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AbstractÐStatistical research in clustering has almost universally focused on data sets described by continuous features and its

methods are difficult to apply to tasks involving symbolic features. In addition, these methods are seldom concerned with helping the

user in interpreting the results obtained. Machine learning researchers have developed conceptual clustering methods aimed at

solving these problems. Following a long term tradition in AI, early conceptual clustering implementations employed logic as the

mechanism of concept representation. However, logical representations have been criticized for constraining the resulting cluster

structures to be described by necessary and sufficient conditions. An alternative are probabilistic concepts which associate a

probability or weight with each property of the concept definition. In this paper, we propose a symbolic hierarchical clustering model

that makes use of probabilistic representations and extends the traditional ideas of specificity-generality typically found in machine

learning. We propose a parameterized measure that allows users to specify both the number of levels and the degree of generality of

each level. By providing some feedback to the user about the balance of the generality of the concepts created at each level and given

the intuitive behavior of the user parameter, the system improves user interaction in the clustering process.

Index TermsÐ Conceptual clustering, hierarchical clustering, probabilistic concepts, user interaction.

æ

1 INTRODUCTION

HIERARCHICAL clustering methods are unsupervised
learning techniques that construct tree structures

reflecting the underlying patterns in a given data set.
Commonly, an agglomerative strategy is used together with
a similarity (or distance) measure to merge at each step of
the process the most similar pair of objects. Several criteria
may be selected to determine the similarity between newly
formed clusters and some other clusters such as single-link
or complete-link methods. In addition, there are a number
of similarity measures to choose from. A number of
clustering algorithms may be obtained by combining some
criterion with some similarity metric [8].

The trees obtained by the clustering methods are called
dendrograms and are typically binary. A dendrogram
consists of several layers of nodes representing different
clusters and are usually drawn to show the similarity
between clusters. Data analysts can extract different
partitions by cutting the dendrogram horizontally. The
similarity values are often used to determine the validity of
the groupings. The examination of the reduction of
similarity required to go from one level to another may
help to decide if the groupings appear to be natural in the
studied domain.

Although these methods have been successfully applied
to a number of problems, they may pose some difficulties to
nonexperienced users, as reported by some machine
learning researchers [5], [10]. The application of a clustering

method is an iterative process with much of the search
control left to the users, so they should be familiar with the
statistical concepts involved in the clustering process.
Particularly, to extract a partition from a dendrogram,
users have to understand the behavior of the similarity
metric used. This problem is aggravated if, instead of a flat
partition, a nonbinary hierarchy has to be extracted from
the dendrogram. In such a case, users must specify suitable
similarity thresholds to obtain the desired partition, a rather
difficult process, especially if the number of objects to be
clustered is not trivially small.

Moreover, statistical research in clustering has often
focused on data sets described by continuous features and
most similarity measures are best suited to numerical data.
Existing measures to deal with nominal data are mainly
addressed to binary-valued features. Nominal data is often
found in symbolic Artificial Intelligence (AI) domains, so it
is not surprising that researchers in this area developed
symbolic clustering methods to deal with these kinds of
problems. Particularly, machine learning researchers have
developed methods for conceptual clustering [3], [6], [9], [10]
aiming to provide a better integration between the cluster-
ing and interpretation stages of the data analysis process.
Conceptual clustering systems do not only evaluate clusters
based on some metric, but also evaluate the ªgoodnessº of
the concepts represented by those clusters. In order to do
that, these systems explicitly deal with concept descriptions
and not only with extensional summaries of the clusters.

Following a long term tradition in AI, early conceptual
clustering implementations used logic as the mechanism of
concept representation. CLUSTER/2 is an example of this
approach [10] that uses an iterative algorithm that modifies
logical cluster descriptions until no further quality im-
provements can be made. Logic provides a well-known
framework to represent concepts and, at the same time,
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allows quality measures to be defined easily, such as the
simplicity or the fit of concept descriptions.

However, logical representations have been criticized by
both machine learning and cognitive psychology research-
ers [3], [15] because they can only represent clusters defined
by sufficient and necessary conditions. An interesting
alternative are probabilistic concepts which associate a weight
with each property of the concept definition. This repre-
sentation permits us to describe domains that are not
defined by all-or-none conditions and should be more
robust in the face of uncertain data. A representative
example is the COBWEB system [3] that builds concept
hierarchies using a probabilistic objective function. This
approach shows an advantage of probabilistic concepts:
They lend naturally to use probabilistic defined measures.
In this manner, we can use both a description formalism
and a metric that capture more detailed information.

We have raised two issues, the use of probabilistic
concepts in symbolic clustering and the need to ease user
interaction in order to improve the interpretation task. In
this paper, we address both issues by proposing a symbolic
clustering model that provides the users with an intuitive
method of tuning the results obtained in the clustering
process under the framework of a probabilistic concept
representation. We describe a hierarchical clustering model
using probabilistic concepts that extends the ideas of
specificity-generality typically found in machine learning.
We define a probabilistic measure that makes it possible to
characterize the generality of concepts and use this new
measure to define heuristics that guide the clustering
process. Moreover, the measure is parameterized in such
a way that users may specify both the number of levels and
the degree of generality of each level. By providing some
feedback to the user about the balance of the generality of
the concepts created at each level and, given the intuitive
behavior of the user parameter, the system improves user
interaction.

