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Abstract. Solvers for SAT Modulo Theories (SMT) can nowadays han-
dle large industrial (e.g., formal hardware and software verification) prob-
lems over theories such as the integers, arrays, or equality. Here we show
that SMT approaches can also efficiently solve problems that, at first
sight, do not have a typical SMT flavor. In particular, here we deal with
SAT and SMT problems where models M are sought such that a given
cost function f(M) is minimized.
For this purpose, we introduce a variant of SMT where the theory T
becomes progressively stronger, and prove it correct using the Abstract
DPLL Modulo Theories framework. We discuss two different examples
of applications of this SMT variant: weighted Max-SAT and weighted
Max-SMT. We show how, with relatively little effort, one can obtain a
competitive system that, in the case of weighted Max-SMT in the theory
of Difference Logic, can even handle well-known hard radio frequency as-
signment problems without any tailored heuristics. These results seem to
indicate that Max-SAT/SMT techniques can already be used for realistic
applications.

1 Introduction

The Davis-Putnam-Logemann-Loveland (DPLL) procedure for propositional SAT
[DP60,DLL62] has also been adapted for handling problems in more expressive
logics, and, in particular, for the SAT Modulo Theories (SMT) problem: deciding
the satisfiability of ground first-order formulas with respect to background the-
ories such as the integer or real numbers, or arrays. SMT problems frequently
arise in formal hardware and software verification applications, where typical
formulas consist of very large sets of clauses like:

p ∨ ¬q ∨ a = b− c ∨ read(v, b+c ) = d ∨ a−c≤7

with propositional atoms as well as atoms over (combined) theories like the in-
tegers, the reals, or arrays. SMT has become a very active area of research, and
efficient SMT solvers exist that can handle (combinations of) many such theories
(see also the SMT problem library [TR05] and the SMT Competition [BdMS05]).
Currently most SMT solvers follow the so-called lazy approach to SMT, com-
bining (i) theory solvers to process conjunctions of literals over the given theory
T , with (ii) DPLL-based engines for dealing with the boolean structure of the
formulas.
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DPLL(T ) is a general SMT architecture for the lazy approach [GHN+04].
It consists of a DPLL(X) engine, whose parameter X can be instantiated with
a T -solver Solver

T
, thus producing a DPLL(T ) system. The DPLL(X) engine

always considers the problem as a purely propositional one. For example, if the
theory T is the integers, at some point DPLL(X) might consider a partial assign-
ment containing, among many others, the three literals a ≥ b + 3, b− 2 ≥ c,
and a 6> c without noticing its T -inconsistency, because it just considers such
literals as propositional (syntactic) objects. But Solver

T
continuously analyzes

the partial model that DPLL(X) is building (a conjunction of literals). It can
warn DPLL(X) about this T -inconsistency, and generate a clause, called a the-
ory lemma, a 6≥ b + 3 ∨ b − 2 6≥ c ∨ a > c that can be used by
DPLL(X) for backjumping. Solver

T
sometimes also does theory propagation: as

soon as, e.g., a ≥ b + 3 and b − 2 ≥ c become true, it can notify DPLL(X)
about T -consequences like a > c that occur in the input formula. The modular
DPLL(T ) architecture is flexible, and, compared with other SMT techniques,
DPLL(T ) is also very efficient and has good scaling properties: the Barcelogic-
Tools implementation of DPLL(T ) won all the four divisions it entered at the
2005 SMT Competition [BdMS05].

The aim of this paper is to show that SMT techniques such as DPLL(T ) can
be easily adapted to efficiently solve problems that, at first sight, do not have
a typical SMT flavor. In particular, here we deal with SAT and SMT problems
where models M are sought such that a given cost function f(M) is minimized.

For this purpose, in Section 2 we introduce a variant of SMT where the (first-
order) theory T becomes progressively stronger, that is, T may be periodically
replaced by T ∧ T ′ for some first-order theory T ′. Then, after mentioning some
applications to optimization and other problems, we prove this variant correct
by extending Abstract DPLL Modulo Theories, a uniform, declarative framework
introduced in [NOT05] for modeling and reasoning about lazy SMT procedures.

