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Abstract

Feature selection is a central problem in data analysis that have received a significant
amount of attention from several disciplines, such as machine learning or pattern
recognition. However, most of the research has been addressed towards supervised
tasks, paying little attention to unsupervised learning. In this paper, we introduce
an unsupervised feature selection method for symbolic clustering tasks. Our method
is based upon the assumption that, in the absence of class labels, we can deem as
irrelevant those features that exhibit low dependencies with the rest of features.
Experiments with several data sets demonstrate that the proposed approach is able
to detect completely irrelevant features and that, additionally, it removes other
features without significantly hurting the performance of the clustering algorithm.
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1 Introduction

Many real world data analysis applications involve dealing with large and
complex data sets containing both, many features and examples. Since, in this
context, data have not been collected specifically for the data analysis task,
often some form of preprocessing is required [9]. Among the various goals ad-
dressed by data preprocessing, dimensionality reduction or feature selection

has been recognized as a central problem in data analysis [10], as reflected in
the significant attention that this topic has recently received in the literature
[3,4,14]. However, the vast majority of the research in feature selection has
been carried out under the supervised learning paradigm, paying little atten-
tion to unsupervised learning problems. By contrast with supervised learning
approaches, in unsupervised learning there are no target outputs associated
with the inputs, and systems must resort to internal biases to decide which
relationships should be represented in the output. Determining the relative
importance of features in unsupervised environments is a difficult task given
that the available knowledge is scarce.

Because of the absence of class labels in unsupervised data, the large body of
feature selection methods proposed in supervised learning fails for this sort of
data. Few attempts have been made in order to define unsupervised methods
for feature selection, but two recent works are worth to mention. Devaney and
Ram [6] proposed an attribute-incremental procedure for adding and removing
features over an existing cluster hierarchy. Although there is little experimen-
tal evidence, their method appears to work fairly well. However, since they
used the metric of a particular clustering system to evaluate the importance
of features, it remains unclear if this method can be extended to work with
other algorithms. Another promising proposal appears in [5], where an un-
supervised entropy-based measure for ranking features is described. However,
the empirical evaluation is carried out by comparing the selected features with
the features selected by a supervised method and by using a supervised sys-
tem. In order to assess the real capabilities of the method, further experiments
involving the clustering task should be made.

In this paper, we introduce a simple method for ranking the importance of fea-
tures in order to select a subset containing the most salient ones. Our method
is based upon the assumption that, in the absence of class labels, we can
deem as irrelevant those features that exhibit low dependencies with the rest
of features. We describe a simple method using a feature dependence mea-
sure defined by Fisher [11]. Several experiments focused in the clustering task
demonstrate that the method can readily detect irrelevant features without
any kind of supervision.
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2 Supervised and unsupervised feature selection

At a conceptual level, the feature selection problem is similar for both super-
vised and unsupervised learners. Considering feature selection as a heuristic
search in a space of feature subsets, any method, supervised or unsupervised,
requires an starting point in the space, a search strategy, an evaluation func-
tion and a stopping criterion [3]. Under this view, unsupervised feature selec-
tion methods could be designed by adapting existing supervised methods and
adding a few task-specific modifications. However, in practice, the adaptation
of the evaluation function is not straightforward, since all the existing criteria
rely on assessing how well a given feature subset discriminates among a set
of predefined classes that are not available for unsupervised learners. In fact,
the problem stems from a more general issue related to the performance task
associated with each type of learning. In supervised learning, the predictive
accuracy over class labels is a widely accepted performance task, so it is rela-
tively easy to design evaluation functions. On the contrary, there is a lack of
a generally accepted performance task for unsupervised learners.

Let us consider the two main types of methods for feature selection in super-
vised learning, filter and wrapper models [14], in order to clarify the discussed
problems. Filter models are independent of the induction algorithm that will
use their output and they employ some metric dependent on intrinsic proper-
ties of the data. Typically, they measure the correlation of each feature with
the class label by using distance, information or dependence measures [4].
Obviously, the absence of class labels makes infeasible to compute these sort
of measures in unsupervised learning and, therefore, alternative measures not
using class information need to be defined. Of course, most clustering systems
are evaluated by using the resulting clustering in predicting the label of the
objects in a test set, but, in this case, labels are used only for the external
evaluation. The definition of a relevance metric turns out to be a complex
problem since we need to decide what is going to be relevant for describing a
set of classes that have not yet been created.

