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Abstract. Feature selection for clustering is a problem rarely addressed
in the literature. Although recently there has been some work on the area,
there is a lack of extensive empirical evaluation to assess the potential
of each method. In this paper, we propose a new implementation of a
wrapper and adapt an existing filter method to perform experiments
over several data sets and compare both approaches. Results confirm the
utility of feature selection for clustering and the theoretical superiority
of wrapper methods. However, it raises some problems that arise from
using greedy search procedures and also suggest evidence that filters are
a reasonably alternative with limited computational cost.

1 Introduction

It is widely recognized that a large number of features can adversely affect the
performance of inductive learning algorithms, and clustering is not an exception.
However, while there exists a large body of literature devoted to this problem for
supervised learning tasks [9, 1], feature selection for clustering has been rarely
addressed. The problem appears to be a difficult one given that it inherits all
the uncertainties that surround this type of inductive learning. Particularly, that
there is not a single performance measure widely accepted for this task and the
lack of supervision available (e.g. class labels).

Although recently there has been a growing interest in feature selection for
clustering, a number of questions still remain open. Wrappers for feature selec-
tion have been recently proposed with some success. However, they exhibit some
limitations. The first, and probably on of the most important deficits is the lack
of a more extensive empirical evaluation of the methods and, in particular, a
comparison between filters and wrappers. A second shortcoming is that many of
these approaches are focused on numerical clustering, and there is no theoretical
or experimental evidence related to their behavior on categorical data.

In this paper we present a first attempt to fill these gaps by comparing the
performance of wrapper and filter methods over several data sets. We propose
a new wrapper implementation and use a filter technique based upon previous
work for the experiments.



2 Feature selection for clustering

In supervised learning, feature selection is often viewed as a search problem in
a space of feature subsets. To carry out this search we must specify a starting
point, a strategy to traverse the space of subsets, an evaluation function and a
stopping criterion. Although this formulation allows a variety of solutions to be
developed, usually two families of methods are considered. On one hand, filter
methods use an evaluation function that relies solely on properties of the data,
thus is independent on any particular algorithm. On the other hand, wrapper
methods use the inductive algorithm to estimate the value of a given subset.

Wrapper methods are widely recognized as a superior alternative in super-
vised learning problems, since by employing the inductive algorithm to evaluate
alternatives they have into account the particular biases of the algorithm. How-
ever, even for algorithms that exhibit a moderate complexity, the number of
executions that the search process requires results in a high computational cost,
especially as we shift to more exhaustive search strategies.

Implementing a wrapper is a straightforward task in supervised learning,
since there always some external validation measure available. Typically, one
executes a classifier and obtains an estimation of the accuracy in predicting a
class label that is known. Although class label prediction can be used as an
external measure to assess the validity of a clustering in rediscovering a known
structure, labels are not available during the learning process, so they cannot be
used in a wrapper implemention for clustering.

A solution is to assume that the goal of clustering is to optimize some ob-
jective function which helps to obtain ’good’ clusters and use this function to
estimate the quality of different feature subsets. Despite the unavailability of
class labels, this approach seems to be more reasonable that requiring clustering
algorithms to maximize accuracy over a piece of information which they do not
have access to. Actually, we can view the objective function as the “accuracy”
of clustering algorithms. When a given algorithm is used, there is an implicit
assumption that the higher (lower) the value of its objective function the better
are the properties that the groups discovered exhibit.

When using an objective function in a wrapper it must applied to cluster-
ings obtained with subsets of features of different cardinality. Since we need to
compare these results, the function must be defined in a way that is not biased
with respect to the number of features, that is, it should not be monotonically
increasing or decreasing as a function of the dimensionality of the data. For ex-
ample, as reported in [5] the scatter separability and the maximum likelihood
criteria suffer this drawback.

Filter methods appear to be a, probably less optimal, but reasonable com-
promise for feature selection problems. But then again, for clustering tasks this
turns out to be a hard problem since we need to decide what is going to be rele-
vant to discover a structure that we do not know in advance. As before, existing
supervised approaches for filtering rely mainly in properties and relationships
between the data and a predefined class label.



A particularly optimal implementation of filters are methods that employ
some criterion to score each feature and provide a ranking. From this ordering,
several feature subsets can be chosen, either manually of setting a threshold.
This special case of the filter approach, that will be refer to as rankers, can be
extremely efficient because is a one step process without any search involved. In
practice, the efficiency depends on the computational complexity of the ranking
procedure.

