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Abstract

A new technique is presented for superposition with first-order clauses with built-in Abelian
groups (AG). Compared with previous approaches, it is simpler, and AG-unification is used
instead of the computationally more expensive unification modulo associativity and commutativity.
Furthermore, no inferences withthe AG axioms or abstraction rules are needed; in this sense this is
the first approach where AG is completely built in.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is crucial for the performance of a deduction system that it incorporates specialized
techniques to work efficiently with certain theories, since a naive handling of their axioms
leads to an explosion of the search space. Perhaps the most important example of this
is paramodulation, an inference rule specialized to equality in the context of resolution-
based systems. Essentially, paramodulation builds the congruence axioms inside the
inference system.

Another well-investigated line of researchconcerns building-in equational theories
inside paramodulation and resolution-based systems. Some axioms generate many slightly
different permuted versions of clauses, and for efficiency reasons it is many times better to
treat all these clauses together as a single onerepresenting the whole class, i.e. to work with
abuilt-in equational theoryE, andperforming deduction with specializedE-matching and
E-unification algorithms.

Early results on paramodulation modulo E were given by Plotkin (1972), Slagle
(1974) and Lankford and Ballantyne(1977) and extended E-rewriting was defined by
Peterson and Stickel(1981). Special attention has always been devoted to the case whereE
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includes axioms of associativity and commutativity (AC), which occur very frequently in
practical applications, and are well suited forbeing built in due to their permutative nature.
Note that in general thereis no unique most generalE-unifier for a givenE-unification
problem, and that new variables may appear: for example, iff is an AC-symbol, then
f (x, a) and f (y, b) have the two AC-unifiersσ1 = {x �→ b, y �→ a} andσ2 = {x �→
f (b, z), y �→ f (a, z)}.

Resolution modulo E is relatively simple: there exist general completeness results for
resolution with constraints, which essentially say that completeness is preserved when
unification is replaced byE-unification. The reason is thatresolution inferences, which
take place at the atomic level, do not interfere with the built-in equational theories, which
affect only the term level, and hencelifting can still be done (seeNieuwenhuis and Rubio,
2001). Unfortunately, for paramodulation this is far from true, and for each built-in theory
special inference rules have to be designed and their completeness proved.

Paramodulation with built-in Abelian groups (AG) has been investigated by many
authors:Chenadec(1986), Zhang(1993), Marché(1994, 1996), Ganzinger and Waldmann
(1996), Waldmann(1998, 1999), Stuber (1998). This is not surprising since AG are of
course ubiquitous in many applications of (semi-)automated reasoning. But building-in
AG is alsoattractive for at least two more reasons.

On the one hand, due to the fact that Diophantine equation solving is easier in the
integers than in the natural numbers, AG unification is easier than AC and AC1 (i.e. Abelian
monoid) unification. If all free symbols are constants, then there is one single most general
AG unifier and the decision problem is polynomial, whereas for AC and AC1 the decision
problems are NP-complete, and for AC one may need to consider exponentially many
unifiers. Although with arbitrary free symbols the decision problem is NP-complete in
all three cases, AG unification behaves better in practice. Also the number of unifiers
to be considered is usually much smaller and not doubly exponential as for AC (see
Baader and Siekmann, 1993; Baader and Snyder, 2001for surveys on these results).

Another aspect that makes building-in AG attractive is calledsymmetrization(e.g.
in Chenadec, 1986): modulo AG (+,−, 0), every ground equation can be written as
u + · · · + u � t , where the summandu is greater (w.r.t. the given term ordering�) than
the summands int . As we will see, this allows one to restrict inferences to this maximal
summand and to avoid the prolific inferences with extended equations that appear in the
AC case.

Symmetrization is also exploited in March´e’s framework for Knuth–Bendix completion
of unit equations with built-in theories (ranging from AC to commutative rings)Marché
(1994, 1996). His completion procedure decides the ground word problem modulo AG
by building a finite convergent rewrite system. However, his procedure is not refutation
complete for equations with variables: in many cases it fails since it cannot handle
symmetrization at the non-ground level.

Full first-order clauses are considered inGanzinger and Waldmann(1996) and
Waldmann(1997), where symmetrization is also central. This work focusses not on
AG, but on the more general theory of cancellative Abelian monoids. It applies AC1
unification andabstractionrules, which, roughly, turn clauses likeC ∨ f (s) � t into
C ∨ x �� s ∨ f (x) � t , wherex is a new variable; this of course increases the number
of possible inferences onf . By specializing to torsion-free divisible AG, AC-unification
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and inferences into variables can be avoided, but abstraction remains necessaryWaldmann
(1998, 1999).

In Stuber’s work on paramodulation for AG represented as integer modules (Stuber,
1998), symmetrization is again crucial, but AG unification is not applied. Instead, AC
unification is used, and hence paramodulation inferences with the AG axioms on the
remaining clauses are needed. Forexample, refuting a clause likef (−b+ x + a) �� f (0)

requires inferences with the AG axioms, instead of directly finding the contradictory
instanceb−a for x by AG-unification. Technically, even for the ground case, his inference
rules and proofs are rather involved. InStuber’s Ph.D. Thesis (1999), proofs for the
ground case are given in a uniform framework for AG and several other commutative
theories.

Here we apply a variant of Bachmair and Ganzinger’s model generation technique
(Bachmair and Ganzinger, 1994), where the model is defined by rewriting, modulo AC
of +, with the well-known convergent rewrite systemRAG for AG, plus a set of ground
rewrite rulesR that consists of symmetrized rulesnu→ t (herenu denotesu + · · · + u
whereu occursn times) and theirinverseversion−u→ (n−1)u− t . Hence� has to be an
AC-compatible reduction ordering orienting these rules, which can be fulfilled by simple
general-purpose orderings like RPO (this was already mentioned by March´e). This gives
relatively simple completeness proofs for full first-order ground clauses. From our results
it is easy to obtain a decision procedure forthe satisfiability of arbitrary sets of ground
clauses modulo AG.

For completely building-in AG at the non-ground level, and hence avoiding all
inferences with the AG axioms by applying AG-unification, the main problem is: how
to lift, to inferences on non-ground clausesC, the rewrite steps withR∪ RAG on ground
instancesCσ? The steps withR indeed become inferences, but for the steps withRAG this
is precisely what we want to avoid. The key ideas to our solution are roughly as follows.
We keep non-ground clausesC fully simplified w.r.t. RAG (which is a cheap and useful
simplification anyway). Furthermore, in thecompleteness proofs we consider instances
with reduced1 substitutionsσ (extending some ideas from thebasicsuperposition approach
of Nieuwenhuis and Rubio, 1995; Bachmair et al., 1995). Some steps withRAG may then
still be needed inCσ at the frontier betweenC andσ . But acareful analysis of these steps
reveals that they can be covered by considering inferences with AG-unification on adequate
subterms.

Our AG-superposition inference rules have strong ordering restrictions implying that
inferences only need to involve the maximal summands of the clause. This generalizes
standard superposition: summands play the role of terms.

Due to the simplicity and restrictiveness of our inference system, its compatibility with
redundancy notions and constraints, and the fact that standard term orderings like RPO can
be used, we believe that our techniques will become the method of choice for practice. On
the theoretical side, we expect that our techniques and results will also lead to logic-based
decidability and complexity results, along the lines of, e.g.Basin and Ganzinger(1996),

1 In the preliminary version of this work, (Godoy and Nieuwenhuis, 2000), we used a different notion of
irreducibility. In this article the definitions are more intuitive and we obtain shorter and simpler proofs.
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Nieuwenhuis(1996, 1998), Ganzinger et al.(1999), Ganzinger and de Nivelle(1999) and
Waldmann(1999).

This article is structured as follows. After the basic notions and notation given in
Section 2, in Section 3we introduce our techniques for the simple case of ground Horn
clauses, and show that this can be used for deciding the satisfiability of set of general
ground clauses modulo AG.Sections 4–6 are the core of this article. There, the ideas of the
ground case are extended to Horn clauses with variables. This is again extended to general
clauses with variables inSection 7. Finally, in Section 8we give conclusions and mention
some optimizations and other ideas for further work.

2. Basic notions

We use the standard notation and terminology for terms and rewriting of
Dershowitzand Jouannaud(1990), for inference rules, clauses and equality Herbrand
models ofBachmair and Ganzinger(1994) and Nieuwenhuis and Rubio(2001), and for
constraints and constrained clauses ofNieuwenhuis and Rubio(1995, 2001).