2 PRELIMINARY CONCEPTS

We provide here some preliminary definitions and concepts
that will be used throughout the paper and that should help
to follow subsequent discussion.

2.1 Symbolic Objects

In machine learning, symbolic objects are typically de-
scribed using a feature-value representation. A feature,
denoted Xi is a variable of discrete type, taking one of
several values. The set of allowable values for a given
feature is termed the domain of the feature. Formally, for a
feature Xi, we represent its domain as Di � fvi1; vi2; ; vimi

g.
An object is represented by a list of feature-value pairs

defined over the global set of features. More formally, for a set
of features fX1; X2; . . . ; Xng and their domains, an object is
defined as O � f�X1 � v1�; �X2 � v2�; . . . ; �Xn � vn�g, where
v1; v2; . . . ; vn are taken from the domains D1; D2; ; Dn,
respectively.

For instance, if we consider the following set of features
{size, shape, color} having the domains {small, medium},
{square, pyramid, sphere}, and {black, blue, red}, respectively,
the following are object descriptions:

O1 � f�size � small�; �shape � square�; �color � blue�g
O2 � f�size � medium�; �shape � square�; �color � blue�g:
To simplify notation, we can see an object as a feature

vector of the form O � fv1; v2; ; vng, omitting feature names.

2.2 Logic-Based Representation of Concepts

A natural form of representing concepts in conceptual
clustering is as conjunctive expressions of feature-value
pairs. This is a simple extension of the object representation
allowing internal disjunction, that is, a disjunction of values
within a feature. Note that this addition is necessary in
order to cover more than a single object with a concept
description. Therefore, a symbolic concept Ck is a conjunc-
tion denoted as:

Ck � f�X1 � v1�; �X2 � v2�; . . . ; �Xn � vn�g;
where Vi � fvi1; vi2; . . . ; vijg is either a value or a set of
values denoting a disjunction.

For instance, the following description covers objects O1

and O2 in the example:

f�size � fsmall;mediumg�;
�shape � fsquareg�; �color � fblueg�g:

Under this representation, the object description lan-
guage becomes a subset of the concept description
language. This is sometimes referred to as the ªsingle
representation trick.º Notation can be further simplified by
omitting references to features that can take any of the
values in its domain. For instance, a description for objects
O1 and O2 may omit the feature size.

2.3 A Partial Ordering of Concepts

The space of concept descriptions may be viewed as
partially ordered by a more-general-than relation [11]. If a
concept A covers all the objects in a concept B, along with
other objects, then A is said to be more general than B. This
space is bounded by the most general concept that includes
all the objects and the set of most specific concepts in which
each object represents a concept. The ordering facilitates the
search through the hypothesis space, which depends on the
object and concept description languages. The former must
provide some method to compare generalizations by
examining descriptions and without explicitly considering
sets of objects.

For example, Fig. 1 shows a part of a space of concept
descriptions. Concepts C1 and C4 cover object O1, but C4

turns out to be more general than C1 because it covers a
greater number of possible objects. C1 and C2 are not
comparable because, although the sets of objects described
intersect, neither set contains the other.

One can take advantage of this ordering when looking
for concept descriptions by applying generalization and/or
specialization operators which make it possible to move
through the hypothesis space acting over concept descrip-
tions. For instance, the technique of dropping conditions
always produces more general concepts as less constrained
descriptions cover a wider number of possible objects. On
the contrary, adding more terms generates more con-
strained and, thus, more specific descriptions. In the
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example of Fig. 1, C4 can be obtained by dropping the

condition �size � small� from C1. Using these operators, we

can traverse the concept space until finding good concepts

according to some quality criterion.

3 PROBABILISTIC CONCEPTS

A key difference between conceptual and statistical cluster-

ing is that the former explicitly deals with concept

descriptions. Following a widespread tradition in AI, early

conceptual clustering systems used a logic-based represen-

tation language that provided clear semantics and under-

standable results. However, later research has raised

problems with this sort of representation, mainly that they

restrict the sort of concepts to be learned to those that can be

described by sufficient and necessary conditions and that

they can be more sensitive to noise and uncertainty [3], [15] .
Cognitive psychologists defined probabilistic concepts [15]

which capture the distributional information of the feature

values in a concept by associating a weight with these

values. In this manner, it is possible for a concept to be

characterized by neither necessary nor sufficient properties.

Probabilistic concepts have been successfully adapted by

machine learning researchers [3], [2].
Let us first introduce some notation for the rest of the

discussion. Let nCk be the number of objects from concept

Ck, nij the number of objects with the jth value of the ith

feature, and Iijk the number of objects from concept Ck with

the jth value in the ith feature. Further, let pijjk denote the

conditional probability of an object having value j of a

feature i in concept Ck and pkjij denote the conditional

probability of an object being in concept Ck if it has the jth

value in the ith feature. A simple estimation of these terms

is the observed frequencies in the data:

pijjk � Iijk
nCk

pkjij � Iijk
nij

: �1�

We define a probabilistic conceptCk as a list of conditional

probabilities pijjk for each possible feature-value pair

�Xi � vij�. For instance, a probabilistic description of the
concept C2 covering objects O1 and O2 in Fig. 1 would be:

p�size � small j C� � 0:5

p�size � medium j C� � 0:5

p�shape � square j C� � 1:0

p�color � blue j C� � 1:0

Using this approach, concept descriptions can reveal
subtle differences between concepts that would have the
same description in the logic-based representation. For
example, if we add a new object to the concept having
small size, the logical description remains the same.
However, the probabilistic description reflects the change
by modifying the conditional probabilities corresponding
to the feature size.