3 EM clustering with feature selection

In this work, we adopt a commonly used and simple probabilistic framework for
clustering assuming that the data comes from a multinomial mixture model with
k sources corresponding to the number of clusters ([11]). This model is closely
related to the naive Bayes model for classification as it relies on the assumption
that all features are rendered mutually independent by the cluster variable.

We use the EM algorithm to estimate the maximum likelihood (ML) pa-
rameters and the posterior cluster probabilities for each data point. Briefly, this
algorithm is an iterative procedure that alternates between two steps: the Ex-
pectation step (E) and the Maximization step (M). In the E step for every we
use the current parameters to compute the partial assignment (weights) to the
k clusters for each data point. In the M step, we reestimate the parameters as
the ML assignment given these weights.

There are not as many clustering algorithms for categorical data as there
exists for numerical data, but still there are other possible approaches, notably
Cobweb [6]. However, we made the choice of EM because it produces flat clus-
terings as opposed to Cobweb, which builds cluster hierarchies. We think that
for adequately assessing feature selection methods, the representational bias is
an important factor that should be fixed, and, currently, flat clustering algo-
rithms are more representative. Nevertheless, most categorical clustering algo-
rithms rely on counting and computing frequencies, so that our results within
the EM framework have a good chance to generalize to other algorithms.

3.1 An EM wrapper

As previously noted, the ML criterion for cluster quality has a bias of increas-
ing as the number of features decreases, so that it cannot be used to define a
wrapper. We propose a solution that assumes that the goal of feature selection is
to obtain a clustering with a reduced set of features of similar or better quality
as that obtained by using all the features. Intuitively, if we build a clustering
with a reduced feature set, then compute the objective function adding the rest
of features and find that the resulting score is as good as the one that is ob-
tained by using all the features, this is an indicator that the non-selected features
were not relevant. Therefore, the full set log-likehood can be used to guide the
search of wrapper approach. Note that this method of evaluation can be poten-
tially applied to any objective function, not only likelihood-based approaches.



An equivalent proposition has been made in the context of feature selection for
unsupervised learning of conditional Gaussian networks [13].

In our probabilistic framework, we can run the EM algorithm for a given
subset and estimate the model parameters, and then compute the log-likehood
that these parameters yield using the full feature set. We can estimate this score
in a simple manner by running an additional M step of the EM algorithm in
which the parameters for the removed features are estimated from the weights
obtained using only the selected subset. A subsequent E step would provide the
full feature set likelihood estimation.

Since using exhaustive search strategies is prohibitive, wrapper methods often
resort to heuristic methods and, particularly, greedy approaches. A commonly
used procedure is sequential stepwise selection that adds or removes a single
feature at each step of the search. We can start from the full set of features
and use a removal operator (backward elimination) or start from the empty set
and add one feature at a time (forward selection). Since repeatedly using the
clustering algorithm is already a costly solution, in this paper we resort to an
implementation that combines EM with forward selection because is significantly
cheaper that backward elimination. We call this implementation EM-WFS (EM
wrapper with forward search).

With these assumptions we have defined an starting point, a search strategy
and an evaluation function, but we also need a stopping criterion. Usually we
would continue the process until no improvement on the evaluation function is
found. However, we have noted that, at certain points, the change of the function
scores is very small. Because of that, in our implementation we stop if the relative
change of the score is less than a fixed threshold.

3.2 A (dependency-based) EM ranker

One view about the relevance of features conjectures that features that are not
highly correlated with other features are not likely to play an important role in
the clustering process and can be deemed as irrelevant [15]. This conjecture can
be explained from two points of view.

The first view argues that a general principle common to most clustering
systems is to form clusters having most feature values common to their members
(cohesion) and few values common to members of other clusters (distinctiveness).
These properties can be expressed in the form of the conditional probabilities
P (Fi = Vij | Ck) and P (Ck | Fi = Vij), where Fi is a given feature, Vij is
some value of this feature and Ck is a cluster. By rewarding clusterings that
simultaneously maximize both probabilities for given values, at the same time,
clusters formed around feature correlations are favored (see [15] for examples).
Therefore, features that exhibit low dependencies with other features, are not
good candidates to obtain cohesive and distinct groups and, hence, irrelevant.