Furthermore, we use the following terminology for positionsp andq in a termt : we
say thatp is (strictly)below qif q is a (proper) prefix ofp, and thenq is (strictly)above p.
Similarly, p is beside q(or disjoint with q) if no one is a prefix of the other. We also say
that p is belowa function symbolf in t if t|q is headed byf for someq above p, and then
p is immediately below fif p is q · i for some natural numberi .

The rewrite systemRAG consists of the following five rules:

x + 0→ x

−x + x→ 0

−(−x)→ x

−0→ 0

−(x + y)→ (−x)+ (−y).

By AG we denote the set of seven equations consisting of these five rules (seen as
equations) plus AC, the AC axioms for+. By=AC and=AG wedenote the corresponding
congruences on terms. In this article, rewriting with a set of rulesR is always considered
moduloAC, that is, when writing→R, we mean the relation=AC→R=AC. We denote by
nf R(t) thenormal form of a termt by rewriting with R, and instead of writingnf RAG

(t)
we sometimes write AG-n f (t). By freefunction symbols we mean symbols different from
+,− and 0.

We sometimes write terms with+ in infix notation, without parenthesis. For example,
+(a,+(+(b, c), d)) is writtena+ b+ c+ d. But we remark that this is only done at the
notation level (and terms are not considered to be in flattened form as in other approaches,
but this isnot relevant here since we work with the rewrite relation=AC→R=AC, i.e.
before each rewrite step we can apply AC-steps on the whole term, not only on the subterm
that is rewritten). Asummand is a termu headed by a free symbol. We writenu as a
shorthand for the expressionu+ · · · + u whereu occursn times, and−nu as a shorthand
for n(−u), anda− b as a shorthand fora+ (−b).
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An AG-context positionin a terms is eitherλ or a position p · i such that the topmost
symbol of s|p is neither+ nor−. An AG-contextin a terms is any occurrence of a subterm
of s at an AG-context position.

In this article, we assume that� is a well-founded strict ordering on ground terms
satisfying:

1. � is AC-compatible, that is,s′ =AC s� t =AC t ′ impliess′ � t ′.
2. � is total up to=AC on the set of ground terms, that is, for all ground termss andt ,

we haves� t or t � s or s=AC t .
3. � orients allrules of RAG, that is,lσ � r σ for every rulel → r of RAG and all

grounding substitutionsσ .
4. � is monotonic on ground terms, that is, for all ground termss, t andu, we have

u[s]p � u[t]p whenevers� t .

One way to build such an ordering� is to simply use the recursive path ordering (RPO)
Dershowitz(1982), applied to the terms to be compared inflattenedform w.r.t.+. This
flattening consists of removing all operators+ that are immediately below another+. For
example,+(a, +( f (+(a,+(b, c))), c)) becomes+(a, f (+(a, b, c)), c), which can also
bewritten a + f (a + b+ c) + c. Note that in the flattened form of a termt , denoted by
flat(t), different occurrences of+ can have different arities (but all greater than 1).

Lemma 2. Let� be defined by: s� t if flat(s) �rpo flat(t), where�rpo is an RPO with a
total precedence�F such that f �F − �F + �F 0 for all free symbols f and where all
symbols have a lexicographic status, except+, whose status is multiset. Then� fulfills the
aforementioned requirements.

Definition 3. A ground equationnu � n1v1 + · · · + nkvk in normal form w.r.t.RAG is
said to be inreductive formif n > 0, theni are non-zero integers, andu and thevi are
summands withu � vi . The (logically equivalent w.r.t. AG-models)inverse reductive form
of this equation is−u � (n− 1)u− n1v1 − · · · − nkvk.

For everyequations� t , its reductiveform can be obtained by normalizings+ (−t) �
0 w.r.t. RAG into n1u1 + · · · + nkuk � 0 where, say,u1 is the maximal summand, and
then, if n1 is positive, the reductive form isn1u1 � −n2u2 − · · · − nkuk; otherwise, it
is −n1u1 � n2u2 + · · · + nkuk. Note that the unary minus operator is overloaded in our
notation since it is also applied to coefficients (but remember that coefficients are not part
of our logical language but just a shorthand in our notation).

Example 4. If a � b � c then the equation(−a) + c + 0 + (−(−c)) + (−b) �
(−c)+ a+ b+ 0 is equivalent to(−a)+ (−a)+ c+ c+ c+ (−b)+ (−b) � 0, written
shortly−2a+ 3c− 2b � 0, and becomes in reductive form 2a � 3c− 2b, and ininverse
reductive form−a � a− 3c+ 2b. �
Example 5. Equations in reductive form can be adequately used as terminating rewrite
rules.Assume we havea � b � c and the equation (in reductive form) 3a � −b+ c. It
can be applied either as it is, or in its inverse form−a � 2a+ b− c.

For example, 4a is AG-equivalent by this equation to−2a − 2b + 2c. Let usprove
it by rewriting both terms into their respective normal forms. On the one hand, by
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simply applying the equation to three of its foura’s, 4a rewrites into the normal form
a− b+ c. On theother hand, by applying the inverse form,−2a− 2b+ 2c rewrites into
−a− 2b+ 2c+ 2a+ b− c which simplifies withRAG into a− b+ c.

Note that normal forms w.r.t. both ways of rewriting with such equationsnu � v will
always have a positive number ofu’s between 0 andn − 1, and that the inverse kind of
steps isnot needed ifn = 1. The two ground inference rules of AG-superposition that are
given below, in fact, correspond to these two ways of rewriting.�

3. Ground Horn case

Here we first introduce part of our techniques on the simple subcase of ground Horn
clauses. We assume all equations in clauses to beeagerly maintained in reductive form,
and moreover we assume negative equations 0�� 0 to be removed eagerly from all clauses.

Definition 6. The inference rules for ground AG-superposition are as follows:

direct AG-superposition:
C ∨ nu� r D[nu]p

C ∨ D[r ]p
inverse AG-superposition:

C ∨ nu� r D[−u]p
C ∨ D[(n− 1)u− r ]p if n > 1

whereD|p denotes a subterm ofD modulo AC, that is, eachD′|q is such a subterm if
D =AC D′.

The ordering restrictions of AG-superposition are such that inferences are needed only
if they take placewith the strictly maximal summand andon a maximal summand (that is
strictly maximal if it occurs in a positive equation), that is, denoting bys� C the fact that
s � t for every summandt occurring inC, these inferences are needed only if:

1. u � C (and remind that, by expression in reductive form, alsou � r )
2. s � D′ wheneverD is D′ ∨ms� t (in reductive form) withD|p in ms
3. s 
 D′ wheneverD is D′ ∨ms �� t (in reductive form) withD|p in ms.

Note that hence inverse AG-superposition is needed only on proper subterms of
summandss since in an (in)equation in reductive form the term−u cannot occur elsewhere.

3.1. Completeness for the ground Horn case

We now use multiset extensions for lifting the ordering� on terms to orderings on
ground equations (in reductive form) and clauses in the usual way.

Definition 7. Let C be a ground clause, and let emul(s � t) be {s, t} if s � t is a
positive equation inC, and {s, s, t, t} if it is negative. Then we define the ordering�e

on (occurrences of) ground equations in a clause bye �e e′ if emul(e) �mul emul(e′).
Similarly,�c on ground clauses is definedC �c D if mse(C) (�mul)mul mse(D), where
mse(C) is the multiset of all emul(e) for occurrencese of equations inC.

Lemma 8. Let C and D be ground clauses. If D is the reductive form of C then C
c D.
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Proof. Let u be the maximal summand of an equations � t occurring (positively or
negatively) inC. If u does not occur in the reductive form ofs� t , i.e. it has been cancelled
out, then the reductive form is smaller. Otherwise the reductive form ofs� t is of the form
nu� r whereu � r . If −u occurs ins � t then againnu� r is smaller. Otherwises � t
is of the formnu+ s′ � t andnu � r is smaller (ifs′ is non-empty) or equal (ifs′ is
empty). �

We now show how to construct a model for setsS of ground Horn clauses closed
under ground AG-superposition and where� /∈ S (note that this implies the refutation
completeness of ground AG-superposition). As usual (seeBachmair and Ganzinger, 1994),
in order to construct the model we will generate a set of rewrite rulesRS by induction on
�c. But here the model will contain as well the rules ofRAG, and, as said, all rules will be
applied modulo AC.

