, we let the value of v decrease at
a precisely controlled rate as the algorithm progresses.

2 The Algorithm

We view an Equivalence query algorithm as a particular case of a strategy
for generating hypothesis from sequences of labelled examples. Given such
an algorithm, we build a new algorithm S, given in Figure 1, which reads
a sequence of example, uses the Equivalence-query strategy as a black box,
and eventually outputs a hypothesis from those generated by the strategy.
We will show that S is a PAC-learning algorithm.

Procedure sprt is Wald’s Sequential Probability Ratio Test, discussed
below, and also used in the Schuurmans-Greiner approach. The main dif-
ference with their method is that we do not fix a constant v a priori, but
rather use a different v; that varies with :. We will fix one particular setting
for the sequence of 7; to obtain our bound on the sample size used by S, but
occasionally comment on the effect of using other values for ~;.

We will argue that procedure S satisfies three conditions, which we for-
mulate as theorems: Correctness, Completeness, and Efficiency.

Theorem 1 (Correctness) The probability that S(e, d) outputs some h € H
with error(h) > € is less than §.

The completeness condition can be stated in many ways, of which the
following is but one example:

Theorem 2 (Completeness) If for some i we have that error(h;) = 0 with
probability 1, then S(e, ) stops with probability 1.

2



Algorithm S(e, 6)
1 Generate initial hypothesis hq;

2 i:=1t:=0;
3 while TRUE
4 do
) t:=1t4+1;
6 get a training example (zy, ¢(x¢)), labelled by the unknown target c;
7 if hi(xy) # c(xy) (Le., (x¢, c(z)) is a counterexample for h;)
8 then
9 use (x¢,y;) to generate hjiq;
10 start testing error(h;) on subsequent examples
11 using sprt(e/(1+ v),€,/(i(i + 1)), 0);
12 i=i+1;
13 if for some j < 4, the sprt test for h; rejects
14 then
15 drop h; from the list of hypothesis being tested
16 if for some j < 7, the sprt test for h; accepts
17 then
18 output h; and stop

19 end while

Figure 1: Algorithm S



Putting both claims together, if the strategy used to generate hypothesis
is an exact Equivalence-query algorithm learning with finitely many queries,
with probability 1 the algorithm stops, and its output is, with probability
1 — 4, a hypothesis h having error(h) < e.

Theorem 2 in fact follows from this more general statement:

Theorem 3 (Running time) Define y; = i~'/3, and let the base Equivalence-
query learner learn with at most Q) queries. Then

Q , Q7

E[running time of S(¢,0)] < - +7 (In QIQ+1)

€ )

+2).

We do not describe here the sprt test. We quote, however, some relevant
properties from [Sch96], appendix A:

Theorem 4 [Sch96] Let k > 1 and suppose sprt(e/k, €, dgec, Opej) 1S TUN ON
a sequence X1, Xo, ..., X;,... of i.i.d. boolean random variables. Then:

1. If E[X;] > €, the probability that sprt accepts is at most dgec.
2. If E[X;] < €/k, the probability that sprt rejects is at most d¢;.

3. ([Sch96], Lemma A.4) If §,¢; = 0, the expected running time of sprt is

ko 1(1 ! +1)
E—1—Ink) ¢ \'"5,. '

3 Proof of Theorem 1

The proof is as in [SG95, Sch96|, but we reproduce it for completeness. We
say that a hypothesis h € H is e-bad iff error(h) > e. Observe that the sprt
instance associated to h; is fed boolean variables whose expected value is
precisely error(h;). Therefore, by Theorem 4, part (1), we have the follow-
ing (where probabilities are taken over infinite sequences of independently
generated examples).

Pr[S(e, §) outputs an e-bad hypothesis]

< Y Pr[h; is ebad yet S(e, §) outputs h;]

i=1



Prsprt(e/(1+7:),€,6/(i(i + 1)),0) accepts h; | h; is e-bad]

IN
.Mg

=1

©
< — .
< Lt

4 Proof of Theorem 3

For every 7, we define the following random variables and expected values:

e h; is the random variable representing the ith generated hypothesis,

¢; is such that 1/¢; = E[1/ error(h;)],

T; is the number of examples read from the moment in which h; is gen-
erated until either h;,; is generated (if h;y1 is ever generated; otherwise,
T; = o)

e R; is the running time of the sprt test run on h;, and
e T is the running time of the algorithm.