A second approach stems from considering the clustering problem as mixture
modeling in which the data is assumed as being generated from a mixture of
several distributions. This approach can be encoded as a Bayesian network which
contains a hidden variable corresponding the clusters in the data. A commonly



used simplification assumes that all the features are conditionally independent of
every other feature given the cluster variable, so that the underlying dependency
model is a Naive Bayes model. The Bayesian interpretation of this approach is
that the hidden variable explains or captures the dependencies of the rest of
features. Thus, the resulting clusters will be most influenced by the strongest
feature dependencies in the data. Hence again, features that are least correlated
with other features are likely to be good candidates to eliminate.

Formulated in either way, the assumption that feature dependences are im-
portant to determine their importance for clustering tasks is independent of any
labeling of the data. Therefore, it can be employed as a foundation in designing
filters for feature selection for clustering. Still, this is a very general formula-
tion that does not indicate nor how to model these dependencies neither how to
employ this information in the feature selection process.

The previous assumption relating dependency and irrelevance of features
provides a guide to design filter methods in feature selection for clustering, We
can score each feature with a measure reflecting the degree in which this feature is
dependant of other features in the data. With such a measure, we can implement
a feature selection method by constructing a rank of features and selecting the
best k, where k is a user given parameter.

We will assume that we can capture feature dependencies via pairwise in-
teractions. For instance, using a mutual information measure, we can define the
score of a feature Fi to be:

score(Fi) =
n∑

j=1,j 6=i

I(Fi;Fj) (1)

where I(Fi;Fj) stands for the usual definition of the mutual information between
two variables x and y:

I(x; y) =
∑

x

∑
y

p(x, y)log
p(x, y)

p(x)p(y)
(2)

A simple method can be implemented by using this measure to order the
features and obtain a ranking with a O(nm2) cost, where n is the number of
instances and m is the number of features. We will refer to this method as
EM-PWDR (EM pairwise dependency ranker).

The straightforward implementation of a ranker lefts up to the user the task
of decide the number of features selected. To provide some help in this task, we
added an additional step that builds a clustering with each of the feature subsets
that result from the ordering (with one feature, two features, three features and
so on) and then perform a single iteration to obtain the log-likelihood over the
full feature set, as explained before. This figure can be used to conjecture the
behavior or different subsets, although being obtained from training data, can
be somewhat optimistic.



Dataset Instances Attributes

vote 435 16
mushroom 8124 22
LED+17 5000 24
WDBC 569 30
ionosphere 351 34
spambase 4601 57
sonar 208 60
splice 3186 60
yeast 208 79
musk 6598 166

Table 1. Characteristics of the data sets used in the experiments.

4 Empirical evaluation

In order to compare the performance of the EM-WFS and EM-PWDR meth-
ods, we performed experiments on ten data sets from the UCI Repository. The
data sets and their characteristics are listed in Table 1. Data sets including
numerical features were previously discretized and missings were removed by
substituting those values by the mode.

As previously described, performance is estimated by computing the log-
likehood of the obtained clustering over the full feature set at the end of the
process. To avoid an optimistic estimation, we applied a ten-fold cross validation
procedure in order to apply the feature selection procedure over a training set
and compute the log-likelihood over a separate test set.The same folds were used
for each of the methods.

Since the EM algorithm can be trapped in at a local maximum, both the
wrapper and the ranker used at each run of EM the best of 5 runs starting
with different random weight assignments. Additionally, we made the algorithm
to stop when the relative difference between the likelihoods computed in two
consecutive iterations did not change by 0.0001. This constrain is justified by
the fact that this algorithm tends to converge asymptotically.

Figure 1 shows the log-likehood averaged over the training and testing sets
when a fixed number of features is selected for each fold. A first trend that can
be observed is that feature selection does not tend to decrease the quality of the
clusterings with respect to the original score using all the features. Obviously,
selecting the smaller subsets drops cluster quality, but the rest of combinations
consistently equal or improve the full feature set results. It appears that in
some data sets using the full set of features hinders the capability of the EM
algorithm to converge to a good model. This result suggest that feature selection
might be even more important in clustering that in supervised learning, which
makes sense, since clustering algorithms must consider a large number of possible
relationships between the features.
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Fig. 1. Average log-likelihood over training and testing sets of EM-PWDR over dif-
ferent number of features.