In Section 3 we apply this SMT variant in a branch-and-bound setting, where
the theory T “knows”, possibly among the information about other theories, the
cost function f and its current best bound. Each time a better bound is found, the
SMT procedure continues with a theory that has become stronger, in the sense
that models with a cost higher than this new bound now become T -inconsistent.

We then show how to deal in this framework with the exact weighted Max-
SAT problem: given a set of pairs {(C1, w1) . . . , (Cm, wm)} where each Ci is a
propositional clause and wi is its weight (a positive natural or real number), find
a propositional assignment M that minimizes the sum of the weights of clauses
that are false in M .

In Section 4 we report experimental results on an implementation of DPLL(T )
for Max-SAT and also explain how specialized propagation rules for Max-SAT in
the style of [LH05] can be easily and flexibly incorporated. For instance, when two
pairs of the form (l, w1) and (¬l, w2) appear, one can propagate min{w1, w2}.
An interesting aspect of this approach is that DPLL(T ) allows one to obtain
with relatively little effort Max-SAT implementations that are competitive w.r.t.
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state-of-the-art systems. We give experimental results that show this, for settings
with and without the additional propagation rules.

In Section 5 we show how this approach can be smoothly extended to Max-
SMT. As an example, we deal with weighted Max-SMT modulo the theory of
Integer Difference Logic, a fragment of integer linear arithmetic. In this case,
formulas are built over propositional atoms, as well as (ground) atoms of the
form a − b ≤ k, where a and b are (Skolemized) integer variables and k is an
integer.

This logic is used in the context of hardware and software verification; for
instance, some properties of timed automata are naturally expressed in it. But
again, also problems that do not look a priori like typical SMT problems can be
handled very efficiently with it, and also optimization problems can be solved
using our approach.

We give experimental results on the well-known hard CELAR radio frequency
assignment problems [CdGL+99]. In these problems, integer variables must be-
long to certain intervals, and constraints express minimal distances between
variables, all of which can be very nicely modeled in Difference Logic.

From our BarcelogicTools DPLL(T ) implementation we have obtained, with
very little effort, our first Max-SMT system. In spite of its unlabored develop-
ment, and of its single standard SMT decision heuristic, our experiments reveal
that it can already handle these CELAR problems that, according to our ex-
periments, appear to be far beyond the capabilities of systems dealing with
translations into, e.g., Weighted Max-SAT, pseudo-Boolean, or Integer Linear
Programming Problems. On the CELAR problems, this implementation impor-
tantly outperforms the best-known weighted CSP solver Toolbar [dGHZL05] in
its default settings, and is still close or superior to Toolbar with its best (accord-
ing to its authors) branching heuristic for these problems.

2 SMT with progressively stronger theories

Abstract DPLL Modulo Theories [NOT05] is a framework for modeling and rea-
soning about DPLL-based SAT and SMT systems in terms of simple transition
rules and rule application strategies. The framework eases the understanding and
the comparison of different approaches as well as the proving of their correct-
ness. In this section, we briefly describe the framework (see [NOT05] for details)
and then extend it to accommodate progressively stronger theories, that is, the
theory T may be periodically replaced by T ∧ T ′ for some first-order theory T ′,
and prove the correctness of this extension.

2.1 Potential applications

Such a SAT or SMT procedure where the theory becomes progressively stronger
has applications in the context of branch-and-bound-like applications, where a
single model is sought that minimizes a given cost function. The weighted Max-
SAT and Max-SMT problems addressed in the next sections are just a particular
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case of this; one could also handle problems like Max-Ones, or even problems
with non-linear cost functions.

But, apart from optimization problems, it can also be useful for problems
where, given a set of pairwise T -incompatible (first-order) properties P1 . . . Pn,
different models M1 . . .Mn are sought such that each Mi satisfies the correspond-
ing Pi. Initially, one can add P1∨ . . .∨Pn to the theory. Then, each time such an
Mi is found, before backjumping to continue the search one can strengthen the
theory T , replacing it by T ∧ ¬Pi, which can help pruning the search of models
for the remaining Pj ’s.