The probabilistic representation of concepts blurs the
idea of a partially ordered space of concept descriptions.
It is not immediately clear from any pair of concept
descriptions which is more general. This occurs because
the more-general-than relation is defined extensionally
and relies on some matching procedure that determines
the set of objects covered by a given description. For
logical conjunctive descriptions, the matching procedure
simply counts the number of objects satisfying the
conditions in the description. This definition of the
matching procedure makes it possible to compare the
generality of two descriptions by just looking at their
terms since it is known that a smaller number of terms
will match a larger number of possible objects. However,
for probabilistic concepts, object recognition does not rely
on a matching procedure, but in a partial matching one. A
simple procedure is to sum the weights of all concept
feature values present in an object. If the sum passes a
given threshold, the object is assumed to be recognized as
a member of the concept. This procedure is typically
augmented by using a competitive strategy that assumes
that an object is recognized as member of the concept that
maximizes the sum. Given two probabilistic descriptions,
we are able to decide which one provides a ªbetterº
match for a given object, but there is not a clear boundary
of membership.

In practice, the generality of a probabilistic concept is
estimated extensionally by looking at the objects included in
the concept. Probabilistic concepts can be arranged into a
hierarchy [7] as depicted in Fig. 2 to reflect different levels
of generality. Although the generality of each concept
cannot be readily inferred from the description itself, it
stems from the objects covered under each node.

Adopting a probabilistic representation of concepts still
makes it possible to learn more ªclassicalº concepts since
conditioned probabilities subsume logical representations
that only represent necessary and sufficient conditions.
Probabilistic concepts should approximate all-or-none
logic-based descriptions under noisy environments typi-
cally found in real-world problems. In addition, they can
represent concepts that do not have fully sufficient and
necessary conditions. Additionally, Smith and Medin [15]
discuss some advantages of probabilistic representations
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over what they call the classical view of concepts in
accounting for psychological phenomena.

4 PROBABILISTIC CONCEPTS AND CONCEPT

GENERALITY

Probabilistic concepts provide a more powerful representa-
tion than logic, but they lack the explicit specialization/
generalization mechanisms suggested by the partial order-
ing of conjunctive descriptions. However, the idea of an
ordering is still important when building concept hierar-
chies since most clustering systems are looking for a ªgoodº
level, neither too general nor too specific. In practice, while
the notion of ordering is not explicitly used, it remains
implicit in the learning process.

Basically, every clustering system aims to form clusters
that maximize intracluster similarity and minimizes inter-
cluster similarity. In the context of probabilistic representa-
tions, these two properties are usually measured for a given
cluster k and a feature i and a value j by using the two
conditional probabilities pijjk and pkjij, respectively. It is
well-known that the behavior of these measures is such that
they tend to monotonically increase in an inverse manner to
each other along the concept hierarchy. Very specific
concepts are difficult to differentiate from other concepts
and they tend to exhibit more values with low pkjij scores.
On the other hand, exemplars of specific concepts share a
large number of properties and, therefore, these concepts
have a large number of values scoring high pijjk. Con-
versely, more general concepts are easier to differentiate
from other concepts, scoring high pkjij, but their members
share fewer properties, thus scoring low pijjk. It is clear that
the notion of generality is implicitly present in these
considerations.

Motivated by this behavior, conceptual clustering sys-
tems using probabilistic concepts typically use metrics
including some sort of trade-off between both probabilities.
The category utility metric used in the COBWEB system is an
example. The problem with this approach is that they rely
on a fixed trade-off and do not allow users to intervene in
the clustering process. Therefore, if the user is not satisfied
with the results, it has to postprocess the resulting
hierarchy.

Although traditionally it is considered that nonparame-
terized systems are better than parameterized ones, for
some tasks, flexibility may be a more important concern
than autonomy. It is worth stating at this point that some
sort of parameters may not be adequate since they may not
have a clear meaning for the user. For example, the typical
approach in statistical clustering of specifying distance
thresholds to decide the final levels of a hierarchy is not
readily understandable for average users. Criteria may vary
between different metrics and some statistical knowledge is
needed in order to decide when differences between levels
are significant. In order to achieve a reasonably easy
interaction, parameters have to reflect some meaningful
property of the concepts to be created. This should be easier
to model in conceptual clustering systems since they
include explicit representations of concepts.