Definition 9. Let Sbe a set of ground Horn clauses in reductive form, and letC be a clause
in S of the formC ∨ nu � r . ThenC generatesthe rulenu → r if the following three
conditions are satisfied:

1. (RC ∪ AG)∗ � C
2. u � r andu � C
3. nu is irreducible byRC

where RC is the set of rules generated by clauses ofS smaller thanC w.r.t. �c.
Furthermore, if C generatesnu → r with n > 1, in addition C generatesits inverse
form−u→ (n− 1)u− r . The set of all rules generated by clauses inS is denoted byRS.

We now state an essential result:RS∪ RAG is convergent modulo AC.

Lemma 10. Let S be a set of ground Horn clauses in reductive form. RS ∪ RAG is
terminating and confluent modulo AC on ground terms.

Proof. All rules in RS∪ RAG are oriented w.r.t.�, andhenceRS∪ RAG is terminating for
rewriting modulo AC, since� is AC-compatible, well founded, and monotonic on ground
terms. Confluence is a consequence of the following facts. By construction ofRS, for all
ground rulesl → r in RS, the terml is irreducible by the ground rules inRS\{l → r }.
Furthermore, RAG is well known to beconfluent. Finally, the (extended) critical pairs
betweenRAG and RS are easily shown to be joinable. This is straightforward but long,
so we omit this part here (similar results are given in the literature, e.g. inChenadec, 1986;
Marché, 1996, but we have not found the exact result needed here).�
Theorem 11. AG-superposition is refutation complete for ground Horn clauses.

Proof. Let Sbe a set of ground Horn clauses (whose equations are in reductive form) such
that S is closed under AG-superposition and� /∈ S. We provethat thenS is satisfiable by
exhibiting an AG-modelI for S, whereI is the equality Herbrand interpretation defined
as the congruence on ground terms generated byRS ∪ AG. Note that,sinceRS ∪ RAG is
terminating and confluent,I � s � t if, andonly if, s→∗RS∪RAG

←∗RS∪RAG
t . We proceed

by induction on�c, that is, wederive a contradiction from the existence of a minimal

(w.r.t.�c) clauseD (in reductive form) ofSsuchthat I � D.
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Let s be the maximal summand inD. ThenD is either of the formD′ ∨ ms� t with
s � D′ (a), or else it isD′ ∨ms �� t with s 
 D′ (b). We first show that in both casesms
is reducible byRS.

(a) SinceI � D, it has generated no rule ofRS. According toDefinition 9, thiscan only
be becausems is reducible byRD. (b) Since I � D, we haveI � ms� t . Therefore ms
andt are joinable byRS∪RAG, and sincems� t , the maximal sidems, which isin normal
form w.r.t. RAG, has to be reducible byRS. The rulereducingmshas been generated by
a clause of the form C ∨ nu � v, and there exists an inference by (direct or inverse)
AG-superposition

C ∨ l � r D[l ]p
C ∨ D[r ]p

whereI � C∨D[r ]p andD is larger w.r.t.�c thanC∨D[r ]p, and therefore, byLemma 8,
also larger than the reductive form ofC ∨ D[r ]p, contradicting the minimality ofD. �

3.2. Selecting negative literals

It is easy to see that our inference rules remaincomplete withselectionof negative
literals (see, e.g.Bachmair and Ganzinger, 1994), where it is assumed that in each clause
with a non-empty antecedent one of its negative equations has beenselected. In the Horn
case this leads to positive unit strategies (and in the non-Horn case to positive strategies):
all left premises of AG-superpositions are positive unit clauses, and the only inferences
involving non-unit clauses are AG-superpositions on the selected negative equation. The
following result is a simple modification of the previous one; it is immediate if we define
RS such that only unit clauses generate rules:

Theorem 12. AG-superposition with selection is refutation complete for ground Horn
clauses.

3.3. Deciding the satisfiability of sets ofground clauses

From our results it is not difficult to obtain a decision procedure for the satisfiability of
arbitrary sets of ground clauses modulo AG.

For the Horn inference system with selection, each inference ofl � r on a clause
D produces a smaller clauseD′. Furthermore,D is a logical consequence (modulo AG)
of the smaller clausesl � r and D′, i.e. D has becomeredundant in the sense of
Bachmair and Ganzinger(1994). In our procedure such redundant clauses can be removed
without loss of completeness (redundant clauses never generate any rules, and in the
proof of the completeness theorem, they are never the smallest counter example; see, e.g.
Bachmair and Ganzinger, 1994 for details). Hence, if after each inference the maximal
premiseD is removed, the procedure remains complete, and at each inference the clause
set decreases w.r.t. the multiset extension of the ordering and hence the process terminates,
thus deciding satisfiability.

A decision procedure for the satisfiability ofsets of arbitrary ground clauses modulo
AG can be obtained by first transforming into Horn clauses (whereS∪C ∨ A1∨ · · · ∨ An
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is split into the disjunction of setsSi of the formS∪ C ∨ Ai ; thenS is satisfiable if some
of theSi is).

Theorem 13. AG-superposition with selection decides the satisfiability of sets of ground
clauses modulo AG.

4. Inference rules for clauses with variables

In this section, we adapt the inference system in order to deal with equality constrained
clauses with variables, where constraints are conjunctions of equalitiess = t . As usual,
the semantics of a constrained clauseC | T is the set of its ground instances, that is, the
ground instancesCσ suchthat Tσ evaluates to true if= is interpreted as=AG. Thenσ

is called a solution forT . The empty clause with a constraintT is hence a contradiction,
denoted simply by�, if, andonly if, Tθ is true for some groundθ .

Very roughly, the following is needed for lifting our completeness results from the
ground case to equality constrained clauses with variables. If for clausesC1 | T1 and
C2 | T2 there is an inference between ground instances

C1σ C2σ

D

then there exists an inference by the non-ground version of the inference rules

C1 | T1 C2 | T2

D′ | T
suchthat D is a ground instance ofD′ | T .

As we will see inSection 5, for completeness it suffices to be able to do this only
for instances withσ of C1 and C2 that are, in some technically rather involved sense,
irreduciblew.r.t. RS, whereRS is the set of rules generated in a way similar to the previous
section (but now by ground instances of clauses).

Definition 14. An equations= t is in one-sided formif it is of the forme� 0 wheree is
in normal form w.r.t.RAG.

Note that each equation has two (AG-equivalent) one-sided forms: for example,x+ y−
z � 0 is equivalent to−x − y + z � 0. In the following, we assume that all equations in
clauses are kept in one-sided form. Unless explicitly stated otherwise, it does not matter
which one of the two. Furthermore, for all substitutionsσ , we assume w.l.o.g. thatxσ is in
normal form w.r.t.RAG for all x.

In order to define the non-ground inference rules, we now analyze for each inference
rule how their premises have to be expressed. For simplicity, we omit the constraints, since
they do not matter at this point; let us only remark that the amount of possible inferences
can be further restricted in many different ways by checking their compatibility with the
constraints.
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4.1. Left premises of direct AG-superposition

Intuitively, our aim is the following. LetC be a clause with a positive equatione � 0,
and assume a ground instanceCσ of it generates a rulenu→ r with n > 0, andCσ is
the left premise of an AG-superposition. Then for the non-ground case we have to be able
to expresse � 0 ass � t such that the termssσ andtσ have, respectively,nu andr as
normal forms w.r.t.RAG, and thenperform the inference with AG-unification betweens
and the corresponding subterm of the right premise.Orienting e� 0 ass � t in this way
may require tosplit the variables ofe into two parts:

Example 15. Consider the clausesa + 2x � b and f (4a) �� f (a + b − 2c), where
a � b � c. Assume that, for the instance wherex �→ a + c, the equationa + 2x � b
generates the rule 3a→ b− 2c. Then there exists a ground inference

3a→ b− 2c f (4a) �� f (a+ b− 2c)

f (a+ b− 2c) �� f (a+ b− 2c)

applied to three of thea’s in f (4a), where the conclusion in reductive form becomes 0�� 0
and hence the empty clause.

To cover this inference at the non-ground level,x has to be split into y (which, roughly,
will contain the maximal summands inxσ ) andz (for the remaining summands). Hence
a+ 2x � b can beorientedasa+ 2y � b− 2z. Then there is a non-ground inference

a+ 2y � b− 2z f(4a) �� f (a+ b− 2c)

f (a+ b− 2z) �� f (a+ b− 2c)

unifying a+ 2y with three of thea’s in f (4a). AG-unifying both sides of the conclusion
(which will be another inference rule; see below) detects the instance wherez is c;
the corresponding instance has a reductive form 0�� 0 andhence the contradiction is
found. �
Definition 16. Let ebe a term of the formn1s1+· · ·+npsp+m1x1+· · ·+mqxq where the
si are non-variable summands, thexi are variables, and theni andmi are non-zero integers.
By splitting eachxi into two new variablesyi andzi , andsplitting the summands into two
disjoint sets, the equatione� 0 can be written as an equivalent equations� t of the form

n1s1 + · · · + nksk +m1y1+ · · · +mqyq � −nk+1sk+1

− · · · − npsp −m1z1− · · · −mqzq.