On the other hand, in the wrapper model, the feature selection algorithm
works as a wrapper around the induction algorithm. Alternative feature sub-
sets are evaluated by using the induction algorithm as a black box over the
training data in order to obtain an estimate of future performance. Usually,
performance is estimated by measuring the predictive accuracy over class la-
bels. Therefore, similarly to filter methods, this method requires labels to be
available during the training stage of learning. Again, an unsupervised learner
can not have access to class labels and hence, can not perform the internal
evaluation required by wrapper models.

We have seen that the main problem arises from the performance task tradi-

3



tionally used for assessing clustering systems and consisting in ‘rediscovering’
the underlying structure of the data. A different approach, outside the scope
of this work, consists in considering a flexible prediction task that evaluates
clustering systems regarding their ability to predict any unobserved feature
[1,11,15], and not only a single target variable. By considering this later per-
formance task, one could easily employ wrapper models, but the problem with
filter models still remains.

3 A dependency-based measure for unsupervised feature selection

From previous discussion, we can conclude that wrapper models are not feasi-
ble for unsupervised feature selection when considering a class prediction task.
Therefore, in order to implement a filter model, we have to decide some general
characteristics of the training set allowing to select some features and discard
others and implement these criteria in some measure. The central question is:
what is relevant for a clustering task? Ideally, a formal definition of relevance
would be needed in order to solve this question (see [3] for examples on defi-
nitions of relevance for supervised tasks). However, given the lack of research,
in this paper we only aim to provide an informal and mainly empirical answer
to this question, enabling further work towards a better formalization of the
problem.

For the rest of the discussion, we will assume that a symbolic probabilistic
clustering algorithm is used, which is not a very restrictive assumption con-
sidering the popularity of these sort of algorithms in machine learning [1,2,11].
To briefly introduce the notation used, we consider a set of symbolic (nominal)
features F = {A1, A2, . . . , An}, taking values Vij and data is represented as a
set of vectors of feature-value pairs.

Clustering systems, either numerical or symbolic oriented, are intended to form
partitions with high intra-cluster similarity and high inter-clustering dissimi-
larity. In other words, the goal is to form clusters having most feature values
common to their members (cohesion) and few values common to members of
other clusters (distinctiveness). In the context of symbolic probabilistic clus-
tering, given a partition (C1, C2, . . . , Ck) and a certain value Vij for a feature
Ai, cohesive clusters are those scoring a high P (Ai = Vij | Ck), while dis-
tinct clusters will score a high P (Ck | Ai = Vij). Optimally, a good clustering
should maximize those probabilities for a number of feature values. Fisher [12]
argues that by rewarding clusters that simultaneously maximize both prob-
abilities, at the same time, clusters formed around feature correlations are
favored. Briefly and intuitively, if we form a cluster Ck around a given value
V11, the cluster will have a high P (A1 = V11 | Ck) score because most of its
members will exhibit this value. Conversely, since most of the other objects
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have different values, we also obtain a high P (Ck | A1 = V11) score. Now, if
V11 is highly correlated with another value, say V21, and the cluster captures
this correlation, again, most members of Ck will exhibit the value V21. Hence,
both, cohesion and distinctiveness provided by the value V21 will be high and
hence, the total amount of both measures for cluster Ck will increase. Thus,
cohesive and distinct categories tend to capture feature inter-correlations.

This result allows to conjecture that features that are not highly correlated
with other features are not likely to play an important role in the cluster-
ing process, and can be deemed as irrelevant. Importantly, this conjecture is
independent of any labeling of the data, so it can be readily applied to de-
sign a metric to rank the importance of the features without requiring such
a labeling. Particularly, we propose a dependency measure defined by Fisher
[11], although it was not originally proposed as a feature selection metric. The
formulation of the measure is as follows. Let us consider the expected num-
ber of feature values that can be correctly predicted for a feature AM given
knowledge of the value Vij for a feature Ai as the conditional probability

∑

j

P (AM = VjM | Ai = Vij)
2 (1)

This expectation assumes a probability matching strategy [11] meaning that a
feature value is guessed with probability P (AM = VjM | Ai = Vij) and that
this guess is correct with the same probability.