EM-WFS-0.001 EM-WFS-0.0001 EM-PWDR 1% EM-PWDR-best

Dataset Log-L Feat. Log-L Feat. Log-L Feat. Log-L Feat.

vote -330.12 4.1 -331.40 6.1 -332.52 2 -327.77 5.3
mushroom -15908.62 2.5 -14896.97 4.5 14907.50 8 -14750.90 15.3
LED+17 -8001.47 1 -8001.47 1 -7954.89 7 -7953.23 3

wdbc -1215.62 4.6 -1217.71 8.4 -1218.27 7.9 1209.70 11.10
ionosphere -1089.65 5.5 -1092.57 12.4 -1079.29 5 -1075.87 5.7
spambase -10619.14 3.8 -10138.22 15.8 -10233.10 9 -10143.42 29.8

sonar -1247.05 4.5 -1255.77 12.1 -1287.79 16 -1255.40 11.4
splice -26080.95 1 -26080.95 1 -25791.47 6 -25543.38 11.1
yeast -1437.85 9 -1437.40 14.3 -1473.25 25 -1440.11 13.9
musk -88381.39 1 -88185.38 1.9 -79399.90 151 -77563.88 92.6

Table 2. Average test log-likelihood for different stopping criteria of EM-WFS, EM-
PWDR with heuristic selection of the number of features and the best result of EM-
PWDR.

A second, possibly surprising, trend that some data sets exhibit is that per-
formance on training data is a good predictor of performance on unseen test
data. Particularly on the vote, mushroom, LED+17, spambase and musk data
sets the overlapping is close to perfect. And in most of the rest, even differing to
some extend, training performance still can be used as a guide to select a rea-
sonably good subset. Note that if, instead of selecting the subset with maximum
training quality, we allow a deviation from the maximum, we still can obtain
impressive results even with those data sets.

Table 2 shows the results for the EM-WFS method with two different stop-
ping thresholds, namely 0.001 and 0.0001. Additionally, results for a manual
selection method for EM-PWDR that chooses a number of features based on
the maximum likelihood over training data is also shown. To avoid overfitting,
we allow a 1% deviation from the maximum quality observed in the curve. The
final column lists the best possible selection that could be made for the EM-
PWDR. As expected, the wrapper performs well and somewhat better in general
than the ranker. There are times where EM-PWDR could obtain a similar re-
sult but at the expense of selecting more features. However, most of the times
the quality decreases by a relative factor under 1%. Moreover, in three data
sets EM-WFS gets trapped in a local maximum, selecting too few features and
producing unsatisfactory results.

As we could expect, wrapper methods are significantly more expensive than
filter ones. In order to develop a machine independent measure of complexity, we
will consider a more abstract measure than running times based upon the num-
ber of required feature comparisons. The EM algorithm exhibits a complexity
O(mnk) in each iteration for n instances, m features and k clusters. There-
fore, we assume that a single execution of the algorithm performs mnkI feature
comparisons. On the other hand, the ranking method requires to compute the
mutual information (m(m−1)n)/2 times. Note than in order to simulate a man-
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Fig. 2. Relative computational cost of the FS methods as a function of the number of
feature comparisons.

ual selection of the number of features by plotting the curve of the likelihood
on the full feature set additional runs of the EM algorithm over each subset
is required with the added cost. Figure 2 shows the computational complexity
for each method on each data set. With the exception of the cases in which the
wrapper is trapped on local maxima, the computational cost is always more ex-
pensive than filter methods, especially as the number of features increases. Note
that the repeated execution of the clustering algorithm is likely to be always an
expensive procedure, since, unlike some lazy or semi-lazy supervised approaches
(e.g. Naive Bayes) most batch clustering methods rely on some form of iterative
optimization.

The most important advantage of using wrappers lies in the fact that, in
some cases, they are able to achieve the same performance than filters with a
more reduced subset. The most probable reason is that the dependency-based
ranker is sensitive to redundant features. Even though we aim to find correlated
features to be the core of the discovered clusters, there will be cases in which
some features will not provide any improvement over the selected subset.

Summing up, we could say that the ranker does a reasonably good job given
the limited information that uses and its significant lower complexity respect
to the wrapper. The wrapper has the potential to make an accurate selection
but experiments suggest evidence that it is too prone to get trapped in local
maxima, a well known problem for forward search strategies. A more conservative
backward search method or different search strategies, such as best first search
[9], could be used to overcome this problem but at the price of increasing the
already high complexity of the wrapper solution.