A more concrete problem of this kind is, for instance, a company where every
month the best employee is rewarded with a favorable working schedule for the
following month. Hence the company needs to prepare in advance n schedules
with properties P1 . . . Pn, where each Pi expresses that employee i is the one
that works less hours, (or works least night shifts, or gets most money, etc.).

Another completely different application is automatic classification of finite
algebras [CMSM04], where one may be searching for, say, finite groups satisfying
a set P1 . . . Pn of different properties, one group for each Pi.

We stress that this is particularly useful if the properties P1 . . . Pn cannot
(efficiently) be expressed at the level of the SMT formula itself, and if Solver

T

can adequately handle their negations.

2.2 Abstract DPLL Modulo Theories

As usual in SMT, given a background theory T (a set of closed first-order formu-
las), we will only consider the SMT problem for ground (and hence quantifier-
free) CNF formulas F . Such formulas may contain free constants, i.e., constant
symbols not in the signature of T , which, as far as satisfiability is concerned,
can be equivalently seen as existential variables. Other than free constants, all
other predicate and function symbols in the formulas will instead come from
the signature of T . From now on, we will assume that all formulas satisfy these
restrictions.

The formalism we describe is based on a set of states together with a binary
relation =⇒ (called the transition relation) over these states, defined by means
of transition rules. Starting with a state containing an input formula F , one
can use the rules to generate a finite sequence of states, where the final state
indicates, for a certain theory T , whether or not F is T -consistent.

A state is either the distinguished state T || fail (denoting T -unsatisfiability)
or a triple of the form T || M || F , where T is a theory, M is a sequence of
literals, and F is a formula in conjunctive normal form (CNF), i.e., a finite
set of disjunctions of literals. We additionally require that M never contains
both a literal and its negation and that each literal in M is annotated as either
a decision literal (indicated by ld) or not. Frequently, we will refer to M as a
partial assignment or consider M just as a set or conjunction of literals, ignoring
both the annotations and the order of its elements. We use ∅ to denote the empty
sequence.
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In what follows, a possibly subscripted or primed lowercase l always denotes
a literal. Similarly T and T ′ always denote theories, C and D always denote
clauses (disjunctions of literals), F and G denote conjunctions of clauses, and
M and N denote assignments.

We write M |= F to indicate that M propositionally satisfies F . If C is a
clause l1 ∨ . . .∨ ln, we sometimes write ¬C to denote the formula ¬l1 ∧ . . .∧¬ln.
We say that C is conflicting in a state T || M || F,C if M |= ¬C.

A formula F is called T -(in)consistent if F ∧ T is (un)satisfiable in the first-
order sense. We say that M is a T -model of F if M |= F and M , seen as a
conjunction of literals, is T -consistent. It is not difficult to see that F is T -
consistent if, and only if, it has a T -model. If F and G are formulas, then F
entails G in T , written F |=T G, if F ∧ ¬G is T -inconsistent. If F |=T G and
G |=T F , we say that F and G are T -equivalent.

We start presenting a small variant, to accomodate the presence of the theory
in the states, of the transition system first presented in [NOT05]:

Definition 1. The Basic DPLL Modulo Theories system consists of the follow-
ing five rules:

UnitPropagate :

T || M || F, C ∨ l =⇒ T || M l || F, C ∨ l if
{

M |= ¬C
l is undefined in M

Decide :

T || M || F =⇒ T || M ld || F if
{

l or ¬l occurs in a clause of F
l is undefined in M

Fail :

T || M || F, C =⇒ T || fail if
{

M |= ¬C
M contains no decision literals

Backjump :

T || M ld N || F, C =⇒ T || M l′ || F, C if


M ld N |= ¬C, and there is
some clause C ′ ∨ l′ such that:
F,C |=T C ′ ∨ l′ and M |= ¬C ′,
l′ is undefined in M , and
l′ or ¬l′ is in F or in M ld N

Theory Propagate :

T || M || F =⇒ T || M l || F if

M |=T l
l or ¬l occurs in F
l is undefined in M
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Definition 2. The Strengthening DPLL Modulo Theories system consists of
the five Basic DPLL Modulo Theories rules, and the following four rules:

Restart :

T || M || F =⇒ T || ∅ || F

Theory Learn :

T || M || F =⇒ T || M || F, C if
{

each atom of C is in F or in M
F |=T C

Theory Forget :

T || M || F, C =⇒ T || M || F if
{

F |=T C

Theory Strengthen :
T || M || F =⇒ T ∧ T ′ || M || F

We denote the transition relation defined by all nine rules by =⇒S.

