
Cardinality Networks and their Applications

Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-Carbonell⋆

Abstract. We introduce Cardinality Networks, a new CNF encoding of
cardinality constraints. It improves upon the previously existing encod-
ings such as the sorting networks of [ES06] in that it requires much less
clauses and auxiliary variables, while arc consistency is still preserved:
e.g., for a constraint x1 + . . . + xn ≤ k, as soon as k variables among
the xi’s become true, unit propagation sets all other xi’s to false. Our
encoding also still admits incremental strengthening: this constraint for
any smaller k is obtained without adding any new clauses, by setting a
single variable to false.
Here we give precise recursive definitions of the clause sets that are
needed and give detailed proofs of the required properties. We demon-
strate the practical impact of this new encoding by careful experiments
comparing it with previous encodings on real-world instances.

1 Introduction

Compared with other systematic constraint solving techniques, SAT solvers have
many advantages for non-expert users as extremely efficient off-the-shelf black
boxes that moreover require no tuning regarding variable (or value) selection
heuristics. Therefore quite some work has been devoted to finding good propo-
sitional encodings for many kinds of constraints.

A particularly important class of constraints are the cardinality constraints,
i.e., constraints of the form x1 + . . . + xn # k where k is a natural number and
∈ {<,≤, =,≥, >}.

Cardinality constraints appear in many practical problem contexts, such
as timetabling, scheduling, or pseudo-boolean constraint solving. For instance,
given an input formula F over n variables x1, . . . , xn, one may be interested in
finding a model of F in which at most k variables are set to true. For this, one
can add the clauses encoding the constraint x1 + . . .+xn ≤ k. Going beyond, for
instance for the min-ones problem for F , that is, finding a model with the mini-
mal number of true variables, one can incrementally strengthen the constraint for
successively lower k until it becomes unsatisfiable. In fact, cardinality constraints
frequently occur in other optimization problems too. For example, the Max-SAT
problem consists of, given a set of clauses S = {C1, . . . , Cn}, finding an assign-
ment A that satisfies the maximal number of clauses in S. One way of doing this is
to add a fresh indicator variable xi to each clause, getting {C1 ∨x1, . . . , Cn ∨xn}

⋆ Technical Univ. of Catalonia, Barcelona. All authors partially supported by Spanish
Min. of Educ. and Science through the LogicTools-2 project (TIN2007-68093-C02-
01). The first author is also partially supported by FPI grant TIN2004-03382.

2

and incrementally strengthening the constraint x1 + . . . + xn ≤ k. In general, it
is typical to see situations where n is much larger than k.

This kind of applications of cardinality constraints has been very elegantly
handled in MiniSAT and its extension to pseudo-boolean constraints [ES06].
There, one encoding for cardinality constraints is based on sorting networks with
inputs x1, . . . , xn and output y1, . . . , yn, such that if exactly k input variables
are true, then y1, . . . , yk will become true and yk+1, . . . , yn will be false. For
enforcing the constraint x1 + . . . + xn ≤ k, it then suffices to set yk+1 to false,
and incrementally strengthening the constraint can be done by setting to false
yp’s with successively smaller p.

In [ES06] it is also proved that for the CNF encoding of sorting networks
unit propagation preserves arc consistency. For instance, for a constraint of the
form x1 + . . . + xn ≤ k, as soon as k variables among the xi’s become true, unit
propagation sets all other xi’s to false. The proof of arc consistency given in
[ES06] relies on general properties of sorting networks.

Here we give recursive definitions for this kind of networks that, given se-
quences of input variables, return a sequence of output variables and a set of
clauses. The required arc-consistency properties under unit propagation can be
directly proved by induction from these definitions. Our starting point will be a
deconstruction of the odd-even merge sorting networks of [Bat68], focussing on
their specific use for encoding cardinality constraints in SAT.

For this purpose, and for allowing the reader to become familiar with the
notations and methodology of this paper, in Section 3 we first define Half Merging

Networks and Half Sorting Networks, which require only half as many clauses
as their standard versions while preserving all desired properties.

As said, in many applications, it is typical to find cardinality constraints
x1 + . . . + xn # k where n is much larger than k. This motivated us to look
for encodings that exploit this fact. In Section 4 we introduce Cardinality Net-

works which require O(n log2 k) clauses instead of O(n log2 n) as in previous ap-
proaches. In addition, Cardinality Networks also leverage the advantages from
the use of Half Merging and Half Sorting Networks. All definitions, properties
and proofs in this section and in Section 3 are for cardinality constraints of the
form x1 + . . .+xn ≤ k. Therefore, in Section 5 we extend them to the other cases
such as ≥ and =, and to range constraints of the form k ≤ x1 + . . . + xn ≤ k′.