4.1 Level of Generality of Probabilistic Concepts

Following these guidelines, we propose an alternative
approach based on the notion of the level of generality of
concepts. The idea is to take advantage of the previously
discussed behavior of the probability distributions along
the levels of a concept hierarchy in order to explicitly take
into account the notion of generality. Although it is difficult
to define a clear partial ordering for probabilistic concepts,
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we will show how the generality of a concept can be

estimated from its probabilistic description and how this

estimate can be used to heuristically guide the clustering

process.
Following Fisher [3], we define the predictability of the set

of features describing a given concept Ck as:

PBL�Ck� �
X
i

X
j

p2
ijjk; �2�

where i indexes the different features in the data and

j indexes the values for the domain of feature Xi. This

expression estimates the expected number of feature values

that one can correctly guess for an arbitrary member of

cluster Ck, assuming a probability matching strategy. It

assumes that one guesses a value with probability pijjk and

that this guess is correct with the same probability. As

mentioned earlier, the expression can also be interpreted as

an intracluster similarity measure.
The predictiveness of the features describing a given

concept Ck is defined as:

PVN�Ck� �
X
i

X
j

p2
kjij �3�

that, similarly to the previous measure, can either be

viewed from a predictive viewpoint or as a measure of

intercluster similarity. Taking these definitions and their

expected behavior along a concept hierarchy as a basis, we

define the level of generality  of a probabilistic concept Ck as

�Ck� � PVN�Ck�
PVN�Ck� � PBL�Ck� : �4�

We can expect the  value to be roughly between 0 and 1.

If PVN is much larger than PBL, then  will approximate

to 1. If PBL is much larger than PVN , then  will

approximate to 0. Therefore, as  increases, we have more

general concepts.
Table 1 shows the  scores for the objects and concepts in

Fig. 2 and the trends we can expect from the proposed

measure. For example, all the objects are in a lower level of

generality because of their high PBL scores, with one

exception, object O5. This is because this object possesses

two properties, �size � large� and �shape � pyramid�, that

are sufficient to differentiate the object from other objects/

concepts, thus scoring a high PVN compared with the rest

of objects. In fact, the level of generality of this object

description is close to the level of concept C2, thus

suggesting that the object might constitute a cluster by

itself when considering certain level of abstraction.

4.2 A Measure of Generality

The notion of generality can be exploited to allow users to
flexibly interact with the clustering algorithm. The user can
provide a list of  values so that the algorithm builds a level
for each value representing the degree of generality desired.
We have seen that the generality of a probabilistic concept
will approximate 1 for more general concepts and 0 for
more specific ones. Therefore, tuning the  values should be
reasonably easy for users in order to end up with a suitable
partition for a given task since the behavior of the system
with different parameter values is quite intuitive.

First, we can generalize the definitions of PVN and PBL
for a partition P � fC1; C2; . . . ; CKg by averaging the
individual scores of each cluster:

PVN�P � �
XK
k

PVN�Ck�
K

�5�

PBL�P � �
XK
k

PBL�Ck�
K

: �6�

Now, we can derive a generality measure indicating the
relative generality of a given partition P as a function of a
desired level  by rewriting (4) as:

Gen�P; � � �1ÿ � � PVN�P � ÿ  � PBL�P �: �7�
If the partition is below the level indicated by , the

measure yields a negative value; if it is above this level, it
yields a positive value. The measure scores close to 0 when
the level of generality of the concept is . For example,
applying the measure to the example in Fig 2, we obtain the
following scores for two given  values:

Gen�fC2; C4; O5g; 0:5� � 0:00

Gen�fC2; C4; O5g; 0:67� � ÿ2:72

Gen�fC2; C3g; 0:5� � 2:16

Gen�fC2; C3g; 0:67� � 0:01

It can be observed that the partition into three clusters is on
the level of generality corresponding to a  value of 0.5. The
negative generality score for  � 0:67 indicates that the
partition is too specific for that level. Similarly, the partition
into two clusters scores a high positive generality when using
 � 0:5, indicating that it is too general for this level. The right
level is  � 0:67 as suggested by the score close to 0.

We can exploit this measure either in agglomerative or
divisive clustering algorithms. In agglomerative methods,
initial partitions will score a negative value because of their
specificity. Thus, mergingÐgeneralizationÐoperations will
make the measure increase and can be applied until
obtaining a score close to 0. Analogously, for divisive
algorithms, the initial score will be positive and successive
divisions should decrease the score until reaching, again, a
value close to 0.

As opposed to measures based in a trade-off between
predictability and predictiveness, the generality measure is
not specifically intended to be an objective function to guide
the clustering process. Although using the same conditional
probabilities, metrics such as the category utility commonly
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measure the information gain of forming clusters by
subtracting base rates and adding weighting terms, so they
should be more robust as objective functions (see, for
instance, [3] for a detailed account of how category utility is
derived). We cannot expect that a balanced trade-off
between PVN and PBL using a  � 0:5 should provide
similar results to these objective functions for every domain.
However, the generality measure allows different levels of
abstraction to be characterized in a manner that should be
understandable by many users. In this manner, they can
obtain some feedback about the structure of different
potential levels to be included in the final hierarchy, as
we will show in the next sections.

5 GENERALITY-BASED CLUSTERING

The generality measure fits naturally with a specific-to-
general learning scheme. Given a set of  values specified by
the user, we start with the set of most specific conceptsÐ-
singleton conceptsÐand generalize this partition until
reaching the desired degree of abstraction. Intermediate
mergings need not to be retained because the desired levels
in the resulting hierarchy are specified in advance. The
resulting level is then stored and again a generalization
process is started to obtain the next level. Repeating this
process for each  value, we obtain the number of levels
specified by the user.