For a transition relation =⇒, we denote by =⇒∗ the reflexive-transitive clo-
sure of =⇒. We call any sequence of the form S0 =⇒ S1, S1 =⇒ S2, . . . a
derivation, and denote it by S0 =⇒ S1 =⇒ S2 =⇒ . . . . We call any subsequence
of a derivation a subderivation. If S =⇒ S′ we say that there is a transition from
S to S′. A state S is final with respect to =⇒ if there are no transitions from S.

2.3 Correctness of Strengthening Abstract DPLL Modulo Theories

A decision procedure for SMT can be obtained by generating a derivation using
=⇒S with a particular strategy. The relevant derivations are those that start
with a state of the form T0 || ∅ || F0, where F0 is the initial formula. The aim of
a derivation is to compute a state S such that: (i) S is final with respect to the
five rules of Basic DPLL Modulo Theories and (ii) if S is of the form T || M || F
then M is T -consistent. We start by stating some invariants.

Lemma 3. If T0 || ∅ || F0 =⇒∗
S T || M || F then the following hold.

1. All the atoms in M and all the atoms in F are atoms of F0.
2. M contains no literal more than once and is indeed an assignment, i.e., it

contains no pair of literals of the form l and ¬l.
3. F and F0 are T -equivalent.
4. If M is of the form M0 l1 M1 . . . ln Mn, where l1, . . . , ln are all the decision

literals of M , then F0, l1, . . . , li |=T Mi for all i in 0 . . . n.

The following termination result says that derivations are finite provided
some standard conditions are fulfilled (e.g., Restart is applied with increasing
periodicity), and that the theory is not strengthened infinitely many times, which
is indeed the case in branch and bound and the other mentioned applications.
The proof is a simple extension of the one for the standard conditions [NOT05].
This is also the case for the other proofs we omit here for space reasons.
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Theorem 4 (Termination of =⇒S). Every derivation Der of the form
T || ∅ || F = S0 =⇒S S1 =⇒S . . . is finite if the following conditions hold:

1. Der has no infinite subderivations consisting of only Theory Learn and
Theory Forget steps.

2. Theory Strengthen is applied only finitely many times.
3. For every subderivation of Der of the form

Si−1 =⇒S Si =⇒S . . . =⇒S Sj =⇒S . . . =⇒S Sk where the only three
Restart steps are the ones producing Si, Sj, and Sk, either:
– there are more Basic DPLL Modulo Theories steps in Sj =⇒S . . . =⇒S

Sk than in Si =⇒S . . . =⇒S Sj, or
– in Sj =⇒S . . . =⇒S Sk a new clause is learned that is not forgotten in

Der.

Lemma 5. If T0 || ∅ || F0 =⇒∗
S T || M || F and there is some conflicting

clause in T || M || F , i.e., M |= ¬C for some clause C in F , then either Fail or
Backjump applies to T || M || F .

Property 6. If T0 || ∅ || F0 =⇒∗
S T || M || F and M is T -inconsistent, then

either there is a conflicting clause in T || M || F , or else Theory Learn applies to
T || M || F , generating a conflicting clause.

Even if it is very easy to generate non-terminating derivations for =⇒S ,
Theorem 4 defines a very general strategy for avoiding that.

Lemma 5 and Property 6 show that, for a state of the form T || M || F , if
there is some literal of F undefined in M , or there is some conflicting clause,
or M is T -inconsistent, then a rule of Basic DPLL Modulo Theories is always
applicable, possibly after a single Theory Learn step. Together with Theorem 4
(Termination), this shows how to compute a state to which the following main
theorem is applicable.