Proving Theorem 3 is thus bounding F[T]. Let i be the first index such that
€;(1 4+ ) < e. Note that if the base Equivalence learner uses at most @
queries, we have ¢ < (). Observe also that

T<> T;+R (1)
i<t

because, by definition of T; and R;, by this time h; has been generated and

the sprt test for h; has stopped. Since the test is run with parameter d,.;, it

rejects h; with probability 0, i.e., it accepts h;. Therefore, by this time either

S stops outputting h,, unless it has stopped before due to another h;.
Taking expectations in Equation (1), we have

E[T] <Y E[T)] + E[R)). (2)

j<i
We first bound E[T}]; the proof of the lemma is given later.

Lemma 1 E[T;] = 1/e;.



Taking k = (1 +;) in Theorem 4, part (3), provides the following bound
on E[Rl]

EFR;| < -1 1). 3
[ ]_'yi—ln(ljt%)e(n ) +1) (3)
As a detour, let us note how to get the result in [SG95, Sch96]. Since i is the
first index such that €;(1+ ;) <€, for j < i we have €; > €/(1 +;), that is,
ET;] =1/¢; < (1 +1;)/e. Fix v; = v for every i. Then from Equation (2)
we get

1+ 1+ 1, di(i+1)
E[T] < L .
7l = ; € fy—ln(l—i—’y)e(n 5 )
1 i+ 1)

= (1+’y)i+c(’y)€(ln 5 +1).

Now, take take instead v; = i~'/3

proofs are given later:

. We have the following two lemmas, whose

Lemma 2 Forv; = j/3,

3
ST+ <i+ i
i<t 2

Lemma 3 Define c(y) = (1 +7)/(y —In(1 +7)). Then c(y) < 7/4* for
every v € (0,1], and c(v) tends to 2/7* as 7 tends to 0.

From Equations (2) and (3) and Lemmas 2 and 3, and using again that for
all j < i we have E[T;] = 1/¢; < (1 + ~;)/¢, we obtain

(n 20 - D

14+9, 71
g < YU, 2

2
j<i € Vi €

1 3 23 i+ 1)
< 6(z+22 )+ 7 - (In 5

L S e P
€ € )

+1)

<

i.e., the statement of Theorem 3.



Proof of Lemma 1. Suppose that in a particular run of the algorithm
the random variable h; takes a particular value h € H. Conditioned to
h; = h, the expected number of examples that have to be read to produce a
counterexample for h; is an exponential distribution with base error(h), and
therefore,

(1 —error(h))=" - error(h) - £ = 1/ error(h).

hE

E[Tjlh; = h] =

/=1

So E[T;] = E[1/error(h;)] (where the expectation is taken over h on the
right-hand side), which is 1/¢; by definition of ;. B (Lemma 1)

Proof of Lemma 2. We show by induction on i the following inequality,
which implies the lemma:

. :2/3
Z(l _|_j—1/3) < E + § L
€

j<i 2 €

For i = 1 it is obvious. Assume true for 7, then
& 13 _ 3 .9/3 - ~1/3

J=1

and observe that

3
51'2/3 + G4+ <SG +1)28

3
2
iff (multiplying on both sides by (i + 1)'/3)
3 3
5 PG+ )P 4+1< 5 i+1)

iff (taking cubes on both sides)

(5) @+ <Ga+n-1y

which is verified to be true by simple algebra. B (Lemma 2)



Proof of Lemma 3. We have ¢(1)1? = 2/(1 — In(2)) < 7, and studying
the Taylor expansion of ¢(7)y? shows that it is strictly increasing with ~, so
c(y)y? < 7for all y < 1. Also, for small enough y we have In(1+7) = v—~2/2,
from which c(v) = 2/4? follows. B (Lemma 3)

5 Final Remarks

Observe that Theorem 3 does not strictly require that the algorithm produces
an hypothesis with 0 error within the first () queries. It is enough to assume
that within the first () queries it generates a hypothesis h; with €;(1+7;) < €.

Note also that a variety of bounds on the sample size are possible by
taking other definitions for ;. In particular, with essentially the same proof,
if we take v; = 1/i° for 8 < 1, we obtain (approximately)

Q. 1 Q7 _0¥ QQ+1

BT <=
[]_e+1—ﬂe+7e )

We just chose § = 1/3 to make 1 — = 24, but if the values of () and § are
known in advance, other values of # may give better bounds.

Finally, as indicated by Lemma 3, the factor 7 in front of the second term
is actually a decreasing function of () that tends to 2 as () grows.

References

[Ang87] Dana Angluin. Queries and concept learning. Machine Learning,
2(4):319-342, 1987.

[Lit89] Nick Littlestone. From on-line to batch learning. In COLT, pages
269-284, 1989.

[Sch96] Dale Schuurmans. FEffective Classification Learning. PhD thesis,
Department of Computer Science, University of Toronto, 1996.

[SG95] Dale Schuurmans and Russell Greiner. Practical PAC learning. In
IJCAI pages 1169-1177, 1995.