From an extensional point of view, generalization is a
matter of merging clusters into larger clusters, so we can
take advantage of existing agglomerative schemes. This is
what we propose in our Generality-based Concept Formation
(GCF) model. Typically, agglomerative methods merge at
each step of the process the most similar pair of clusters,
removing both clusters and creating a new one. These
operations are performed by looking at and updating a
distanceÐor similarityÐmatrix, without explicitly consid-
ering cluster descriptions. From the conceptual clustering
point of view, we need to deal with cluster descriptions, so
we need to define some specific similarity metric between
probabilistic representations used for both objects and
clusters.

5.1 A Similarity Measure

Intuitively, we can consider that two probabilistic descrip-
tions are similar when the probability distributions that
they represent are also similar. If we represent probabilistic
descriptions as histograms, a natural way of represent the
degree of coincidence is to draw a new histogram contain-
ing the intersection of the two given histograms, as shown

in Fig. 3. To get a numerical measure of this coincidence, we
can take the area of the resulting histogram. More formally,
we can define the similarity between two clusters Cm and
Cn for a given feature Xi with a domain with J values as:

Sima�Cm;Cn;Xi� �
XJ
j

minfpijjm; pijjng: �8�

We can easily generalize this measure for a set of
I features by averaging the individual similarity for each
feature as follows:

Sim�Cm;Cn� �
PI

i Sima�Cm;Cn;Xi�
I

: �9�

An object can be considered as a particular case of a
probabilistic description, where one of the values has
probability 1 and all the other values 0. When applied to
individual objects, this measure reduces to one minus the
Hamming distance, giving 1 if the value for a given feature
is the same for both objects, and 0 otherwise. Thus, we can
see the measure as the inverse of a generalized Hamming
distance.

The main reason for adopting this similarity measure is
that it is computationally cheap as compared to alternative
measures that involve more complex calculations (e.g.,
mutual information). This is an important concern in
agglomerative algorithms since most of the computational
complexity of these algorithms stems from the computation
of similarities. However, note that the framework proposed
does not impose any constrain on the choice of the
similarity measure.

Taking some objects of Fig 2 and computing their
similarities, we obtain:

Sim�O1; O2� � 0:66

Sim�O1; O3� � 0;

which is just the number of common feature values between
each pair of objects divided by the total number of features.
Similarly, we can give some examples of similarities
between clusters and between clusters and objects:

Sim�C2; C3� � 0:33

Sim�C4; O5� � 0:50:

5.2 The Algorithm

We have proposed a modification of a basic agglomerative
procedure to deal with probabilistic cluster descriptions,
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removing the binary tree constraint associated to dendro-
grams and adding a generality-based stopping criterion.
However, the generality measure provides additional
knowledge that could be profitably used during the
clustering process. Since the measure is averaged over all
clusters, it is possible to obtain partitions in which some
clusters are very general and others very specific, still
giving a score close to 0. A simple heuristic can be applied
to avoid this effect consisting of selecting as the first
candidate to merge at each step of the process, the cluster
scoring the lowest generality. The second cluster chosen is
the cluster that is more similar to the first candidate. In this
way, we should bias generalization toward the generation
of balanced levels formed by concepts of approximately the
same level of abstraction. It is important to see that, when
we speak of the same level of abstraction, we refer to the
generality of the concept descriptions, not necessarily to the
number of objects included in a cluster. For instance, a
partition dividing animals into birds, all the mammals but
dogs, and only dogs is an example of a set of unbalanced
descriptions, because dogs are very similar to the rest of
mammals and a cluster containing only dogs should be
placed at a lower level. However, if the cluster of dogs is a
cluster of dolphins instead, the partition could make sense
since dolphins are a very special case of mammals.
Although based in a traditional statistical algorithm, the
GCF algorithm differs from these approaches in that it bias
the learning process by explicitly ªreasoningº over prob-
abilistic descriptions. That is, it makes decisions based on
the similarity and generality of the characterization of the
clusters rather that only focusing on extensional concerns.

The final algorithm for the described procedure is the
following:

1. Let P � fC1; C2; . . . ; CKg be the initial partition,
where each Ci can be either a cluster from a
previously created level or an object. Let , the level
of generality specified by the user.

2. Find the cluster Cmin with the minimum generality.
3. Compute the similarities between Cmin and the rest

of the clusters in P using (9). Let C0 be the cluster
scoring the highest similarity with Cmin.

4. Reduce the number of clusters in P by 1, merging
the objects in Cmin and C0 into a new cluster.
Compute a new probabilistic description for this
cluster.

5. If Gen�P; � < 0, go to Step 2; otherwise, return P .

The algorithm presents only the generalization proce-
dure applied to one  value, existing as an outer loop that
iterates over the parameter values specified by the user.

An additional benefit of the proposed algorithm is that, by
applying the heuristic discussed above, the time complexity
is quadratic with respect to the number of objects n without
any particular optimization. The generality of clusters can be
computed in O�n� because there are at most n (singleton)
clusters. Similarity of the least general cluster with the other
cluster is also bounded by O�n� because the similarity
function will be called at most nÿ 1 times. Since the
maximum number of iterations is nÿ 1, the overall time
complexity of the algorithm is bounded by O�n2�.