Theorem 7. Let Der be a derivation T0 || ∅ || F0 =⇒∗
S S , where S is (i)

final with respect to Basic DPLL Modulo Theories, and (ii) if S is of the form
T || M || F then M is T -consistent. Then

1. S is T || fail if, and only if, F is T -inconsistent.
2. If S is of the form T || M || F then M is a T -model of F .

These results are easy to apply. For example, in the context of branch and
bound, each time a final state T || M || F is obtained (final in the sense of
conditions (i) and (ii) of Theorem 7), M is the current best model found. After
that, one can apply Theory Strengthen to decrease the current upper bound and
make M inconsistent with the strengthened theory that says that an M with
smaller cost is needed (see the next section). By property 6, this will trigger
further rule applications. When no smaller cost solution exists, the theorem
implies that T || fail will be eventually obtained.

Similarly, when different models M1 . . .Mn are sought satisfying properties
P1 . . . Pn, one can initially add P1 ∨ . . . ∨ Pn to the theory. Then, each time one
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Mi is found for a Pi, the theory is strengthened by adding ¬Pi to it, and again
by property 6 the derivation continues. Once all Mi have been found, instead of
adding the last ¬Pi (which would make the theory inconsistent), the process is
stopped.

3 Expressing Max-SAT and Max-SMT in this framework

Here we apply this SMT variant in a branch-and-bound setting, where, given
a cost function f , a model M is sought with minimum f(M). In this case, the
progressively stronger theory T “knows”, possibly among the information about
other theories, the cost function f and its current best upper bound.

In particular, here we consider the exact weighted Max-SAT or Max-SMT
problem: given a set of pairs {(C1, w1) . . . , (Cm, wm)} where each Ci is a (propo-
sitional or SMT) clause and wi is its weight (a positive natural or real number),
find an assignment M (consistent with the initial background theory T ) that
minimizes the sum of the weights of clauses that are false in M .

We use the well-known encoding where each weighted clause (Ci, wi) gets a
distinct additional positive literal pi, i.e., it becomes Ci ∨ pi, where pi is a fresh
propositional symbol.

Given this encoding, apart from the initial background theory T (which is
empty in the propositional case), the theory consists of the integers plus

p1 → (k1 = w1)
. . .

pm → (km = wm)

¬p1 → (k1 = 0)
. . .

¬pm → (km = 0)
k1 + · · ·+ km ≤ B

In addition, we will have an initial cost bound B0, and the relation B < B0 will
also be part of the theory. Then, each time the theory is strengthened with a
new upper bound Bi, the relation B < Bi is added.

Note that one can also express that a certain (disjoint) subset of the clauses
must be true with a single common weight wi, by simply adding the same pi to
all clauses in the subset.

Also note that initially each clause contains at most one weight literal pi, but
during the search these literals receive the same treatment as any other literal.
Hence, due to conflict-driven learning, clauses with many (positive and negative)
occurrences of such weight literals appear. The truth value of such weight literals
can be set by theory propagation, since Solver

T
may communicate DPLL(X) that

a certain pi must be false in order not to exceed the current best upper bound
for the function cost f .

4 Experiments with Max-SAT and further pruning rules

In this section we give experimental results for propositional Max-SAT, show-
ing that a competitive (wrt. pseudo-Boolean solvers) DPLL(T ) system can be
obtained with relatively little effort. Moreover, we also discuss how specialized
propagation rules can be incorporated into a DPLL(T ) implementation.
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4.1 Comparison with other approaches

Existing specific algorithms for Max-SAT (e.g., [LMP05,LH05,XZ05]) have been
mainly designed to attack relatively small but challenging problems. To solve
these problems, they use several pruning techniques that detect when a certain
partial assignment cannot be extended to a complete assignment that improves
the current upper bound. However, on larger examples such as most of the ones
analyzed here, these techniques (and their implementations) become extremely
time and memory consuming, and hence here we only give experimental results
for one of them, namely Toolbar [LH05].

Another possibility for attacking Max-SAT problems is to use pseudo-Boolean
solvers [ARMS02,SS06,ES06]. The encoding for Max-SAT presented in Section 3
can be easily adapted to convert the clauses, including the additional weight lit-
erals, into pseudo-Boolean constraints. Then, the objective function the pseudo-
Boolean solver has to minimize, subject to the pseudo-Boolean constraints, is
w1 ∗ p1 + . . . + wm ∗ pm. Since these solvers are designed to deal with large
input pseudo-Boolean problems, they do not incorporate any ad-hoc technique
for Max-SAT, which makes them inefficient on the previously mentioned small
challenging problems, but competitive on problems whose difficulty is essentially
due to its size.