In the following, we call each such an equations � t anorientationfor e� 0 and wecall
the corresponding constraintτ of the form

x1 = y1+ z1 ∧ · · · ∧ xq = yq + zq

thesplitting constraintfor this orientation.

It is not difficult to see that this notion of orientation fulfills what we wanted: ifeσ � 0
generates a rulenu → r then indeed for some orientations � t of e � 0 and some
extension of σ in order to include theyi andzi , the termssσ andtσ have, respectively,nu
andr as normal forms w.r.t.RAG. This we will see in detail in thecompleteness proofs.
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Of course, the fewer orientations have to be considered for a given equatione � 0,
the fewer inferences will be performed, which is better for efficiency in practice. Indeed,
a little more careful analysis reveals that a large number of optimizations are possible.
In Section 8we will mention some of them. It is alsoimportant for efficiency to exploit
the unifiability and ordering restrictions as the strongest possible filters to avoid redundant
inferences with such orientationss� t . For example, apart from the unification restrictions
of the inference itself, wheres is unified with a subterm of the right premise, in the above
orientation we can adds1 = · · · = sk to the constraint; in particular, this means, e.g. that
if e is f (· · ·) + g(· · ·) + · · ·, then no orientations � t is needed whereboth summands
headed withf andg are in the left hand sides. In Section 8the problem of checking the
ordering restrictions is addressed.

Note that this notion of orientationdoes not depend on which one ofe� 0 or−e� 0 we
consider as the one-sided form, and that the non-deterministic aspect of orientation is the
guess of a subsets1 . . . sk of the (non-variable) summands (where the guess is constrained
by the requirement that all of them are AG-unifiable and by the requirements on�).

4.2. Left premises of inverse AG-superposition

Example 17. Considera � b � c and the clausesf (−a + b + c) �� f (a − c) and
2x � b. With the instancex �→ a − c, the second equation becomes 2a � b + 2c. At
the ground level, there exists an inferencewith inverse AG-superposition which produces
f (a − c) �� f (a − c). At the non-ground level,x is split into y + z, and the inference is
performed with−y � y + 2z− b, and weobtain f (a+ c+ 2z) �� f (a− c). From this,
by AG-unification the instancez �→ −c is found and the empty clause is obtained.�

Definition 18. Let e (or−e) be a term of the formx1+· · ·+xn+v, wherev contains only
negative variables and (positive or negative) summands, and lete′ be e but where every
occurrence ofxi at top-level position has been replaced byyi −zi , whereyi andzi are new
variables. The splitting constraintτ is x1 = y1 − z1 ∧ · · · ∧ xn = yn − zn. Hencee′ is of
the formy1− z1 + · · · + yn − zn + v.

Then, if e′ is of the forms+ e′′ wheres is a positive summand, then−s � e′′ is an
inverse orientationfor e� 0 with splitting constraintτ .

Furthermore, if e′ is of the formw + e′′ wherew is a variable (i.e.w is someyi ),
then−w1 � w2 + e′′ is an inverse orientationfor e � 0 with splitting constraint
τ ∧w = w1+w2.

Finally, if e′ is of the form−w + e′′ where w is a variable, but none of thezi ,
then w1 � −w2 + e′′ is an inverse orientationfor e � 0 with splitting constraint
τ ∧w = w1+w2.

The splitting of the variablew in the second case of inverse orientation is the one
illustrated by the previous example.Example 24shows the necessity of the splittings of
the constraintτ .

4.3. Right premises for direct AG-superposition

Example 19. Considera � b � c, the left premise 3a � b, and the right premise
f (2x, x) �� f (a + b+ 2c, 2a + c). With the instance{x �→ 2a + c}, the right premise
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is f (4a + 2c, 2a + c) �� f (a + b + 2c, 2a + c) which gives in one ground inference
f (a+ b+ 2c, 2a+ c) �� f (a+ b+ 2c, 2a+ c), which inreductive form is 0�� 0.

Now the question is: how can we, at the non-ground level, perform the inference into
the term 2x? (which is the termt in the definition below). By splittingx into only the two
variablesy andz, one getsf (y+ y+ z+ z, y+ z) �� f (a+b+2c, 2a+ c), for which the
ground inference cannot be lifted: it is impossible to splity + y + z+ z into t1 + t2 such
thatt1σ is 3a, andt2σ is a+ 2c for someσ .

As we will see, by splittingx into three variablesy, y′, andz, lifting is always possible.
In our example, then one getsf (2y + 2y′ + 2z, y + y′ + z) �� f (a + b+ 2c, 2a + c),
where 2y + 2y′ + 2z is split into 2y+ y′ andy′ + 2z (these are the termst1 andt2 in the
definition below). Then an AG-unifier of 3a and 2y + y′ instantiatesy andy′ with a, and
the conclusion of the non-ground inference isf (a+b+2z, 2a+z) �� f (a+b+2c, 2a+c),
which byone more AG-unification, wherez is instantiated withc, becomes 0�� 0. �

Definition 20. Let t be a non-variable subterm ofe in a literale � 0 or e �� 0 wheret is
not immediately below an AG-symbol and the head symbol oft is free or+. W.l.o.g., lett
be of the form

n1s1 + · · · + npsp +m1x1+ · · · +mqxq + t ′

where allsi are summands, allxi variables, all ni andmi are positive coefficients, andt ′
contains only negative summands and variables.

Thent1+ t2 is asplitting for t if t1 is a term whose headsymbol is free or+ of the form

k1s1+ · · · + kpsp +m1y1+ · · · +mqyq + l1y′1+ · · · + lqy′q
where 0≤ ki ≤ ni and 0≤ l i < mi , andt2 is

(n1 − k1)s1 + · · · + (np − kp)sp +m1z1+ · · · +mqzq + l ′1y′1+ · · · + l ′qy′q + t ′

wherel ′i is 0 if l i is 0 (i.e. thenxi is split only into two partsyi andzi ), andl ′i is mi − l i
otherwise. Again we denote byτ the corresponding splitting constraint.

As before, other restrictions apply; for example it is also not necessary to considert1 of
the formyi + y′i (i.e. if mi is 1).

4.4. Right premises for inverse AG-superposition

Definition 21. Let t be a non-variable subterm ofe in a literale � 0 or e �� 0 wheret is
not immediately below an AG-symbol.

If t is of the form−s+ t ′, wheres is a summand, thent1+ t2 is aninverse splittingfor
t with empty splitting constraintτ if t1 is−s andt2 is t ′.

If t is of the form−x+ t ′, wherex is a variable, thent1+ t2 is aninverse splittingfor t
if t1 is−y andt2 is−z+ t ′, and the splitting constraintτ is x = y+ z.

4.5. AG-superposition rules

Based on the notions of orientations and splittings defined in the previous subsections,
we are now ready to define the inference system for Horn clauses with variables.
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Definition 22. In the left premiseC ∨ l � r of the direct AG-superposition rule below, it
is assumed that the actual clause isC ∨ e � 0 and thatl � r is an orientation ofe � 0.
Similarly, in the right premise,D[t1 + t2]p denotes thatD|p is anon-variable termt that
is not immediately below an AG symbol, with a splittingt1 + t2. In the sameway, for the
inverse AG-superposition rule, they denote inverse orientations and splittings. In all cases,
τ is the conjunction of the splitting constraints of the two premises. The inference system
H consists of the following three2 rules for constrained clauses:

direct AG-superposition:

C ∨ l � r | T D[t1+ t2]p | T ′
C ∨ D[r + t2]p | T ∧ T ′ ∧ l = t1 ∧ τ

inverse AG-superposition:

C ∨ l � r | T D[t1+ t2]p | T ′
C ∨ D[r + t2]p | T ∧ T ′ ∧ l = t1 ∧ τ

AG-zero-instance:

C ∨ e �� 0 | T
C | T ∧ e= 0

.

The ordering restrictions of the superposition rules are the ones corresponding to the
ground rules. More precisely, a direct (or inverse) superposition with premisesC1 | T1 and
C2 | T2 and conclusionD | T is needed if, for some solutionθ of T , there is a ground direct
(resp. inverse) inference between the reductive forms ofC1θ andC2θ , and with conclusion
Dθ . The AG-zero-instance rules can be restricted to maximal equations of the clause.