Finally, in order to help users decide which are the best
levels in the hierarchy, we provide a measure of how
balanced the generality scores of the concepts of a given
partition are. The rationale is that partitions with concepts
with approximately the same level of abstraction should be
more comprehensible. This helps users in deciding which 
values are the best. Of course, in a real setting, users may
have some particular criterion to select the useful levels and
they may experiment with several  values. The degree of
balance of the generality of a set of clusters can be measured
by computing the dispersion of the list of generality scores
for each individual cluster. Specifically, we use a statistical
measure called variation coefficient (VC) that is defined for a
set of values with mean �x and standard deviation s as s=�x.
Unlike the standard deviation, which is sensitive to the
absolute scale of the measurements, the variation coefficient
removes the influence of the magnitude of the data. In this
manner, we avoid artificially promoting partitions scoring
lower generality scores.

5.3 A Simple Example

To illustrate the operation of the algorithm, we will use the
example in Fig 2. Let us assume that we are looking for a
two-level hierarchy specified by the set of parameters
�0:5; 0:65�. First, the object with the lower generality score is
selected. In this case, there is a tie between O1, O2, and O4,
so one of them is arbitrarily chosen. Let's assume the
algorithm chooses O1. Similarities with all the other objects
are computed, giving:

Sim�O1; O2� � 0:66

Sim�O1; O3� � 0

Sim�O1; O4� � 0:33

Sim�O1; O5� � 0:

Therefore, object O2 is chosen as the candidate to merge
with O1. As a result of the merging, the resulting partition
fC2; O3; O4; O5g scores a generality of ±2.25, thus indicating
that it is still below the specified level. Again, the least
general object/cluster is selected, in this case, either O3 or
O4. Let us assume that the algorithm chooses O3. The
similarities with the rest of objects/clusters are:

Sim�O3; O4� � 0:66

Sim�O3; O5� � 0:33

Sim�O3; C2� � 0:

Now, object O4 is chosen as the candidate to merge with
O3, obtaining cluster C4. The generality of this new partition
for  � 0:5 is 0, stopping the process and returning
fC2; C4; O5g as the first level of the two specified by the
user. Next, the algorithm looks for the following  value, in
our case, 0.65. Generality of the three-cluster partition for
this level scores ±2.40, so the algorithm selects the least
general cluster which is O5. The computed similarities with
the rest of clusters are:

Sim�O5; C2� � 0:00

Sim�O5; C4� � 0:50:
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Object O5 and cluster C4 are merged into cluster C3. The
generality of the partition fC2; C3g is 0.27. The process stops
because the generality is positive. Note that the score
suggests that the result corresponds to an upper level of
 � 0:65, but it is still closer to the desired level of generality
than the previous level.

6 EXPERIMENTAL RESULTS

We conducted several experiments to test the GCF model,
two of them using artificial data and the last one using data
sets from the UCI Repository of ML Datasets [1]. The first
experiments show how the generality measure effectively
helps in discovering meaningful levels in a hierarchy by
tuning the  parameter. The last experiment compares the
GCF model with the well-known COBWEB clustering
algorithm.

6.1 Artificial Data

In our first experiment, we used an artificial data set
consisting of 16 objects described by five symbolic features
taking two or five values each and used by Murphy and
Smith in psychological experiments [12]. The interest of this
data set stems from the fact that it exhibits an underlying
hierarchical structure of three levels with two, four, and
eight classes, respectively. Table 2 shows the objects in the
data set and the three-level hierarchical structure. The table
shows, for levels 1 and 2, the features that are necessary and
sufficient for the cluster descriptions. In level 3, no single
feature holds these properties, so the conjunction of features
characterizing the level is shown instead.

We generated levels starting from  � 0:025 and using
0.025 increments and recorded the V C score for each level.
Fig. 4 depicts the different V C values for levels with different
number of clusters. Clearly, partitions into two, four, and
eight clusters are the ones showing a more balanced general-
ity among its components, thus suggesting the set of 
parameters �0:25; 0:50; 0:75� as a reasonable choice. In fact,
using this set of parameters, the system recovered a

hierarchical structure in full agreement with the one shown
in Table 2. This demonstrates that our approach can
effectively help users in deciding the final structure of the
hierarchy. In case users are not satisfied, they can easily
change some of these parameters because they can under-
stand the effect that these changes will have in the resulting
hierarchy. Moreover, by analyzing both the degree of balance
of the concepts at each level and their global generality, we
can conclude that the middle level is probably the best since
its V C score is very low and it is obtained with  � 0:5, thus
providing a balanced trade-off between predictive and
predictable features. Note that this is a particularly well-
structured domain and that, in other domains, we might have
to choose between well-balanced levels without such a
perfect trade-off between PVN and PBL.