As we will see in the experiments below, the DPLL(T ) system we propose
here is competitive with the pseudo-Boolean solvers (in fact, it is usually faster),
but in addition, due to its modular architecture, it is easy to develop. Once
a DPLL(T ) system for SMT has been constructed, almost no additional work
has to be done to convert it into a tool for Max-SAT. The DPLL(X) engine
already incorporates all the necessary machinery and the only thing needed is
to implement Solver

T
for the theory described in Section 3, something doable in

less than 200 lines of C code. It can also easily be adapted in order to incorporate
additional pruning rules.

4.2 Additional pruning rules

The resulting DPLL(T ) system can be further improved by providing it with
specialized deduction rules for Max-SAT.

Example 8. If, due to conflict-driven lemma learning, DPLL(X) learns a clause
consisting only of positive-weight literals p1∨ . . .∨pn, each pi with its associated
weight wi, one can immediately add min{w1 . . . wn} to the current cost of the
assignment.

Some more complicated resolution-like rules were studied and shown to be
very effective in [LH05]. Hence, we have investigated up to what extent such
specialized resolution rules can be incorporated into our architecture.

Example 9. Assume our input formula contains, among many others, the binary
clauses l∨ p1 and ¬l∨ p2, where each pi is a literal of weight wi. Since any total
assignment will contain either l or ¬l, it is easy to observe that any model will
have a cost of at least min{w1, w2}.



10

All the other rules presented in [LH05] are similar forms of resolution. In
order to implement them, one should detect binary or ternary clauses to which
resolution is applicable, and for greater effectivity, this should be done on the fly,
not only as a preprocessing step. This is quite expensive in general for DPLL-
based systems using the two-watched literal scheme [MMZ+01]. In this scheme,
one can detect newly generated unit clauses by only watching two literals in
each clause, but the detection of binary clauses would require to watch three
literals per clause. However, special situations like the one in Example 9 are still
detectable with only two watched literals per clause if one watches a positive
literal weight p only if there is no other possibility. This restriction ensures that,
as soon as such a literal p becomes watched, we have found a binary clause of
the form l ∨ p.

With this small modification, DPLL(X) can efficiently detect the presence
of binary clauses of the form l ∨ p1 and ¬l ∨ p2 and then notify to Solver

T
an

increment in the cost of the current assignment of m=min{w1, w2}, thus allowing
Solver

T
to further prune partial assignments that have no possibility to improve

the current upper bound. Since part of the weights w1 and w2 has already been
amortized in the cost of the assignment, Solver

T
also has to be notified that the

weights of p1 and p2 now become w1 −m and w2 −m, respectively.

4.3 Experimental Evaluation

Experiments have been done on several well-known already existing benchmark
families. The DIMACS suite consists of unsatisfiable propositional formulas with
a weight of 1 for each clause, similarly to the Weighted DIMACS family, with
random weights between 1 and 1000 for each clause [dGLMS03]. Finally, the
Quasi-group instances1 encode quasi-group completion problems in which the
clauses enforcing the quasi-group structure and that some cells must contain a
given element have been given a certain weight.

We compare with three other systems: Toolbar [dGHZL05], a weighted-CSP
solver which incorporates specialized algorithms and data structures for the Max-
SAT problem; Pueblo [SS06], a pseudo-Boolean solver implementing a branch-
and-bound approach to minimize a given goal function; and Minisat+ [ES06], a
pseudo-Boolean solver based on translations to propositional satisfiability. This is
by no means an exhaustive comparison with all available tools. We chose three
tools that –we believe– represent the state of the art in these three different
approaches, and that can handle problems of a reasonable size.

We ran our system in two settings: the basic one (General DPLL(T ) in the
table) and one implementing the specialized deduction rule mentioned in Exam-
ple 9 (Special DPLL(T )). In none of them specialized heuristics were developed.
We used our standard branching heuristic for solving general SMT problems, an
extension of VSIDS [MMZ+01].