5 Related work

Although recently several works studying the problem of feature selection for
clustering have appeared in the literature, filter based approaches are still un-



common. A notable exception is a proposal which develops an unsupervised
entropy measure for ranking features [2–4]. Although several data sets are used
in the evaluation, different assessment measures are employed in these works
making difficult a direct comparison.

The dependency-based ranker presented in this paper has been previously
used with success with hierarchical clusterings with alternative evaluation mea-
sures. In [15] the method is evaluated by comparing cluster predictions with
ground truth labels, while in [14] the average predictive power over all the fea-
tures (flexible prediction) is employed. A variant of the dependency assumption
for continuous features has been presented in [13] for feature selection in learning
conditional Gaussian networks.

An alternative to filter methods is to embed the feature selection task into
the clustering process itself. The model based paradigm offers a natural way of
achieving this goal by modeling feature relevance as parameters of the model.
Examples of this approach are found in [10] and [17]. Results are, again, difficult
to compare since the former work makes a very limited empirical evaluation using
error rates and only numerical data, while the latter is focused on document
clustering.

Early work in embedding feature selection into the clustering process traces
back to early work by Gennari [7] that implemented a wrapper over the CLAS-
SIT hierarchical clustering system, although at that time there was a limited
availability of data for evaluation. The work is based upon selecting the features
that most contribute to the clustering objective function, an idea that is also
used in a filter proposed in [16] also for hierarchical clusterings.

Finally, wrapper approaches are found in [5] and [8]. The experimental evi-
dence in these papers tend to focus on investigating the particular issues of the
presented methods rather than on exploring the performance on a wide range of
data sets. As it is the general case, evaluation is performed basically on numerical
data.

6 Concluding remarks

In this work we have presented, to our knowledge, the first extensive empirical
comparison between filter and wrapper methods of feature selection for clustering
for categorical data. As it is the case with supervised learning approaches, feature
selection can increase the quality of the results while reducing the complexity of
the learning task.

As widely reported in the literature, wrapper methods tend to be superior to
filters, and it appears that clustering is not an exception. However, the forward
selection mechanism used in this work has not proved to be reliable enough, being
too prone to stop in local maxima. This is an interesting result not mentioned
in other papers using wrappers in feature selection for clustering. Although this
could be a byproduct of our particular evaluation function, we think that the lack
of references in other works to this undesirable behavior is the limited variety of
data sets used.



Our results confirm previous work in that dependency based filters are a rea-
sonably feature selection alternative. Interestingly, most often than not training
quality has shown to be a good indicator of performance so that the resulting
curves could be used as a guide to select the appropriate number of features. Our
evaluation function appears to be intuitive and can be generalized to any objec-
tive function. However, future work could pursue a comparison with alternative
approaches, such as the one presented in [5].

The computation of pairwise dependencies used in this work relies on the
implicit assumption that all the features are independent given each other. This
may not be the case, but supervised methods such as Naive Bayes that make
the same assumption have been successfully used in a variety of learning tasks.
Moreover, this is actually the same assumption that is made by the simple prob-
abilistic model used in our implementation of the EM algorithm. It remains to
be seen whether performance can be improving by using methods that do not
assume that all features are independent of each other. More complex dependen-
cies involving several features might exist but not be correctly reflected by these
scores. In some cases, we could expect that by summing across all the features,
some spurious dependencies might amplify the score thus producing a less ac-
curate ranking. Future work could study more elaborated methods to score the
dependence between features.

The previous issue migh be connected with the limitation exhibited by the
ranker method in that it is unable to detect redundant features. The score com-
puted cannot differentiate between required correlations that lead to good clus-
ters and those that do not provide improvements on the light of the already
selected features. The characterization of when a feature has to be considered
redundant in clustering problems and the detection of this kind of features re-
mains still an open issue.

An additional problem that could hinder the capabilities of filter methods
is the existence of different good feature subsets that may lead to different,
but of similar quality clusterings. In such a case, the feature ranking could be
mixing features that are relevant in different contexts, thus yielding an unoptimal
ordering. This assumption makes an interesting connection to a different area of
research, subspace clustering [12] that could be worth to pursue.

Finally, it would be interesting to perform additional comparisons employing
alternative filter approaches. Although there is almost no work on this area, the
method suggested in [2] appears to be a good candidate.
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