In the following sections, we will prove the refutation completeness of this
inference system. But let us first illustrate some of the limitations and technical
difficulties when dealing with constrained clauses, by means of an example taken from
Nieuwenhuis and Rubio(2001). Note that in such examples where only free symbols
occur, AG-superposition boils down to normal superposition.

Example 23. Consider the unsatisfiable clause set, with the ordering as inLemma 2based
on f �F a �F b �F c:

1. a � b
2. f (x) � c | x = a
3. f (b) �� c.

No inferences that are compatible with the constraint of the second clause can be made (a
superposition inference between 2 and 3 leads to a clause with an unsatisfiable constraint
x = a ∧ b = x). This incompleteness is due to the fact that the usual lifting arguments for
superposition (seeNieuwenhuis and Rubio, 2001) do not work here, since they are based
on the existence ofall ground instances of the clauses; in this case, it requires an instance
f (b) � c of clause 2, which does not exist. This example also shows that one cannot

2 For explanation purposes we prefer to keep the direct and inverse versions of the superposition rules, like in
the ground case, in spite of the fact that the two rules itself are written identically here.
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deal with arbitrary initial constraints. For constrained clauses, the alternative technique for
lifting is based on the notion of irreducible instances (Nieuwenhuis and Rubio, 2001). In
this article we extend this idea of irreducible substitution. It becomes technically more
complex due to the built-in properties of AG (Example 29gives an idea of it). �

Example 24. In this example it is shown how the inference system performs and also
the need of the splitting of variables in the right premise of inverse AG-superposition is
illustrated. Consider the clausef (x) �� f (−a)∨x+3a � 0. With the instance{x �→ −a},
the negative equation in reductive form is 0�� 0. The positive equation is 2a � 0, which
may generate the two rules 2a→ 0 and−a→ a. If one wants to refutef (−3a) �� f (a),
then the inverse rule has to be used. Indeed, with−a→ a, the term f (−3a) rewrites into
f (−2a+ a), which is f (−a), which rewrites into f (a).

Now we want to perform, at the non-ground level, the ground refutation corresponding
to these two rewrite steps. Assume that, at the non-ground level, we consider the orientation
−a � 2a+ x, i.e. without the additional splitting ofx as explained inDefinition 18. Then,
by the corresponding inverse AG-superposition inference we obtainf (x) �� f (−a) ∨
f (x) �� f (a). If one adds constraints forcinga to be the maximal summand in the clause
f (x) �� f (−a) ∨ x + 3a � 0 and such constraints are inherited, then no substitution
different from{x �→ −a} is possible (such constraints can be handled with the methods
presented inGodoy and Nieuwenhuis, 2001). Now, one would want to do a new inference
on x, but inH no inferences below variables are computed. So this shows the need of a
splitting of x into y− z in an inverse AG-superposition inference.

Indeed, if we do this additional splitting, the orientation becomes−a � 2a + y − z.
Then the instance under consideration is extended such that{y �→ 0, z �→ a}, and the
obtained clause isf (x) �� f (−a) ∨ f (y − z) �� f (a), with the splitting constraint
x = y−z. Now, it is possible to do the second inverse AG-superposition inference (the one
corresponding to the second rewrite step with−a→ a). Applying−a on−z, one obtains
f (x) �� f (−a) ∨ f (x′) �� f (−a) ∨ f (y + 2a+ y′ − z′) �� f (a) (here, thex of the left
premise is renamed intox′) with the splitting constraintx′ = y′ − z′, and extending the
substitution{y′ �→ 0, z′ �→ a}. With this substitution, all these equations are of the form
0� 0, and three AG-zero-instance inferences give us the desired refutation. �

5. Completeness for a simple subcase

For explanation purposes, in this section we consider the simpler subcase where all free
symbols are constants. Hence this is assumed in all results of this section. It is interesting
to observe that in this subcase the inference rule of inverse AG-superposition is not needed.

As said before, we will deal with instances with ground substitutionsσ of clausesC
that are in some sense irreducible with respect toRS, whereRS is the set of rules generated
in a way similar to how it was done for the ground case in the previous section.

Example 25. Let s be a term andσ a substitution, both in normal form w.r.t.RAG. Then
still sσ needs not be in normal form w.r.t.RAG.

For example, ifs is −x + y + a, xσ is a + b, andyσ is b, then−xσ is AG-equal to
−a+ (−b) andsσ in AG-normal form is 0. �
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Example 26. The problems illustrated inExample 23still occur in this simple case where
all free symbols are constants. Again with the orderinga � b � c, consider

1. a � b
2. b+ x � c | x = a
3. 2b �� c.

No inferences are possible on thisunsatisfiable set. �
Definition 27. Let C be a clause, let t be a term, letσ be a substitution in AG-normal
form, and letR be a ground TRS.

The pair(t, σ ) is irreduciblew.r.t. R if for all variablesx occurring int , the termxσ is
irreducible w.r.t.R�−u whereu is the maximal (w.r.t.�) summand of AG-n f (tσ).

The pair(C, σ ) is irreducible w.r.t.R if (e, σ ) is irreducible w.r.t.R for all equations
e� 0 of C.

Note that the notion of irreducibility for(C, σ ) does not depend on which one-sided
form e� 0 is considered.

We now adapt the notion of rule generation to the non-ground case. Instead of having
the rules generated by ground clauses in reductive form, now the rules are generated by the
reductive forms of instancesCσ of clausesC | T of S, where(C, σ ) is irreducible:

Definition 28. Let S be a set of constrained Horn clauses, letC | T be a clause inS with
a ground instanceCσ , and letG be the (ground) reductive form ofCσ , whereG is of the
form G′ ∨ nu� r . ThenG generatesthe rulenu→ r if the following four conditions are
satisfied:

1. (RG ∪ AG)∗ � G
2. u � r andu � G′
3. nu is irreducible byRG

4. (C, σ ) is irreducible w.r.t.RG

whereRG is the set of rules generated by reductive forms of instances of clauses ofS that
are smaller thanG w.r.t.�c. Furthermore, for each generated rulenu→ r with n > 1, in
addition the rule−u→ (n−1)u− r is generated. The set of all rules generated by clauses
in S is denoted byRS.

In the remainder of this sectionRS always denotes the ground TRS generated for a
givenSas in the previous definition.

Example 29. This example illustrates how the application of generated rules correspond
to inferences at the non-ground level. It also shows why the irreducibility notion is more
complicated than the standard one of superposition with constraints ofBachmair et al.
(1995) andNieuwenhuis and Rubio(1995), where, roughly speaking, one simply imposes
that for every variablex the termxσ has to be irreducible w.r.t. the rewrite systemR.

Consider the equatione� 0 of theform 2x − 2a− 2b+ c � 0 wherea � b � c, and
the substitutionσ suchthatxσ is a+b. We have thateσ � 0 is 2a+2b−2a−2b+c� 0,
and its reductive form isc � 0. The corresponding orientation at the non-ground level is
c � 2a+2b−2x. Due tothis instance the rulec→ 0 may begenerated. Later on, the rule
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b→ 0 may begenerated too, due to other equations. The variablex with the substitution
σ is reducible bysuch a ruleb → 0. So with the standard notion of irreducibility,
rules generated later on could reduce the substitution of clauses generating smaller ones.
Therefore this classical notion is not adequate in our context. Roughly speaking, we need
to allow such big summands that are cancelled out to be reducible.

Indeed, withthe notion used here, the one ofDefinition 27, we will see in Lemma 30
that xσ will be irreducible w.r.t. all generated rules with maximal summand smaller than
or equal to−c. Andindeed this irreducibility is preserved in the conclusions of inferences.
Assume we want to refute 2c+ y �� 0, whereyσ is 0 with the rulec→ 0. Observe that
(2c+y, σ ) is irreducible w.r.t. the generatedR. At the non-ground level, the reduction with
c→ 0 corresponds to an inference with the orientationc � 2a+2b−2x, andthe resulting
clause isc+ 2a+ 2b− 2x+ y �� 0. Observe that(c+ 2a+ 2b− 2x+ y, σ ) is irreducible
w.r.t. R, sincethe maximal summand of AG-n f (c+2a+2b−2xσ + yσ) is c. Here, some
constraints can be added, like for examplec > 2a + 2b − 2x. Such constraints can be
handled with the methods presented inGodoy and Nieuwenhuis(2001). In this case, the
only possible solutionσ is xσ = a+ b. �

The following lemma shows that our notion of orientation for left premises of direct
AG-superposition fulfills the requirements.