Results are in seconds and aggregated per family of benchmarks. Each bench-
mark was run on a 2GHz 512MB Pentium 4 for 10 minutes, i.e. 600 seconds. An

1 We thank Felip Manyà for providing us with them.
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annotation of the form (n t) indicates that the system timed out in n bench-
marks. Each timeout is counted as 600s in the table.

Benchmark General Special.
family #pblms. Toolbar Minisat+ Pueblo DPLL(T ) DPLL(T )

DIMACS:
aim 24 (15 t) 9397 0.5 0.5 0.5 0.5

bridge fault 4 (4 t) 2400 220 73 0.3 0.6
dubois 13 (9 t) 6442 0.4 1 0.9 0.97
hole 5 (1 t) 795 102 57 470 (1 t) 605
jnh 30 587 (2 t) 5433 (3 t) 3798 (1 t)1485 948
pret 8 (4 t) 2782 0.38 0.4 0.28 0.27
ssa 4 (4 t) 2400 (1 t) 626 (1 t) 601 (1t)601 (1 t) 601

Weighted DIMACS:
wjnh 30 105 (19 t) 14025 1415 42.6 54.3

Quasi-groups:
Size 6 100 (5 t) 4194 16 2.3 1.2 3.5
Size 7 100 (69 t) 46202 178 6.4 2.9 13
Size 8 100 (100 t) 60000 582 17 9.1 41
Size 9 100 (100 t) 60000 1599 47 29 157
Size 10 100 (100 t) 60000 4783 203 151 668

These experiments only have a relative value, given the fact that tools such as
Minisat+ or Pueblo are designed to attack the broader class of pseudo-boolean
optimization problems, and also because Toolbar’s specialized Max-SAT algo-
rithms are more tailored towards small but challenging Max-SAT problems.

One can also observe from the results that the integration of specialized de-
duction rules was not always successful. In some benchmarks, like Quasi-groups,
the rule we implemented did never apply. In this case one pays a non-negligible
overhead (the system gets as much as 5 times slower) without obtaining any
gain. On the other hand, in the benchmarks where it was more productive (e.g.
in the jnh family, where on average at least one rule application was possible
out of every 10 decisions) the overhead was compensated by a reduction in the
search space. We believe it is still unclear whether to pursue the integration of
such rules is worthwile. A more careful analysis should be made on more real-
istic benchmarks, coming from real applications where weights are not assigned
at random.

5 Max-SMT: the example of Difference Logic

We now show how this approach can be smoothly extended to Max-SMT. We
focus here on the case of weighted Max-SMT modulo the theory of Integer Dif-
ference Logic, a fragment of integer linear arithmetic, but our approach is not
limited to this theory.

In Integer Difference Logic, formulas are built over propositional atoms, as
well as (ground) atoms of the form a − b ≤ k, where a and b are (Skolemized)
integer variables and k is an integer2. This logic is used in the context of hardware
2 Atoms of the form a ≤ k are also allowed because one can use an auxiliary integer

variable z0, and consider the inequality a−z0 ≤ k instead. It is not difficult to see that
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and software verification; for instance, some properties of timed automata are
naturally expressed in it. But here we will show how a problem that a priory
doesn’t look well-suited for Difference Logic can be encoded in it, and how also
optimization problems can be solved using our approach.

5.1 Encoding the CELAR Problems in Integer Difference Logic

The well-known CELAR Radio Link Frequency Assignment problems [CdGL+99]
consist of, given a set of radio links and a set of radio frequencies, assigning a
frequency to each radio link. For some pairs of radio links, their frequencies must
be at a certain exact distance, and for others, they must be at least at a certain
distance. The latter constraints are soft, i.e., each one of them has an associated
cost if it is not satisfied, and the solution with minimum total cost has to be
found. Here we shortly explain how we encode these problems as a Max-SMT
problem for Integer Difference Logic.