In Section 6 we demonstrate the practical impact of this new encoding by
careful experiments comparing it with previous encodings on real-world instances
and we conclude in Section 7. Because of space limitation, not all results are
proved in the paper1.

2 Preliminaries

Let P be a fixed finite set of propositional variables. If p ∈ P , then p and p are
literals of P . The negation of a literal l, written l, denotes p if l is p, and p if l is

1 An extended version of the paper can be found at
www.lsi.upc.edu/~rasin/cardinality-extended.ps.

3

p. A clause is a disjunction of literals l1∨. . .∨ln. A CNF formula is a conjunction
of one or more clauses C1 ∧ . . . ∧ Cn. When it leads to no ambiguities, we will
sometimes consider such a formula as the set of its clauses.

A (partial truth) assignment M is a set of literals such that {p, p} ⊆ M for
no p. A literal l is true in M if l ∈ M , is false in M if l ∈ M , and is undefined

in M otherwise. A clause C is true in M if at least one of its literals is true in
M . A formula F is true in M if all its clauses are true in M . In that case, M

is a model of F . The systems that decide whether a formula has a model or not
are called SAT solvers.

Most state-of-the-art SAT solvers are based on extensions of the DPLL algo-
rithm [DP60,DLL62]. The main inference rule in DPLL is known as unit propa-

gation. Given a set of clauses S and an empty assignment M , clauses are sought
in which all literals are false but one, say l, which is undefined (initially only
clauses of size one satisfy this condition). This literal l is then added to M and
the process is iterated until reaching a fix point. If U is the set of all literals that
have been added to the assignment in this process, we will denote this fact by
S |=up U .

In this paper we will work with cardinality constraints a1 + . . . + an # k,
where # ∈ {≤,≥, =}, the ai’s are propositional variables and k is a natural
number. An assignment M satisfies such a constraint if at most (≤), at least(≥)
or exactly (=) k literals in {a1, . . . , an} are true in M . The aim of this paper is,
given a set of cardinality constraints C, to obtain a CNF formula S such that
looking for assignments satisfying C is equivalent to looking for models of S.
Moreover this S should be as small as possible and, whenever a concrete value
for a variable in a constraint can be inferred, this should be detected by unit
propagation on S.

In what follows, we consider variable sequences, or simply sequences, which
are ordered lists of distinct propositional variables, written 〈x1 . . . xn〉, and de-
noted by capital letters A, B, C, . . . Unless stated otherwise, these lists always
have length n = 2m, for some m ≥ 0. When necessary these lists will be seen as
sets, so that we can consider subsets of their variables.

Sometimes new fresh variables, that is, distinct new variables, will be intro-
duced, These will always be denoted by the (possibly subscripted or primed)
letters c, d, e.

3 Half Merging and Half Sorting Networks

In this section we introduce Half Merging Networks and Half Sorting Networks,
which are like the Sorting Networks based on odd-even merges of [Bat68,ES06],
but only need half of the clauses. The definitions and properties that are given
will be used later on and allow the reader to become familiar with our notations
and methodology. We remind that all the definitions in this section and in Sec-
tion 4 are designed to be used in constraints of the form x1 + . . . + xn ≤ k, and
that we implicitly assume that all sequences have size 2m for some m ≥ 0.

4

3.1 Half Merging Networks

Given two sequences A and B of length n, the Half Merging Network of A and

B, denoted HMerge(A, B), is a pair (C, S), where C is a sequence of length 2n

and S is a set of clauses, defined as follows.

For sequences of length 1 we define:

HMerge(〈a〉, 〈b〉) = (〈 c1 c2 〉, { a∨ b∨ c2, a∨ c1, b∨ c1 })

For sequences of length n > 1 we define:

HMerge(〈a1 . . . an〉, 〈b1 . . . bn〉) = (〈 d1 c2 . . . c2n−1 en 〉, Sodd ∪ Seven ∪ S′)

recursively in terms of the odd and the even subsequences:

HMerge(〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉) = (〈d1 . . . dn〉, Sodd),
HMerge(〈a2 a4 . . . an 〉, 〈b2 b4 . . . bn 〉) = (〈e1 . . . en〉, Seven),

where the clause set S′ is:
⋃n−1

i=1
{ di+1 ∨ ei ∨ c2i+1, di+1 ∨ c2i, ei ∨ c2i }.

Example 1. Intuitively, a (Half) Merging Network merges two sequences of input
variables 〈a1 . . . an〉 and 〈b1 . . . bn〉 that are already sorted into a single sorted
output sequence 〈c1 . . . c2n〉, and the required unit propagation is that if a1 . . . ap

and b1 . . . bq are true, then the first p + q output variables will become true
(Lemma 1 below), and (roughly speaking) if in addition cp+q+1 is set to false,
then also ap+1 and bq+1 will become false (Lemma 2).