Lemma 30. Let C | T be a clause whose instance Cσ with reductive form Cr generates
the rule nu→ r .

Then there exists an orientation l1 � r1 of the positive equation e� 0 of C, and some
extension ofσ in AG-normal form satisfying the splitting constraint of the orientation, and
AG-n f(l1σ) = nu and AG-n f(r1σ) = r . Furthermore,all variables x in r1 satisfy that xσ
is irreducible w.r.t. R�−u

S .

Proof. W.l.o.g., lete be of the formk1x1 + · · · + kpxp + ku+ v where theki andk are
(possibly zero) integers, thexi are variables, andv is the (possibly 0) sum of constants
different fromu. Now considerthe orientation ofe� 0 into l1 � r1 where

l1 = k1y1+ · · · + kpyp + ku

r1 = −k1z1 − · · · − kpzp − v

i.e. where eachxi has been split into yi + zi . Furthermore, consider the extension ofσ
whereyi σ consists of all (positive or negative)u in xi σ , andzi is the sum of the remaining
constants, that is, ifxi σ =AC0 mi u+ vi whereu does not occur invi , thenyi σ = mi u and
zi σ = vi . Note that invi constants larger or smaller thanu may appear, but notu itself.

Then AG-n f (l1σ) = nu and AG-n f (r1σ) = r . It remains to be shown that every
variablezi in r1 satisfy thatxσ is irreducible w.r.t.R�−u

S . Weknow that(e, σ ) is irreducible
w.r.t RCr , i.e. xi σ is irreducible w.r.t.R�−u

Cr
. Then, sincezi σ is a sumof constants that

already appear inxi σ , we have thatzi σ is irreducible w.r.t.R�−u
Cr

. �

Note that in this case where all free symbols are constants, for a given clause with
positive equatione� 0 there are at most twoorientationsl1 � r1: one where the maximal
constant symbol ofe (if there isany) is inl1, and another one where there is no constant
symbol at all inl1 (if there is any variable ine).
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Lemma 31. Let e be a term such that (e, σ ) is irreducible w.r.t. RS, and let eσ � 0 in
reductive form be mu� v. Furthermore, let nu→ r be a rule in RS with 1≤ n ≤ m.

Then there exists a splitting e1 + e2 of e and an extension ofσ in AG-normal form
satisfying the correspondingsplitting constraint, and(e1+e2)σ =AG eσ and e1σ =AG nu.
Moreover, all variables x in e2 satisfy that xσ is irreducible w.r.t. R�−u

S .

Proof. For everyvariablexi in e, w.l.o.g. we havexi σ =AC0 mi u + vi whereu does
not occur invi , and wheremi ≥ 0 because(e, σ ) is irreducible w.r.t.RS (which contains
nu→ r and hence ifn > 1 also−u→ (n− 1)u− r ).

Therefore, sinceeσ � 0 in reductive form ismu� v, andm ≥ n, wecan assume that
e� 0 (in one of its one-sided forms) is of the form

k1x1+ · · · + kpxp + ku+ e′ � 0

where k ≥ 0, e′ is the (possibly 0) sum of the remaining constants and variables,
and {x1, . . . , xp} is a minimal set of variables with positive coefficientski such that
k1m1+ · · · + kpmp + k ≥ n or, if k is negative,k1m1+ · · · + kpmp ≥ n.

Now we distinguish three possible situations:

1. k ≥ n, andhencep is 0. Then some splitting of the form

e1 = nu

e2 = (k− n)u+ e′

fulfi lls the requirements. Note that(e2, σ ) is irreducible w.r.t.RS sincee2 has the
same variables ase and the maximal summand of AG-n f (e2σ) is smaller than or
equal tou, the maximal summand of AG-n f (eσ).

2. n > k > 0. Thenk1m1 + · · · + kpmp + k ≥ n > k2m2 + · · · + kpmp + k (the
latter relation by minimality of the set{x1, . . . , xp}). Now letl ben− (k2m2+ · · ·+
kpmp + k), i.e. intuitively, l is the number ofu’s we need from thek1m1 u’s in x1σ .
We assume thatl modk1 is not 0 (the case ofl modk1 = 0 is analogous and the
differences are commented on below). Now letm′ bel div k1, let k′ bel modk1, and
consider the splitting

e1 = ku+ k1y+ k′y′ + k2y2+ · · · + kpyp

e2 = (k1− k′)y′ + k1z+ k2z2+ · · · + kpzp + e′

where everyxi is split into yi + zi , except for x1 that is split intoy + y′ + z (if
l modk1 is 0 then the variabley′ is not needed in the splitting andx is split into
y + z) and letyσ be m′u, let y′σ beu, let zσ be (m1 − m′ − 1)u + v1, and fori
in 2 . . . p, let yi σ bemi u, and letzi σ bevi . This fulfills the requirements, and, for
similar reasons as inLemma 30we have that every variablex in e2 satisfies thatxσ

is irreducible w.r.t.R�−u
S .

3. k ≤ 0. Thenk1m1+· · ·+kpmp ≥ n > k2m2+· · ·+kpmp. As in theprevious case,
assume thatl modk1 is not 0, and letl ben− k2m2+ · · · + kpmp, let m′ bel div k1,
let k′ bel modk1, andconsider the splitting

e1 = k1y+ k′y′ + k2y2+ · · · + kpyp

e2 = (k1− k′)y′ + k1z+ k2z2+ · · · + kpzp + ku+ e′



18 G. Godoy, R. Nieuwenhuis / Journal of Symbolic Computation 37 (2004) 1–33

and letyσ bem′u, let y′σ beu, let zσ be(m1−m′ − 1)u+ v1, and fori in 2 . . . p,
let yi σ be mi u, and letzi σ be vi . This fulfills the requirements, and, for similar
reasons as inLemma 30, every variablex in e2 satisfies thatxσ is irreducible w.r.t.
R�−u

S . �

The proof of the previous lemma reveals that the definition of splitting of right premises
(Definition 20) could be made more restrictive. Indeed this is possible, thus reducing the
number of inferences that need to be considered. In fact, the following more restrictive
definition is also adequate for the general case handled in the next section, where we
consider arbitrary free symbols. We decided to giveDefinition 20 as it is because it is
simpler, but here we give the morerestrictive alternative (it can be skipped by all readers
except the ones interested in implementing these techniques in the most optimized way).

Let t be a non-variable subterm ofe in a literale� 0 ore �� 0 wheret isnot immediately
below an AG-symbol and the head symbol oft is free or+. W.l.o.g., lett be of the form

n1s1 + · · · + npsp +m1x1+ · · · +mqxq + t ′

where allsi are summands, allxi variables, all ni andmi are positive coefficients, andt ′
contains only negative summands and negative variables.

We choose a subset of thesi , say{s1 . . . sp′ } with p′ ≤ p, and a subset of thexi , say
{x1, . . . , xq′ } with q′ ≤ q. Thecase where the subset of summands is empty, the subset
of variables contains onlyx1 andm1 is 1 is not accepted (no inferences in variables are
permitted). If (i) the subset of variables is empty, we choose a summand in{s1 . . . sp′ }, say
s1, and anumbern′1 ≤ n1. Otherwise, if (ii) the subset of variables is non-empty we choose
one of those variables, sayx1 and a numberm′1 < m1.

In case (i),t1+ t2 is asplitting for t if t1 andt2 are of the form

n′1s1 + · · · + np′sp′

(n1 − n′1)s1+ np′+1sp′+1 . . .+ npsp +m1x1+ · · · +mqxq + t ′

respectively. In case (ii), split every variablexi of {x2, . . . , xq′ } into yi +zi . If ( ii.1) m′1 is 0,
then splitx1 into y1+z1, andotherwise,if (ii.2) m′1 is not 0, then splitx1 into y1+ y′1+z1.
In case (ii.1),t1+ t2 is asplitting for t if t1 andt2 are of the form

n1s1 + · · · + np′sp′m1y1+ · · · +mq′ yq′ + t ′

np′+1sp′+1 . . .+ npsp +m1z1+ · · · +mq′zq′ +mq′+1xq′+1 + · · · +mqxq + t ′

respectively. In case (ii.2),t1+ t2 is asplitting for t if t1 andt2 are of the form

n1s1 + · · · + np′sp′m1y1+m′1y′1+m2y2+ · · · +mq′ yq′ + t ′

np′+1sp′+1 . . .+ npsp + (m1−m′1)y′1+m1z1 + · · · +mq′zq′

+mq′+1xq′+1 + · · · +mqxq + t ′

respectively.

Theorem 32. H is refutation complete for constrained Horn clauses where all free
symbols are constants and the initial set of clauses has only empty constraints.