Further, let us define the expected number of feature values than can be
predicted for a feature AM with no knowledge , i.e., the base rate, as:

∑

j

P (AM = VjM )2 (2)

To assess how the knowledge of other features improves the prediction of a
feature AM , we can compute the gain that this knowledge provides by sub-
tracting equation (2) from equation (1) and averaging the result for all the
features and their values as follows:

∑
i

∑
j P (Ai = Vij)

∑
jM

[P (AM = VMjM | Ai = Vij)
2 − P (AM = VMjM )]2

| {i | Ai 6= AM} |
(3)

where the leftmost factor gives higher weights to more frequent features. A
simple filter model of feature selection can be implemented by calculating
the feature dependence measure for each individual feature and then selecting
the k features with the highest value. This is a naive implementation from
the point of view of searching the space of features, consisting in a single step
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Fig. 1. An example relating cohesiveness, distinctiveness and dependency of features.

selection determined by k. However, we think that this simple ordering method
can provide a good preliminary picture about the validity of our assumptions.

Figure 1 shows a simple example of the expected behavior of the presented
measure. The figure shows the steps followed in constructing a two-class par-
tition from a set of 8 objects. Each object is described by a vector of 4 binary
features that will we called A1−A4 according to their position in the vector.
The clustering in the figure is built using a common agglomerative scheme
that, at each step, merges the most similar pair of objects/clusters. These sort
of methods tend to reward cohesive clusters, since they promote groupings of
objects with similar values along all the features. At the same time, distinc-
tiveness emerges as a result of forming cohesive clusters. For instance, both
clusters in the top level of the hierarchy showed in Fig. 1, exhibit the same val-
ues for A1 along all the objects. The leftmost cluster exhibits the same pattern
for A2, although in the other cluster this feature is somewhat less cohesive,
since there is an object that has a different value than the rest of objects. A4
shows a similar lower cohesion but in both clusters. Finally, A3 exhibits a high
variability inside of both clusters and, hence, it is not a cohesive feature at
all. On the other hand, A1 is a distinctive feature, since it allows to perfectly
differentiate between the two clusters. A2 is quite distinctive as well, although
it fails for an individual object in the rightmost cluster. Again, A4 is partially
useful as regards distinctiveness and A3 is completely irrelevant.

By applying the dependency measure to each feature, we obtain the scores
showed next to the hierarchy in Fig. 1. Note that these scores allow to rank
the features following the same criteria that we have obtained by manually ex-
amining the top partition. As mentioned before, this ranking can be obtained
without any prior knowledge about labels or about how the objects are go-
ing to be clustered. This result demonstrates how a dependency measure can
detect potentially cohesive and distinctive features. In this example, A1 and
A2 are not only relevant from the standpoint of these two characteristics, but
they also are more strongly correlated with other features than, for instance,
A3.
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While using information on feature dependences should help to identify irrele-
vant features fairly well, this method can exclude useful features in some cases.
Suppose, for instance, a data set described by disjunctive rules of the form
if A1=V1j or A2=V2j then Ck. Features A1 and A2 are clearly useful for
describing the underlying classes in the data, but, in a disjunctive rule, if A1
takes a value that allows to decide class membership, A2 may take any value,
so that no strong correlation between both features is guaranteed. Moreover,
there can be a number of features moderately correlated with, lets say A1. In
such a case, the proposed method could eventually remove A2, since it could
score a lower correlation with other features. Note, however, that disjunctive
descriptions are particularly hard to learn in an unsupervised manner and it
is likely that, even without feature selection, a clustering system would find
difficult to discover the original classes in these situations. We think that, ba-
sically, the method favors the original bias of the clustering system to form
cohesive and distinct clusters. The presented situation reflects an example
in which the original bias is not particularly adequate for a given learning
task and, hence, a feature selection method promoting this bias may result
innapropriate.