Let us take HMerge(〈a1 a2〉, 〈b1 b2〉), which is (〈d1 c2 c3 e2〉, S) with S

being the set of clauses:

a1 ∨ b1 ∨d2 a2 ∨ b2 ∨e2 d2 ∨ e1 ∨ c3

a1 ∨d1 a2 ∨e1 d2 ∨ c1

b1 ∨d1 b2 ∨e1 e1 ∨ c2

The partial assignments (a1, a2) = (1, 0) and (b1, b2) = (0, 0) cause S to unit
propagate the first output (d1), but not the second one (c2). If we add another 1
to the input, for example (a1, a2) = (1, 1), then both d1 and c2 get propagated,
but not c3. For propagating c3 we need to add another input 1, e.g, setting
(b1, b2) = (1, 0), but (b1, b2) = (0, 1) would not do it, since this propagation
only works if all ones appear as a prefix in the input sequences, which will
always be the case in our uses of HMerge. With inputs (a1, a2) = (1, 0) and
(b1, b2) = (1, 0), and setting c3 to false, unit propagation will set a2 and b2 to
false. Similar properties about propagation of ones and zeros will hold in all the
constructions in this paper and will be precisely stated in each case. ⊓⊔

Lemma 1. If HMerge(〈a1 . . . an〉, 〈b1 . . . bn〉) = (〈 c1 . . . c2n 〉, S) and

p, q ∈ N with 1 ≤ p, q ≤ n, then S ∪ {a1 . . . ap b1 . . . bq } |=up c1, . . . , cp+q.

Lemma 2. Let HMerge(〈a1 . . . an〉, 〈b1 . . . bn〉) be (〈 c1 . . . c2n 〉, S), and

p, q ∈ N with p, q ≤ n.

If p < n and q < n then S ∪ {a1, . . . , ap, b1, . . . , bq, cp+q+1} |=up ap+1, bq+1.

If p = n and q < n then S ∪ {a1, . . . , ap, b1, . . . , bq, cp+q+1} |=up bq+1.

If p < n and q = n then S ∪ {a1, . . . , ap, b1, . . . , bq, cp+q+1} |=up ap+1.

5

Lemma 3. Given A and B sequences of length n, the Half Merging Network

HMerge(A, B) contains O(n log n) clauses with O(n log n) auxiliary variables.

3.2 Half Sorting Networks

Given a sequence A of length 2n, the Half Sorting Network of A, denoted
HSort(A), is a pair (C, S), where C is a sequence of length 2n and S is a set of
clauses, defined as follows.

For sequences of length 2 we define:

HSort(〈a b〉) = HMerge(〈a〉, 〈b〉)

For sequences of length 2n > 2 we define:

HSort(〈a1 . . . a2n 〉) = (〈 c1 . . . c2n 〉, SD ∪ SD′ ∪ SM)

recursively in terms of two subsequences of size n:

HSort(〈 a1 . . . an 〉) = (〈d1 . . . dn〉, SD),
HSort(〈 an+1 . . . a2n〉) = (〈d′1 . . . d′n〉, SD′),

and the merge of them

HMerge(〈d1 . . . dn 〉, 〈d′1 . . . d′n 〉) = (〈c1 . . . c2n〉, SM),

Fig. 1. HSort with input 〈a1 . . . a8〉 and output 〈c1 . . . c8〉

Lemma 4. Given a sequence A of length n, the Half Sorting Network HSort(A)
contains O(n log2 n) clauses with O(n log2 n) auxiliary variables.

Similar properties to the ones of Half Merging Networks also hold here, but
without the requirement that the input ones are at prefixes: (i) if any p in-
put variables are set to true, the first p output variables are unit propagated
(Lemma 5), and (ii) if in addition the p+1-th output is set to false, the remain-
ing input variables are set to false (Lemma 6), hence not allowing more than p

input variables to be true.

6

Lemma 5. Let HSort(A) be (〈c1 . . . c2n 〉, S) and let A′ ⊆ A with |A′| = p.

Then,

S ∪ A′ |=up c1, . . . , cp

Lemma 6. Let HSort(A) be (〈c1 . . . c2n 〉, S) and let A′ (A with |A′|=p < 2n.

Then,

S ∪ A′ ∪ cp+1 |=up aj for all aj ∈ (A − A′)

4 Cardinality Networks

Here we exploit the fact that in cardinality constraints x1 + . . . + xn ≤ k it
is frequently the case that n is much larger than k. We introduce Cardinality

Networks which require O(n log2 k) clauses instead of O(n log2 n) as in previ-
ous approaches. A main ingredient for Cardinality Networks are the Simplified

Merging Networks, which we introduce first.