Proof. In fact, we will show that in this case where all free symbols are constants, no
inferences by inverse superposition are needed. LetS be the closure underH of a set of
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Horn clausesS0 without constraints, and assume� /∈ S. Again weprove thatthen the
equality Herbrand interpretationI defined as the congruence on ground terms generated
by RS∪ AG is an AG-model forS. But now this is done in two steps. LetI r RS(S) denote
the set of ground instancesCσ of C | T in S suchthat(C, σ ) is irreducible w.r.t.RS.

1. First,it is proved thatI � I r RS(S), in avery similar way as for the ground case, by
deriving a contradiction from the existence of such aCσ whose reductive form is
minimal w.r.t.�c. This is done in detail below.

2. Second, fromI � I r RS(S) it follows that I � S for the following reasons. For each
ground instanceCσ of a clauseC | T in S0, consider another instanceCσ ′ of C,
wherexσ ′ is the normal form w.r.t. RS of xσ for every variablex of C. SinceT is
empty (asS0 has no constraints),Cσ ′ is also an instance ofS0. It is also inI r RS(S0),
since(C, σ ′) is obviously irreducible. SinceS0 ⊆ S and I � I r RS(S) we have
I � I r RS(S0) and henceI � Cσ ′, which implies I � Cσ , andhence we also have
I � S0. But sinceS0 � S, this gives usI � S.

We now prove the first part. LetCr be the minimal, w.r.t�c, reductive form of some
Cσ in I r RS(S) that is an instance of a clauseC | TC suchthat I � Cr .

If Cr is a disjunction of literals of the form 0�� 0, then an inference by AG-zero-
instance applies to any one of these literals, eliminating it, and its conclusion has a smaller
false counter example.

Otherwise, as in the ground case (the proof ofTheorem 11), let s be the maximal
summand inCr . ThenCr is either of the formC′r ∨ ms � t with s � C′r , or else it is
C′r ∨ ms �� t with s 
 C′r . ThenC is of the formC′ ∨ e � 0 or C′ ∨ e �� 0, where the
reductive forms ofC′σ andeσ � 0 areC′r andms� t respectively.

As in Theorem 11, in both casesms is reducible byRS. Sinceall free symbols are
constants, the rule reducingmsmust be of the formns→ r , with m ≥ n ≥ 1. Thisrule
has been generated by the reductive formDr of an instanceDσ of a clauseD | TD. Let D
be of the formD′ ∨ e′ � 0.

Then byLemma 30there exists an orientationl1 � r1 of e′ � 0 and an extension ofσ
preserving AG-equality such that AG-n f (l1σ) is ns and AG-n f (r1σ) is r , and such that
every variablex in r1 satisfies thatxσ is irreducible w.r.t.R�−u

S .
Furthermore, byLemma 31, thereexists a splittinge1 + e2 of e and a new extension of

σ (here we assume as usual that both clausesC andD contain different variables and that
the splittings in them are done also with different variables) that is AG-preserving such that
(e1+ e2)σ =AG eσ , ande1σ =AG ns, and where every variablex in e2 satisfies thatxσ is
irreducible w.r.t.R�−u

S .

Now, since every variablex of r1 + e1 satisfies thatxσ is irreducible w.r.t.R�−u
S , and

since the maximal summand of AG-n f ((r1 + e1)σ ) is smaller than or equal tou, it holds
that(r1 + e1, σ ) is irreducible w.r.t.RS.

Now, the following inference exists:

D′ ∨ l1 � r1 | TD C′ ∨ e1+ e2 � 0 | TC

C′ ∨ r1 + e2 � 0 | TD ∧ TC ∧ l = e1 ∧ τ
.

Its conclusion belongs toS, sinceS is closed underH, and ithas an instance withσ that
contradicts the minimality ofCr . �
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6. Completeness for arbitrary Horn clauses

In this section we drop the restriction that all free symbols are constants. All definitions
and proofs that are needed for this purpose follow the same intuition as in its analogue for
the constants-only case, but several aspects become technically a bit more involved.

Example 33. This example shows that in the presence of arbitrary free symbols a more
refined notion of irreducibility than the one ofDefinition 27is needed. We continue with
Example 29, and consider new problems due to the non-constant symbols. Suppose we
have a unary symbolf bigger thana, b andc, and anequation f (c) � 0. It is reducible
with the rulec → 0, that, at the non-ground level, isc → 2a + 2b − 2x, with the
substitution{x �→ a + b}. By the corresponding direct AG-superposition inference we
obtain f (2a + 2b − 2x) � 0. At the ground level it is of the formf (0) � 0. Observe
that f (0) � xσ , andhence,xσ would be reducible by a rule with left-hand sideb, that
is smaller than the maximal summand of the equation. For this reason, we need a more
complex notion of irreducibility, where the irreducibility of a variablex in an AG-context is
only necessary for summands inxσ that are smaller than or equal to the maximal reducible
summand of such an AG-context, and not to the maximal summand in the equation.�

The following definitions are parameterized by the given rewrite systemR, and we
always denote (possibly with subscripts) terms bys, t, u, v, positions byp, q and variables
by x, y, z.

We first define irreducibility for pairs(s, σ ) wheres is a term andσ a substitution,
both in normal form w.r.t.RAG. Then still sσ needs not be in normal form w.r.t.RAG,
because the following two kinds ofsteps may be applicable: (i) ifx is a variable occurring
immediately below a− in s andxσ is headed by+, then this− is “moved inwards”; (ii)
after this, some “complementary” pairsu and−u′ below the same+ are cancelled ifu and
u′ are summands withu =AG u′.

Definition 34. Let s be a ground term, and letR be a ground TRS. We define maxredR(s)
to be the maximal summandu such that either:

• AG-n f (s) is of the formnu+ v andnu → r ∈ R; In this case we say thatu is
determined by atop-level positive reduction.

• AG-n f (s) is of the form−u + v, and−u → r ∈ R; Thenu is determined by a
top-level negative reduction.

• AG-n f (s) is of the formu + v or−u+ v andu is reducible at non-top-level byR;
Thenu is determined by anon-top-level reduction.

• AG-n f (s) is irreducible andu is 0.

Definition 35. Let s be a term and letσ bea substitution, both in normal form w.r.t.RAG,
and letR be a ground TRS.

The pair(s, σ ) is calledrecursively irreduciblew.r.t. R if the following conditions hold.
Let u be maxredR(sσ).

1. For allx suchthats is of the formx + s′, and all summandsv with u 
 v and such
thatxσ is of the formmv + v′,
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• if u is determined by a top-level negative reduction, then eitheru � v andmv is
irreducible w.r.t.R, or v is u andm is positive;
• otherwise (top-level positive or non-top-level reduction)mv is irreducible

w.r.t. R.

2. For allx suchthats is of the form−x+s′, and all summandsv with u 
 v and such
thatxσ is of the formmv + v′,

• if u is determined by a top-level negative reduction, then eitheru � v andmv is
irreducible w.r.t.R, or v is u;
• otherwise (top-level positive or non-top-level reduction)mv is irreducible

w.r.t. R.

3. For allt of the form f (t1, . . . , tm) such that AG-n f (sσ) is of the formt+v or−t+v

andu 
 AG-n f (tσ), each(ti , σ ) is recursively irreducible w.r.t.R.

Definition 36. Let s be a term, letu be a summand, and letσ be a substitution, both in
normal form w.r.t.RAG, let C be a clause, and letR be a ground TRS.

The pair(s, σ ) is called (u 
)-irreducible (resp.(u �)-irreducible) w.r.t. R if the
following conditions hold.

1. For allx suchthats is of the formx+ s′ or−x+ s, and all summandsv with u 
 v

(resp.u � v) and such thatxσ is of the formmv + v′, the termmv is irreducible
w.r.t. R.

2. For allt of the form f (t1, . . . , tm) such that AG-n f (sσ) is of the formt+v or−t+v

andu 
 AG-n f (tσ), each(ti , σ ) is recursively irreducible.

If u is the maximal summand of AG-n f (sσ) w.r.t.�, then, we simply say that the pair
(s, σ ) is irreduciblew.r.t. R.

The pair(C, σ ) is irreducible w.r.t.R if (e, σ ) is irreducible for all its equationse� 0
(note that this notion does not depend on which one of the two possibilities of writing the
equation likee� 0 is chosen).