4 Experiments

In order to empirically asses the power of our feature selection scheme, we per-
formed a set of experiments using several data sets from the UCI Repository
and the well-known COBWEB clustering system [11]. Briefly, COBWEB is a
hierarchical clustering system that constructs a probabilistic tree incremen-
tally from a sequence of objects. Given an object and a current hierarchical
clustering, the system categorizes the object by sorting it through the hierar-
chy from the root node down to the leaves. At each level, the learning algorithm
evaluates the quality of the new clustering resulting from placing the object
in each of the existing clusters, and the quality resulting from creating a new
cluster covering the new object. In addition, the algorithm considers merging
or splitting nodes to restructure the hierarchy in order to improve its quality.

We selected 8 data sets following different criteria. The first two are the LED
and waveform data sets. Both are artificial datasets with added random fea-
tures which turn out to be irrelevant for describing the underlying classes.
Particularly, the LED data set has 7 original and 17 added features and the
waveform data set has 21 original and 19 added features. These data allow
to evaluate the behavior of our feature selection method when a relatively
large number of features are irrelevant. The voting and mushroom data sets
were selected because they are known to contain redundant features. Simi-
larly, the credit and horse colic data sets have been used in previous work in
supervised feature selection and may serve to obtain a preliminary compar-
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Table 1
Data sets used in the experiments

Data set Objects Features

LED-7+17 5000 24

waveform-21+19 5000 40

voting Records 435 16

mushroom 8124 22

crx 690 15

horse colic 368 22

audiology 226 69

breast cancer Wisconsin 569 30

ative result. Finally, the audiology and breast cancer data sets were selected
because they contain a high number of features (at least for the standards
of the UCI Repository). Table 1 summarizes the main characteristics of each
data set. Data sets containing numerical features have been discretized using
the unsupervised method proposed by [16].

It is worth noticing at this point that the notion of irrelevance may be some-
what different for supervised and unsupervised learners. Although completely
irrelevant features for supervised tasks such as those added in the LED and
waveform data sets should be also irrelevant for clustering, it is likely that not
all the features considered irrelevant in supervised environments should be
considered as such for clustering tasks. In the absence of labels, clustering sys-
tems may need additional pieces of evidence to form categories, and, possibly,
they will need larger feature subsets than supervised algorithms. Nevertheless,
we should expect a reasonably reduction in dimensionality for data sets with
a large number of features.

The results of the clustering process are evaluated by dividing the data set
into a training and a testing set and running the algorithm on the training
data with the class label masked out. Evaluation is performed by using the
created clusters to predict the class label of the instances in the training set.
Specifically, we conducted a 5x2cv paired t test as suggested in [7]. In this
test, we perform 5 replications of a 2-fold cross-validation. In each replication
the data are randomly divided into two equal-sized sets. The algorithm is then
trained on each set and tested on the other.

Figure 2 shows the average error rate attained by using different k values for
our method and, therefore, different number of features. At a glance, it can
be observed that our feature selection scheme does not significantly hurt per-
formance, excepting when very low k values are used. Particularly interesting
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Fig. 2. Average error rates of 5x2 cross validation of COBWEB for different sizes
of the feature set

are the LED and waveform results, where all the irrelevant features are cor-
rectly detected. Since the LED data set used in the experiment contains no
noise, it is an extremely easy task for the clustering system to attain a 100%
of predictive accuracy when the correct set of features is used. The waveform
data set is much more difficult to learn for an unsupervised system, yet the
best possible result can be obtained. The data sets with redundant features
show also an interesting amount of reduction. Although it is known that in
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Table 2
Selected results from several datasets and k values. The Conf column indicates the
confidence on the hypothesis that the accuracy of COBWEB is better using all the
features than using the indicated k features

Data set Orig. feat. k. Orig. error FS error Conf.

Led-7+17 24 6 23.07 0.00 0.00

waveform-21+19 40 19 32.46 28.62 0.00

voting Records 16 4 7.86 5.56 0.28

mushroom 22 9 0.03 0.02 0.20

crx 15 5 20.23 18.52 0.18

horse colic 22 16 27.50 23.86 0.11

audiology 69 30 33.01 32.83 0.10

breast cancer W. 30 10 8.05 8.93 0.34

both data sets, voting and mushroom, there is a very relevant feature that
provides high accuracies [13], we cannot expect such an extreme result for un-
supervised systems that do not have access to the class label and, hence, may
need some additional features to be able to generate good clusters. The results
on the remaining data sets show a similar behavior with the exception of the
horse data set, in which accuracy degrades more quickly as more features are
removed.