4.1 Simplified Merging Networks

If we are only interested in the (maximal) n + 1 bits of the output (instead of
the 2n original ones), Half Merging Networks can be further simplified. Given
two sequences A and B of length n, the Simplified Merging Network of A and

B, denoted SMerge(A, B), is a pair (C, S), where C is a sequence of length n+1
and S is a set of clauses, defined as follows. For n = 1, we have

SMerge(〈 a 〉, 〈 b 〉) = (〈 c1, c2 〉, { a ∨ b ∨ c2, a ∨ c1, b ∨ c1 })

The case n > 1 is defined

SMerge(〈a1 . . . an〉, 〈b1 . . . bn〉) = (〈 d1 c2 . . . cn+1 〉, Sodd ∪ Seven ∪ S′)

recursively in terms of the odd and the even subsequences,

SMerge(〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉) = (〈d1 . . . dn

2
+1〉, Sodd)

SMerge(〈a2 a4 . . . an 〉, 〈b2 b4 . . . bn 〉) = (〈e1 . . . en

2
+1〉, Seven)

where the clause set S′ is:
⋃n

2

i=1{ di+1 ∨ ei ∨ c2i+1, di+1 ∨ c2i, ei ∨ c2i }.

Remark: We have defined Simplified Merging Networks with n + 1 outputs be-
cause this n + 1-th bit is needed for the odd recursive case: dn

2
+1 is used in the

clause set S′. But output en

2
+1 from the even subcase is not used, and the n+1-

th bit is not used either in the Cardinality Networks defined below. This fact
can be exploited for a slightly further optimization in our encodings by using
Simplified Merging Networks with n outputs for these subcases, but for clarity
of explanation we have chosen not to do so here.

We now precisely state the propagation properties of Simplified Merging
Networks. Lemma 7 is the equivalent of Lemma 1, proving that p + q inputs
ones properly placed (e.g. as prefixes in the input sequences), unit propagate the
first p+ q outputs. After that, Lemma 8, the equivalent of Lemma 2, proves how
zeros can be propagated from outputs to inputs.

7

Lemma 7. If SMerge(〈a1 . . . an〉, 〈b1 . . . bn〉) = (〈 c1 . . . cn+1 〉, S) and

p, q ∈ N with 1 ≤ p + q ≤ n + 1, then S ∪ {a1, . . . , ap, b1, . . . , bq } |=up cp+q.

Proof. (By induction on n). If n = 1, we have

SMerge(〈 a 〉, 〈 b 〉) = (〈 c1, c2 〉, { a ∨ c1, b ∨ c1, a ∨ b ∨ c2 }).

If p = 0, q = 1 then setting b clearly propagates c1. Similarly, if p = 1, q = 0,
setting a propagates c1. Otherwise, p = 1, q = 1, and a and b propagate c2.

For the induction step (n > 1) we consider four different cases, depending on
whether p and q are odd or even:

CASE 1: p is odd and q even. (Let p = 2p′ + 1 and q = 2q′).
Let us focus on the odd part of SMerge:

SMerge(〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉) = (〈d1 . . . dn

2
+1〉, Sodd).

In 〈a1 a2 . . . ap〉 there are p′ +1 odd indices, namely {1, 3, . . . , 2p′+1}. Similarly,
in 〈b1 b2 . . . bq〉 there are q′ odd indices, namely {1, 3, . . . , 2q′ − 1}. Hence, by
IH we have Sodd ∪ {a1, . . . , a2p′+1, b1, . . . , b2q′−1, } |=up dp′+q′+1 (note that
1 ≤ (p′ + 1) + q′ ≤ n

2
+ 1).

Now, let us take the even part of SMerge:

SMerge(〈a2 a4 . . . an〉, 〈b2 b4 . . . bn〉) = (〈e1 . . . en

2
+1〉, Seven)

In 〈a2 a4 . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in
〈b2 b4 . . . bq〉 there are q′ even indices, namely {2, 4, . . . , 2q′}. Hence, by IH we
have Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′ , } |=up ep′+q′ (note that 1 ≤ p′ + q′ ≤
n
2

+ 1).

Finally, since 1 ≤ p′ + q′ ≤ n
2

the clause dp′+q′+1 ∨ ep′+q′ ∨ c2p′+2q′+1 belongs
to S, and hence literal c2p′+2q′+1 can be unit propagated, as we wanted to prove.

CASE 2: p is even and q odd. (Symmetric to the previous one).

CASE 3: p and q are odd. (Let p = 2p′ + 1 and q = 2q′ + 1).
We will now use only the odd part of SMerge:

SMerge(〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉) = (〈d1 . . . dn

2
+1〉, Sodd).