Each radio link li has a finite set of available frequencies Di that can always
be seen as the disjoint union of four sets. For example:

{2 + 14k | 1 ≤ k ≤ 11} {2 + 14k | 18 ≤ k ≤ 28}
{8 + 14k | 29 ≤ k ≤ 39} {8 + 14k | 46 ≤ k ≤ 56}

This observation is crucial to express in a compact manner that the frequency
fi for the radio link li has to be in Di. For that purpose, we will encode the
value of fi using two variables: a propositional variable ti expressing whether fi

is 2 modulo 14 or not, and an integer variable mi, representing fi mod 14. With
these additional variables we can express that fi is in Di with the formulas:

ti → (1 ≤ mi ≤ 11 ∨ 18 ≤ mi ≤ 28)
¬ti → (29 ≤ mi ≤ 39 ∨ 46 ≤ mi ≤ 56)

It now remains to encode distance constraints of the form |fi − fj | > k, with
their costs wij . Our encoding of fi and fj using the auxiliary variables makes it
natural to reason by cases, depending on whether fi and fj are 2 modulo 14 or
not. For example if fi is 2 modulo 14 and fj is not (and hence is 8 modulo 14),
then |fi−fj | > k is equivalent to |2+14mi−8−14mj | > k. After the necessary
manipulations, the corresponding Difference Logic clause is:

(ti ∧ ¬tj) →
(

mi−mj ≥
⌊

k + 6
14

⌋
+ 1 ∨ mi−mj ≤

⌈
−k + 6

14

⌉
− 1

)
The exact distance constraints are encoded similarly. Costs are expressed by
additional weight literals as explained in Section 3.

this transformation preserves T -satisfiability. See [NO05] for details on our DPLL(T )
system for Difference Logic.
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5.2 Experimental Evaluation

As before, from our BarcelogicTools DPLL(T ) implementation we obtained, with
little effort, our first Max-SMT system.

We compared our system with the best-known weighted CSP solver Toolbar
[dGHZL05] in three different settings. The first one used a static branching
heuristic, the second one was the default setting for Toolbar and the third one,
the best possible choice according to the authors, used a Jeroslow-like branching
heuristic. We used the same machine as before and again results are in seconds.

Benchmark Toolbar
name Static Default Jeroslow DPLL(T )

SUBCELAR 6 0 0.2 0.4 0.2 5
SUBCELAR 6 1 85 252 65 90
SUBCELAR 6 2 127 982 25 132
SUBCELAR 6 3 7249 2169 355 636
SUBCELAR 6 4 7021 > 5 hours 1942 1417

The choice of different branching heuristics leads to dramatic changes in
Toolbar’s runtime. Hence, we believe that specialized heuristics for DPLL(T )
could still improve its performance. From these limited results, one cannot infer
that DPLL(T ) has better scaling properties than Toolbar in its best setting,
although it is 20 times slower on the smallest problem, but faster on the largest
one. In any case, we believe these results indicate that SMT tools can be already
used for efficiently solving industrial optimization problems.

We also carefully translated these problems into weighted Max-SAT and
pseudo-Boolean problems. Somewhat to our surprise, the tools mentioned in
Section 4 needed around 30 seconds on the smallest of these problems, and did
not terminate in a day on the second smallest one. These problems are also
not known to be tractable by means of translations into pure Integer Linear
Programming, in spite of attempts using the best ILP solvers (Javier Larrosa,
private communication).

6 Conclusions and Further Work

By developing DPLL(T ) techniques for weighted Max-SAT, we have shown that
DPLL(T ) can be very competitive for problems that do not look a priori like
typical SMT problems. Since this was achieved with relatively little effort, we
see this as an indication of the quality, in terms of efficiency and flexibility, of
our approach.

The success of our Max-SMT implementation on the CELAR benchmarks
reveals that realistic problems can be modeled as Max-SMT problems and solved
with small variants of SMT solvers. Effectivity of SMT solvers for that purpose
has also been recently shown in [SPSP05], using SMT over another fragment of
linear arithmetic, for solving soft temporal constraints, where extensive experi-
ments were done on random problems.



14

Future work concerns other problems that are not typical SMT-like. For ex-
ample, we are currently investigating the use of DPLL(T ) for expressing finite-
domain constraints, and in particular global constraints from the constraint pro-
gramming world, such as alldifferent.
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