In our second experiment with artificial data, we
generated 1,000 instances of a data set containing 10 sym-
bolic features with six values each. The data set was
structured into two classes described for each five different
rules. In order to be able to represent this sort of disjunctive
descriptions, hierarchical clusterers typically have to con-
struct one internal cluster for each particular rule, indepen-
dently, that more general upper levels might exist.
Furthermore, we should expect a level with 10 clusters to
be one of the more comprehensible levelsÐif not the bestÐ
since it is the one that reflects the individual rules. To make
the problem more complex, each rule included four
conjunctions containing one internal disjunction each, for
instance:

if (D=1 or D=4) and (E=1 or E=2) and

(F=2 or F=4) and

(G=2 or G=5) and (J=2 or J=5) then C1

We ran the GCF algorithm for several  values and using
several random orderings, resulting in the set of parameters
(0.2, 0.9) scoring significantly lower V C. Using these values,
the system tended to generate a hierarchy with two clusters
at the top level and 10 clusters at the second. Clusters at the
top level did not correspond exactly to the two-class
division, classifying correctly only a 73 percent of the
objects. However, the 10 clusters at the second represented
all the disjunctive rules in the domain, classifying correctly
almost 90 percent of objects on average. For comparison
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purposes, we ran COBWEB over the same data set using
several orderings. On average, COBWEB obtained a top level
with four clusters and correctly classified only a 68 percent
of the objects, thus demonstrating that the two classes of
this domain were too complex to be discovered at very high
levels. However, as opposed to the GCF algorithm,
COBWEB was not able to create intermediate nodes
corresponding to the disjunctions in the rules. We repeated
the experiment with simpler domains by reducing the
number of disjunctive rules. In each case, the GCF algorithm
was able to find the level representing each individual
disjunction as one of the better balanced levels as regards
generality.

The conclusions of this experiment are twofold. First, the
GCF scheme appears to be guided by different biases than
COBWEB and, probably, as it is well-known in supervised
settings, none of the algorithms is superior for every
domain. Second, this experiment demonstrates the limita-
tion of fixed trade-off approaches. Probably, users might
come up with a reasonably good hierarchy by reorganizing
the levels of the tree constructed by COBWEB, but our
approach provides an easier method to experiment with
different levels and choose the more suitable one.

6.2 UCI Data Sets

To assess the performance of the GCF algorithm in
nonartificial data, we ran experiments on data sets obtained
from the UCI Machine Learning Repository. Since our aim
is exploring how well the induced hierarchies reflect the
structure of each data set, examining only one level appears
to be inadequate. An alternative is to use the descriptions
stored at each node and an objective function or similarity
measure to predict the class of the objects in a separate
testing set. In this manner, we can see if an algorithm that
does not provide a good partition at the top level can take
advantage of the specialization provided by the hierarchy.
In a real setting, the labels would be provided by an
external user after the clustering is created. In the experi-
ments, it appears reasonable to label nodes with the modal
value of the class assuming that this labeling is the one that
a user would provide. This provides a better estimate of
performance in domains with classes in which the cluster-
ing algorithm needs to create internal disjuncts at inner
levels in order to recover the structure of the data.

However, this procedure can provide a wrong picture of
the quality of the resulting hierarchy. If we make predic-
tions at the leaves of the hierarchy since they contain
individual observations, a sort of instance-based prediction
is performed. To be able of make such use of a clustering in
a real problem, a user should label every leaf in the tree,
which appears to be unfeasible. It is likely that users would
select only part of the hierarchy to describe the target
domain so that only a limited number of levels would be
labeled. A more informative test is to make predictions by
traversing the hierarchy to a limited depth. Additionally,
this procedure can provide some insight into the compre-
hensibility of the recovered structure since hierarchies that
need fewer nodes to make good predictions should be more
understandable for users.

We ran the GCF algorithm on each data set and made
predictions by sorting objects to a limited number of levels.

We generated trees of different sizes by selecting, first, only
the best , then, the two best , and so on. The values for 
were selected according to their V C scores. It is worth to
noting that each additional level has not necessarily to
significantly increased the size of the tree. For instance,
adding a new  value may either result in a single merging
and, therefore, add just an additional node to the hierarchy,
or select, a full set of new nodes. The result depends on the
proximity of the  values selected. We predicted the class of
each unseen instance returning the modal class value found
in the deepest node reached. Obviously, labels were used
only for testing, but hidden during training.

Again, we ran COBWEB for comparison purposes. The
system is intended to build a complete hierarchy auto-
matically and does not provide a mean for selecting levels.
Some extensions to COBWEB that are able to make
predictions at different levels of the hierarchy have been
proposed, but they are not useful for the label prediction
task used in our experiments. Fisher [4] proposed a method
for ªpruningº the hierarchy by detecting different predic-
tion frontiers using a separate validation set. The method
requires the predicted features to be known by the system,
which is the case for the flexible prediction task used by
Fisher, which predicts every feature present in the data.
This method cannot be applied in our experiments since the
target feature (the label) is hidden during training.
Analogously, Reich and Fenves [14] developed an extension
of COBWEB called BRIDGER that makes predictions at
different depths. The system describes the nodes in the
hierarchy using only their characteristic properties, which
are property values whose conditional probabilities exceed
a predetermined threshold. When sorting an instance to
make a prediction, the process stops when all the features
describing the instance are matched at some point of the
path with some characteristic property. Reich and Fenves
report a successful application of this scheme to design
tasks. However, we conducted some preliminary experi-
ments with our data sets using the threshold suggested in
[14] and did not obtain similar results. Predictions were
made at roughly the same depth as using the plain COBWEB

algorithm. Probably this behavior is due to the fact that, for
the design task in which the method was tested, the number
of properties to match was significantly lower than in our
data sets. Therefore, we resorted to a much simpler method
in which we made predictions at different depths by simply
constraining the maximum number of levels traversed.