In 〈a1 a2 . . . ap〉 there are p′ +1 odd indices, namely {1, 3, . . . , 2p′+1}. Similarly,
in 〈b1 b2 . . . bq〉 there are q′ + 1 odd indices, namely {1, 3, . . . , 2q′ + 1}. Hence,
by IH we have Sodd ∪ {a1, . . . , a2p′+1, b1, . . . , b2q′+1, } |=up dp′+q′+2 (note that,
using that n is even, one can see that 1 ≤ (p′ + 1) + (q′ + 1) ≤ n

2
+ 1).

Now, since 1 ≤ p′ + q′ + 1 ≤ n
2
, the clause dp′+q′+2 ∨ c2p′+2q′+2 belongs to S,

the literal c2p′+2q′+2 can be unit propagated.

CASE 4: p and q are even. (Let p = 2p′ and q = 2q′).
We will now only use the even part of SMerge:

SMerge(〈a2 a4 . . . an〉, 〈b2 b4 . . . bn〉) = (〈e1 . . . en

2
+1〉, Seven)

In 〈a2 a4 . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in
〈b2 b4 . . . bq〉 there are q′ even indices, namely {2, 4, . . . , 2q′}. Hence, by IH we

8

have Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′ , } |=up ep′+q′ (note that 1 ≤ p′ + q′ ≤
n
2

+ 1).
Now, using that n is even, one can see that 1 ≤ p′ + q′ ≤ n

2
and hence

the clause ep′+q′ ∨ c2p′+2q′ belongs to S, allowing one to propagate the literal
c2p′+2q′ . ⊓⊔

Lemma 8. Let SMerge(〈a1 . . . an〉, 〈b1 . . . bn〉) be (〈 c1 . . . cn+1 〉, S), and

p, q ∈ N with p + q ≤ n.

If p < n and q < n then S ∪ {a1, . . . , ap, b1, . . . , bq, cp+q+1} |=up ap+1, bq+1.

If p = n and q = 0 then S ∪ {a1, . . . , an, cn+1} |=up b1.

If p = 0 and q = n then S ∪ {b1, . . . , bn, cn+1} |=up a1.

Lemma 9. Given A and B sequences of length n, the Simplified Merging Net-

work SMerge(A, B) contains O(n log n) clauses with O(n log n) auxiliary vari-

ables.

Fig. 2. Representation of Card(〈a1 . . . a32〉, 8) with output 〈c1 . . . c8〉.

4.2 K-Cardinality Networks

Given a sequence A of length n = m × k with k = 2r and m ∈ N, the k-

Cardinality Network of A, denoted Card(A, k), is a pair (C, S), where C is a
sequence of length k and S is a set of clauses, defined as follows.

For sequences of length k, we define:

9

Card(〈a1 . . . ak〉, k) = HSort(〈a1 . . . ak〉)

For sequences of length n > k we define:

Card(〈 a1 . . . an 〉 , k) = (〈 c1 . . . ck 〉, SD ∪ SD′ ∪ SM)

recursively in terms of subsequences of sizes k and n − k:

Card(〈 a1 . . . ak 〉, k) = (〈d1 . . . dk〉, SD),

Card(〈ak+1 . . . an〉, k) = (〈d′1 . . . d′k〉, SD′),

and a simplified merge of them (note that its last output is not used)

SMerge(〈d1 . . . dk 〉, 〈d′1 . . . d′k 〉) = (〈c1 . . . ck+1〉, SM),

Lemma 10. Given a sequence A of length n = m×k, the k-Cardinality Network

Card(A, k) contains O(n log2 k) clauses with O(n log2 k) auxiliary variables.

Again, the usual properties of how zeros and ones are unit propagated follow.
Their proofs are analogous to the ones of Lemma 5 and Lemma 6.

Lemma 11. If Card(A, k) = (〈 c1 . . . ck 〉, S) and A′ ⊆ A with |A′| = p ≤ k,

then

S ∪ A′ |=up c1, . . . , cp

Proof. Sequence A will be of the form 〈a1 . . . an〉 with n = m× k. We will prove
the lemma by induction on m.

If m = 1, we have Card(〈 a1, . . . ak 〉, k) = HSort(〈a1, . . . , ak〉). Using
lemma 5 we conclude that {c1, . . . , cp} are unit propagated.