Table 2 shows a comparison between selected k values for each data set and the
results obtained using the full feature set. We selected the k values yielding an
improvement with reasonable statistical significance. As expected, in data sets
with irrelevant features our method is able to remove all the irrelevant features
and even some additional feature with a significant increase in accuracy. The
results for the rest of the data sets show that around a 60% of features may be
removed without a significant accuracy drop, with the mentioned exception of
the horse data set. In some cases, using reduced feature sets results in signifi-
cant higher accuracies at the 90% confidence level. Note that we have selected
‘conservative’ k values indicating a high probability that feature selection im-
proves accuracy. However, we think that the empirical results suggest that a
more aggressive selection should not importantly hurt accuracy.

Although our experiments demonstrate that our method performs fairly well,
we have not addressed the problem of how to choose an appropriate value
for k, that is, how many features should be selected for each learning task.
Figure 3 shows an example of the weights computed by the feature dependency
measure for the LED and waveform data sets and provides some insight into
this problem. Clearly, completely irrelevant features score very low, especially
when compared with the other features and, accordingly, the histogram of the
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Fig. 3. Examples of feature dependences computed for the LED (left) and waveform
(right) data sets

feature dependency scores appears to be a good source of information to decide
how many features are worth to be removed. Moreover, we could think about
automatic procedures such as clustering the points or using an unsupervised
discretization method in order to generate a fixed number of feature subsets.
These subsets would represent several degrees of relevance. From these sets
we could use a conservative strategy removing only the features with very
low relevances or a more aggressive approach selecting only the set of more
important features.

5 Concluding remarks

We have presented an unsupervised feature selection method aimed to reduce
the dimensionality of a symbolic data set prior to a clustering process. Our
method is based upon the assumption that features that are little correlated
with other features in the data are likely to be irrelevant. A straightforward
implementation of the method has shown very powerful in experiments with
several data sets, correctly identifying completely irrelevant features in the
data sets in which these features are known. Experiments suggest that, in
general, a reduction of the 60% of the original features may be possible without
significantly hurting accuracy.

Despite the close relationship of the dependency measure used to rank the im-
portance of features and the clustering system employed in the experiments,
the method can be applied to any symbolic clustering algorithm. We have
implemented the feature selection procedure as a preprocessing step and the
method is decoupled from any particular clustering system. Furthermore, we
have shown evidence that the measure can identify completely irrelevant fea-
tures, so removal of these features should improve performance of different
clustering algorithms. However, the removal of other features that are not
clearly irrelevant could be more dependent on biases the particular algorithm.
Future work should explore the effect of the presented feature selection meth-
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ods in other clustering algorithms.

It is important to note that the feature selection strategy used is extremely
simple. From the point of view of heuristic search, our method is a greedy
search that only performs one step into the feature space to select the final
feature set. Strategies such as stepwise sequential selection, which are very
popular in the feature selection literature [8], may be combined with the de-
pendency measure in order to see if more optimal feature subsets can be ob-
tained. Furthermore, as a preprocessing step, the performance of the method
for hierarchical clustering tasks may be limited by its global nature. A feature
not scoring a very high –global– dependency, could become more relevant in
a inner node of the cluster hierarchy when considering only a local region
of the object space. Probably, these sort of features will not score very low
dependences and they can be captured by selecting conservative k values.

Finally, the dependency measure could be used to improve other performance
tasks such as flexible prediction, that is, prediction of any missing feature
and not only class labels. In fact, a version of the proposed metric has been
previously used for feature selection and evaluated in flexible prediction tasks
in [18], although not as a preprocessing step but embedded in the clustering
system. Additionally we have employed this measure in such tasks elsewhere
[17]. However, the question of what should be deemed as irrelevant in such a
multiple inference task is still a more complex problem that the one we have
addressed here and still remains open.
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