Results were obtained by performing 10 repetitions of a
10-fold cross validation and the same folds were used for
both algorithms. Additionally, we conducted a paired t-test
to assess the significance of the differences between the
algorithms. However, this test is just an approximation and
its results should be taken carefully since the testing
procedure violates some independence assumptions [13].

Table 3 shows the results for both systems, including the
average accuracy and number of nodes examined to make
the predictions with the standard deviations. The average
number of nodes examined can be viewed as a measure of
the complexity of the hierarchy. A � or a ÿ sign in the last
column indicates that the accuracy of GCF is better or worst
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respectively than that of COBWEB at the 90 percent level of
significance.

Results show that none of the systems is the best for every

domain, thus suggesting that each one may be better suited

for a particular type of problem. GCF performs better than

COBWEB in three domains (cleveland, glass, and pima), while

performing worse in other three domains (breast cancer

wisconsin, bupa, and horse). On the crx data set, performance

is roughly the same for both algorithms, but COBWEB needs to

build a deeper hierarchy to attain good results. For this data

set, COBWEB needs to examine more than nine nodes on

average to attain the same accuracy that GCF provides by

traversing only about six nodes. Considering the best

accuracies for both systems on each data set, GCF needs to

examine an average of six nodes. COBWEB traverses 6.6 nodes

in average. This suggests a very desirable bias in the level

construction and selection procedure of GCF towards

compact and simple trees.
In sum, results confirm that the GCF model can build

clusterings with similar quality to major conceptual cluster-

ing systems such as COBWEB. These results are remarkable

since COBWEB uses an objective function that implicitly

weights features and it is intended to produce predictive

clusterings. As opposed, similarity metrics are sensitive to the

choice of features and may need some information about

feature weights to be more robust. We think that this can be a

possible reason for COBWEB performing much better than

GCF in some domains. Moreover, the generality-based

selection of levels appears to be a good heuristic to obtain

simple but accurate clusterings. This suggests an interactive

procedure in which users may start with a set of levels with

lowV C scores and then tune the different values to suit their

needs.

7 RELATED WORK

Although user interaction has been a largely neglected topic
in conceptual clustering research, it is worth mentioning
again Reich and Fenves work on BRIDGER [14]. They
developed an extension to COBWEB that provided users
with a mechanism called ªhierarchy correctionº to modify
the clusterings built by the system. The process uses critical
properties provided by the user to guide a reorganization of
the clusters in the hierarchy. This sort of user interaction
differs from our work in that it requires background
knowledge to be available from the user, in this case, a set
of critical properties. Our approach can be deemed a
knowledge-weak approach to user interaction since it does
not require any background knowledge to operate. Of
course, users might employ implicitly some knowledge
when tuning the parameter values of the system, but they
are not required to explicitly provide any information.

8 CONCLUSIONS

We described a conceptual clustering algorithm that builds
probabilistic concept hierarchies as an alternative to the
logic-based representations. Probabilistic concepts subsume
logical ones and facilitate representing clusters that are not
described by fully necessary and sufficient conditions. This
work differs from previous approaches in that it explicitly
uses the notion of generality applied to probabilistic
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concepts by means of a measure that indicates the level of
generality of a concept description. We have shown how
this measure can be easily adapted in order to obtain a
parameterized generality measure that allows partitions to
be characterized at different levels of abstraction. By
incorporating this latter measure to an agglomerative
procedure and giving some feedback, we provide the user
with an intuitive method to tune the results of the clustering
process. Modifying the system parameter, the user can
specify both the number of desired levels and their degree
of generality in the final hierarchy. In addition, the
generality measure has proven to be useful in defining
internal heuristics to guide the clustering process.

Although results are very encouraging, we think that
there are a number of issues that deserve further research.
The focus of this paper was in presenting the general
framework for the generality-based clustering so that we
have committed to the choice of a particular similarity
measure without considering alternatives. Although the
proposed measure is very attractive due to its low
computational cost and it appears to work fairly well, the
framework allows other measures to be used and a more
exhaustive comparison with some of these measures should
be done.

Another issue raised by this work is that some con-
ceptual clustering algorithms may be better suited for some
problems than others. In supervised learning, there are
several works comparing different approaches and char-
acterizing in which domains and under which conditions a
method may perform better. A similar comparison for
conceptual clustering methods would be of great interest in
order to see, for instance, if bottom-up approaches may be
guided by different biases than top-down methods.

Finally, it is well-known that similarity-guided learning
methods are very sensitive to the choice of features. We
think that this is also true for the probabilistic characteriza-
tion of generality proposed here. Although the generality
measure resembles other metrics used in conceptual
clustering, the latter usually measure the information gain
of forming clusters by subtracting base rates and adding
weighting terms and are less sensitive to imperfect data.
Future work should explore how feature selection and/or
weighting mechanisms impact in the performance of the
proposed framework.
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