For the induction step (m > 1) we have:

Card(〈 a1 . . . an 〉 , k) = (〈 c1 . . . ck 〉, SD ∪ SD′ ∪ SM), with
Card(〈 a1 . . . ak 〉, k) = (〈d1 . . . dk〉, SD),
Card(〈ak+1 . . . an〉, k) = (〈d′1 . . . d′k〉, SD′) and
SMerge(〈d1 . . . dk 〉, 〈d′1 . . . d′k 〉,) = (〈c1 . . . ck+1〉, SM)

If we now consider the sets AD = A′ ∩ {a1, . . . , ak}, with size |AD| = pD, and
AD′ = A′ ∩ {ak+1, . . . , an}, with |AD′ | = pD′ , by IH we have AD ∪ SD |=up

d1, . . . , dpD
and AD′ ∪ SD′ |=up d′1, . . . , d′p

D′
. Now, by lemma 7 we know that

SM ∪ {d1, . . . , dpD
, d′1, . . . , d′p

D′
} |=up c1, . . . , cpD+p

D′
, which, since p = pD +

pD′ , concludes the proof. ⊓⊔

Theorem 1. If Card(〈a1 . . . an〉, k) = (〈 c1 . . . ck 〉, S) and A′ (A with size

|A′| = p < k, then

S ∪ A′ ∪ cp+1 |=up aj for all aj ∈ (A \ A′)

10

Proof. We have that n = m × k, and we will prove the lemma by induction on
m.

If m = 1, we have Card(〈 a1, . . . ak 〉, k) = HSort(〈a1, . . . , ak〉) and in
this case the theorem amounts to Lemma 6.

For the induction step (m > 1) we have:

Card(〈 a1 . . . an 〉 , k) = (〈 c1 . . . ck 〉, SD ∪ SD′ ∪ SM), with
Card(〈 a1 . . . ak 〉, k) = (〈d1 . . . dk〉, SD),
Card(〈ak+1 . . . an〉, k) = (〈d′1 . . . d′k〉, SD′) and
SMerge(〈d1 . . . dk 〉, 〈d′1 . . . d′k 〉,) = (〈c1 . . . ck+1〉, SM)

If we now consider the sets AD = A′ ∩ {a1, . . . , ak}, with size |AD| = pD, and
AD′ = A′ ∩ {ak+1, . . . , an}, with |AD′ | = pD′ , by Lemma 11 we know that
AD ∪ SD |=up d1, . . . , dpD

and AD′ ∪ SD′ |=up d′1, . . . , d′p
D′

. Due to these
propagated literals and knowing that p = pD + pD′ ≤ k and both pD < k and
pD′ < k, we obtain SM ∪ {d1, . . . , dpD

, d′1, . . . , d′p
D′

, cp+1} |=up dpD+1, d′p
D′+1

by applying Lemma 8.
Finally these two unit propagations allow us to use the IH to infer that

SD ∪ AD ∪ dpD+1 |=up aj for all aj ∈ ({a1 . . . ak} − AD) and also that SD′ ∪
AD′ ∪ d′p

D′+1 |=up aj for all aj ∈ ({ak+1 . . . an} − AD′), which concludes the
proof. ⊓⊔

5 Application to SAT Solving and Extensions

In this section we show how to apply the previous constructions in practice and
we further present some extensions:

• Use of Card in practice. Theorem 1 indicates how to apply the con-
struction Card in practice. Assume we are given a formula F to which we
want to impose the cardinality constraint a1 + . . . an ≤ p. We should first
find k, the smallest power of two with k > p and consider the construction
Card(〈a1 . . . an+m〉, k) = (〈c1, . . . ck〉, S). Note that we may need to add m ex-
tra variables to the input sequence to obtain a sequence of size multiple of k,
but these variables are initially set to false and do not enlarge the search space.
Now, the problem amounts to check the satisfiability of F ∧ S ∧ cp+1 since, due
to Theorem 1, as soon as p variables in 〈a1, . . . , an+m〉 are set to true, the re-
maining ones will be unit propagated to false, hence disallowing any model not
satisfying the cardinality constraint.

• Incremental strengthening. Another important feature of these encod-
ings can be exploited in applications where one needs to solve a sequence of
problems that only differ in that a cardinality constraint a1 + . . . + an ≤ p be-
comes increasingly stronger by decreasing p to p′, as it happens in optimization
problems. In this setting, we only need to assert the corresponding literal cp′+1,
and the search can be resumed keeping all lemmas generated in the previous
problems. Most state-of-the-art SAT solvers used as black boxes provide a user
interface for doing this.

11

• Constraints of the form a1+. . . an ≥ p. For these type of constraints, we
should first find k, the smallest power of two with k ≥ p. After that, we should
consider a new construction Card≥(〈a1, . . . , an+m〉, k) = (〈c1, . . . , ck〉, S), iden-
tical to Card(A, k), except that its blocks HMerge and SMerge contain, in their
basic case, the clauses {a∨ b∨ c1, a∨ c2, b∨ c2} and, for the recursive case, the
clause set S′ is built from the clauses {di+1 ∨ c2i+1, ei ∨ c2i+1, di+1 ∨ei ∨ c2i}.
We have the following result:

Theorem 2. If Card≥ (〈a1 . . . an〉, k) = (〈 c1 . . . ck 〉, S) and A′ (A with

|A′| = n − p, for some p ∈ N with 1 ≤ p ≤ k, then

S ∪ A′ ∪ cp |=up aj for all aj ∈ (A \ A′),

where A′ contains the negation of all variables of A′.

This theorem ensures that, if we set cp to true, as soon as n − p literals are set
to false, the remaining p will be set to true, hence forcing the constraint to be
satisfied.

• Constraints of the form p ≤ a1 + . . . an ≤ q. For these constraints, of
which equality constraints a1 + . . .+an = p are a particular case, we should first
find k, the smallest power of two such that k > q. Then, we will use another con-
struction Card rng(〈a1, . . . , an+m〉, k) = (〈c1, . . . , ck〉, S), identical to Card(A, k),
except that its blocks HMerge and SMerge contain, in their basic and recursive
cases, all 6 mentioned clauses (the ones for Card and the ones for Card≥). This
allows one to avoid encoding the two constraints independently, which would
roughly duplicate the number of variables. For this construction, we have:

Theorem 3. Let Cardrng(〈a1 . . . an〉, k) = (〈 c1 . . . ck 〉, S) and A′ (A.

– If |A′| = n − p for some p ∈ N with 1 ≤ p ≤ k then

S ∪ A′ ∪ cp |=up aj for all aj ∈ (A \ A′),

– If |A′| = p for some p < k then

S ∪ A′ ∪ cp+1 |=up aj for all aj ∈ (A \ A′)

This theorem ensures that, if we set cp and cq+1, then (i) as soon as n − p

variables are set to false, the remaining ones will be set to true and (ii) as soon
as q variables are set to true, the remaining ones will be set to false, which forces
the constraint to be satisfied.

• Constraints a1+. . .+an ≤ p with p > n
2
. Note that Cardinality Networks

were designed to improve upon Sorting Networks when n is much larger than
p. If p > n

2
we can use the fact that the constraint above can be rewritten as

(1−a1)+ . . .+(1−an) ≥ n−p. The latter constraint, where now n−p < n
2
, can

be encoded using Cardinality Networks by simply changing the input variables
by their negations.

12

6 Evaluation

We first show some statistics, for a constraint a1 + . . . + an ≤ k, about the
number of variables and clauses in Cardinality Networks compared with the
Sorting Networks of [Bat68,ES06] (figures for our Half Sorting Networks are as
for Sorting Networks, except that the number of clauses is halved). Cardinality
Networks provide a huge advantage for small values of k, whereas for k = n

2
(its

worst case) there is still more than a factor-two advantage due to the use of Half
Sorting/Merging Networks instead of full ones.

Sorting Network Cardinality Network
k=5 k=10 k=15 k=n/2

n vars clauses vars clauses vars clauses vars clauses vars clauses

105 18 · 106 54 · 106 77 · 104 12 · 105 12 · 105 18 · 105 12 · 105 19 · 105 15 · 106 23 · 106

104 15 · 105 45 · 105 77 · 103 12 · 104 12 · 104 18 · 104 12 · 104 19 · 104 12 · 105 19 · 105

103 48150 144403 7713 12065 12223 18825 12857 19771 39919 59879
102 2970 8855 773 1205 1251 1917 1325 2023 2279 3419

We now also assess the practical performance of the encodings. To the best of
our knowledge there is no standard library for SAT benchmarks with cardinality
constraints. However, there exists a very large and diverse source of realistic
instances, namely the ones produced by the msu4 algorithm [MSP08] where
Max-SAT problems are reduced to a series of SAT problems with cardinality
constraints.

We have made a simple msu4 implementation which, every time a non-trivial
cardinality constraint is used (that is, that cannot be converted into a single
clause or a set of unit literals), also writes the SAT + cardinality constraints
problem into a file. We have run this prototype on all benchmarks used in the
Partial Max-SAT division of the Third Max-SAT evaluation2. Hence, for every
benchmark in this division (some 1800), we have created a family of SAT +
cardinality constraints problems, usually between 2 and 10, which we believe
constitute a large and diverse enough set of benchmarks. We run each one of
them with Sorting and with Cardinality Networks on a 2Ghz Linux Quad-Core
AMD using our Barcelogic SAT Solver that ranked 3rd in the 2008 SAT-Race3.
Results are plotted in Figure 3, which shows a clear win for Cardinality Networks.
Each cross represents the time to solve a family of benchmarks. Each benchmark
was given 600 seconds and timing out in a single benchmark is counted as a
timeout for the whole family (in the plot, these are the crosses in the vertical or
horizontal lines).

One may wonder where the improvements come from the use of Half Merg-
ing/Sorting Networks (3 clauses instead of 6) or from the asymptotically smaller
Cardinality Networks (O(n log2 k) clauses and auxiliary variables vs. O(n log2 n)).

2 See http://www.maxsat.udl.cat/08/index.php?disp=submitted-benchmarks.
3 See http://baldur.iti.uka.de/sat-race-2008/.

13

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
C

ar
di

na
lit

y

Time Sorting

Cardinality vs. Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
C

ar
di

na
lit

y

Time Sorting

Cardinality vs. Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
C

ar
di

na
lit

y

Time Sorting

Cardinality vs. Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
C

ar
di

na
lit

y

Time Sorting

Cardinality vs. Sorting

Fig. 3. Times in seconds and logarithmic scale is used.

The answer is: both, as one can see from Figure 4, where we also compare with 3-

Sorting: Half Sorting Networks as described in Section 3.2, and 6-Cardinality:

Cardinality Networks with HMerge and SMerge using all 6 clauses instead of only
the 3 mentioned in Section 3.1 and Section 4.1. In particular, using 3 clauses has
beneficial effects for both Sorting Networks and Cardinality Constraints.

7 Conclusions and Further Work

SAT solvers can be used off the shelf, giving high performance push-button
tools, i.e., tools that require no tuning for variable or value selection heuristics.
In order to exploit these features optimally, it is important to develop a catalogue
of encodings for the most common general-purpose constraints, in such a way
that the SAT solver’s unit propagation can efficiently preserve arc consistency.

The cardinality constraints we have studied here are certainly among the
most ubiquitous ones. Therefore, apart from the aforementioned work [ES06],
they have also been studied elsewhere. For instance in [Sin05] two encodings are
given, one requiring 7n clauses and 2n auxiliary variables, and another one based
on n unary k−bit counters ci denoting the number of true inputs among x1 . . . xi;
this latter encoding preserves arc consistency like ours, but it requires O(n · k)
clauses and new variables. In [SL07] the case of k = 1 is studied, showing how a
state-of-the-art SAT solver can be adapted to diminish the noise introduced by
the auxiliary variables.

14

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
T

im
e

3-
C

ar
di

na
lit

y

Time 3-Sorting

3-Cardinality vs. 3-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
T

im
e

3-
C

ar
di

na
lit

y

Time 3-Sorting

3-Cardinality vs. 3-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
T

im
e

3-
C

ar
di

na
lit

y

Time 3-Sorting

3-Cardinality vs. 3-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000
T

im
e

3-
C

ar
di

na
lit

y

Time 3-Sorting

3-Cardinality vs. 3-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

S
or

tin
g

Time 6-Sorting

3-Sorting vs. 6-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

S
or

tin
g

Time 6-Sorting

3-Sorting vs. 6-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

S
or

tin
g

Time 6-Sorting

3-Sorting vs. 6-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

S
or

tin
g

Time 6-Sorting

3-Sorting vs. 6-Sorting

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

C
ar

di
na

lit
y

Time 6-Cardinality

3-Cardinality vs. 6-Cardinality

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

C
ar

di
na

lit
y

Time 6-Cardinality

3-Cardinality vs. 6-Cardinality

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

C
ar

di
na

lit
y

Time 6-Cardinality

3-Cardinality vs. 6-Cardinality

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

T
im

e
3-

C
ar

di
na

lit
y

Time 6-Cardinality

3-Cardinality vs. 6-Cardinality

Fig. 4. Times in seconds and logarithmic scale is used. Best settings on the y-axes.

Our approach is based on precise (recursive) definitions of the generated
clause sets and on inductive proofs for the arc consistency properties, combined
with a careful quantitative and experimental analysis.

We believe that in a similar way it will be possible to go beyond, re-visiting
pseudo-boolean constraints and other important constraints that are well known
in the Constraint Programming community.

References

[Bat68] K. E. Batcher. Sorting Networks and their Applications. In AFIPS Spring
Joint Computing Conference, pages 307–314, 1968.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-
Proving. Communications of the ACM, CACM, 5(7):394–397, 1962.

[DP60] M. Davis and H. Putnam. A Computing Procedure for Quantification Theory.
Journal of the ACM, JACM, 7(3):201–215, 1960.

[ES06] N . Eén and N. Sörensson. Translating Pseudo-Boolean Constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.

[MSP08] J. Marques-Silva and J. Planes. Algorithms for Maximum Satisfiability usint
Unsatisfiable Cores. In 2008 Conference on Design, Automation and Test in
Europe, DATE’08, pages 408–413. IEEE Computer Society, 2008.

[Sin05] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality con-
straints. In Proc. of the 11th Intl. Conf. on Principles and Practice of Con-
straint Programming (CP 2005), pages 827–831, Sitges, Spain, October 2005.

[SL07] João P. Marques Silva and Inês Lynce. Towards robust cnf encodings of
cardinality constraints. In Principles and Practice of Constraint Programming
- CP 2007, SPringer LNCS 4741, pages 483–497, 2007.