6.1. Model generation

As in the case where all free symbols are constants, which was explained inSection 5,
now the AG-model induced byR is built. Again the rules are generated, exactly as in
Definition 28 of Section 5, by the reductive forms of instancesCσ of clausesC | T
of S, where(C, σ ) is irreducible. But now the notion of irreducibility is according to
Definition 36. The maintheorem of this section says thatH is refutation complete for
constrained Horn clauses if the initial set of clauses has only empty constraints. Its proof
follows the same arguments as its analogue in the constants-only case,Theorem 32.
Lemma 44finds, for a given term that is reducible byR, a context inside it where the
maximal summand is reducible at the top. This gives us an inference at the ground level.
Lemmas 45–48 justify that there exist orientations and splittings at the non-ground level
corresponding to the inference at the ground level. This new inference at the non-ground
level has to satisfy some conditions of irreducibility that are justified byLemmas 51, 53
and54.
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Lemma 37. Let u be the maximal summand in AG-n f(sσ), let R1 be a rewrite system and
let R2 be a rewrite system with left hand sides of the form nw or −w, where n> 0 andw

is a summand such thatw � u. Let(s, σ ) be recursively irreducible w.r.t. R1.

Then,(s, σ ) is recursively irreducible w.r.t. R1 ∪ R2.

Proof. We prove it by induction on the size ofs. Let v be maxredR1(sσ). Observe that
u 
 v. Sinceu is the maximal summand of AG-n f (sσ), and for all the w, we have that
w � u, then maxredR1∪R2(sσ) is v. Moreover,the setsR≺mv

1 and(R1 ∪ R2)
≺mv coincide

for anym. Therefore, theconditions of recursive irreducibility for variablesx suchthats
is of the formx + s′ or−x + s′ are satisfied. Lets be of the formt + s′ or−t + s′, for a
summandt of the form f (t1, . . . , tn), and such thatv 
 AG-n f (tσ). Then, we have that
v � AG-n f (ti σ). Therefore, for all thew, we have thatw is greater than the maximal
summand in AG-n f (ti σ). By induction hypothesis,(ti , σ ) is recursively irreducible w.r.t.
R1 ∪ R2. �

Lemma 38. Let u be the maximal summand in AG-n f(sσ), let R1 be a rewrite system and
let R2 be a rewrite system with left hand sides of the form nw or −w, where n> 0 andw

is a summand. Letv be a ground summand in AG-normal form such thatv 
 u and(s, σ )

is (v 
)-irreducible w.r.t. R1.

If all suchw satisfy thatw � v, then, (s, σ ) is (v 
)-irreducible w.r.t. R1 ∪ R2.
If all suchw satisfy thatw 
 v, then, (s, σ ) is (v �)-irreducible w.r.t. R1 ∪ R2.

Proof. We only prove the first statement (the second one is analogous). Observe that the
setsR�mv

1 and (R1 ∪ R2)
�mv coincide for anym. Therefore, the conditions of(v 
)-

irreducibility for variablesx suchthats is of the formx + s′ or−x + s′ are satisfied. Let
s be of the formt + s′ or −t + s′, for a summandt of the form f (t1, . . . , tn), and such
thatv 
 AG-n f (tσ). Then, we have thatv � AG-n f (ti σ). Therefore, for all thew, we
have thatw is greater than the maximal summand in AG-n f (ti σ). By Lemma 37, (ti , σ ) is
recursively irreducible w.r.t.R1 ∪ R2. �

Lemma 39. If, as in the definition of R, the reductive form Credof Cσ generates the rules
nu→ r and−u→ (n− 1)u− r , then(C, σ ) is irreduciblenot only w.r.t. RCred, but w.r.t.
R\{nu→ r,−u → (n − 1)u − r }. Moreover, if e� 0 is a negative equation of C, then
(e, σ ) is irreducible w.r.t. R.

Proof. Let e� 0 be an equation ofC. Let RCred be the set of rules generated by reductive
forms bigger thanCred w.r.t.�c. Then, RCred is of the form

⋃
i∈I {ni ui → r i ,−ui →

(ni − 1)ui − r i }. All theseui ’s are larger than the maximal summand of AG-n f (eσ).
Moreover, if e � 0 is a negative equation,u is larger than the maximal summand
AG-n f (eσ). By applyingLemma 38with RCred andRCred∪{nu→ r,−u→ (n−1)u−r }
for negative equations, the lemma follows.�

Lemma 40. Let s be a term of the form s1 + s2. Let (s, σ ) be (u 
)-irreducible (resp.
(u �)-irreducible) w.r.t. R′, for a given summand u. Then,(s1, σ ) and(s2, σ ) are (u 
)-
irreducible (resp.(u �)-irreducible) w.r.t. R′.
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Lemma 41. Let s be a term of the form s1+ s2. Let (s, σ ) be recursively irreducible w.r.t.
R′. LetmaxredR(sσ) � maxredR(s1σ).

Then,(s1, σ ) is recursively irreducible w.r.t. R′.

Lemma 42. Let (s, σ ) be (u 
)-irreducible (resp.(u �)-irreducible or recursively
irreducible) w.r.t. R. Let s be of the form(i) nx + s′ or (ii) −nx + s. Let x1 and x2 be
variables not in s such that x1σ and x2σ are in AG-normal form, and(x1+x2)σ =AC0 xσ .

Then, wehave that(i) (nx1+nx2+s′, σ ) or (ii) (−nx1−nx2+s′, σ ) is (u 
)-irreducible
(resp.(u �)-irreducible or recursively irreducible) w.r.t. R.

Lemma 43. Let (s, σ ) be(u �)-irreducible w.r.t. R. Let s be of the form nx+ s′. Let xσ
be: (i) u1+ · · · + um− v1− · · · − vk, or (ii) u1+ · · · + um or (iii) −v1− · · · − vk, where
the ui andvi are summands. Let x1 and x2 be variables not in s. Let x1σ be u1+ · · · + um

in cases(i) and(ii) , and0 otherwise. Let x2σ bev1 + · · · + vk in cases(i) and(iii) , and0
otherwise.

Then, wehave that(nx1− nx2+ s′, σ ) is (u �)-irreducible w.r.t. R.

Proof. Sinces′ is a subsum ofs andx1σ is a subsum ofxσ , the only doubt for reducibility
is what happens withx2σ . If x2σ is of the formmvi + v′ for somevi suchthatu � vi ,
thenxσ is of the form−mvi + v′′. Since(s, σ ) is (u �)-irreducible,vi is irreducible w.r.t.
R, andno rule with left-hand side−vi norvi appears inR, andhence, a term of the form
n′vi is not a left-hand side of a rule ofR. Hence, such variablesx2 satisfy the conditions
for irreducibility, and (nx1− nx2+ s′, σ ) is (u �)-irreducible w.r.t. R. �

Lemma 44. Let t be a term in AG-normal form and reducible by R. Then, there exists an
AG-context t′ of t, and a summand u such that u ismaxredR(t ′) by top-level reduction.

Proof. This can be proved by induction on the size oft . The termt by itself is an AG-
context oft . Let v be maxredR(t). If it is by top-level reduction, then,u is v, and we are
done. Otherwise, it is by non-top-level reduction, and then,v is of the form f (v1, . . . , vn),
and one of thevi is reducible. Then, by induction hypothesis, thisvi contains thet ′ andu
satisfying the required condition. �

Lemma 45. Let thereductive form Credof Cσ generate the rule nu→ r ′.
Then there exists an orientation l� r of the positive equation e� 0 of C, and an

extension ofσ satisfying the splitting constraint of the orientation, such that AG-n f(lσ) is
nu, AG-n f(r σ) is r ′, and(r, σ ) is (u 
)-irreducible w.r.t. R.

Proof. By Lemma 39, (e, σ ) is irreducible w.r.t.R\{nu → r,−u → (n − 1)u − r }.
In fact, it is (u 
)-irreducible w.r.t. R\{nu → r,−u → (n − 1)u − r }, sinceu is the
maximal summand of AG-n f (eσ). Observe that AC-changes in the substitution do not
affect irreducibility. Hence we can suppose thatxi σ is of the form (i)l i u, or (ii) l i u+vi , or
(iii) vi , for all variablesxi in e, wherevi has no occurrences ofu at top-level position. Let
e′ be the result of replacing each occurrence ofxi at top-level position byyi + zi , whereyi

andzi are new variables. Letσ be extended such thatyi σ is l i u (in cases i and ii) or 0 (in
case iii), andzi σ is 0 (case i) andvi otherwise. ByLemma 42, (e′, σ ) is (u 
)-irreducible
w.r.t. R\{nu→ r,−u→ (n− 1)u− r }.
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Now, we may writee′ as l + l ′, for termsl and l ′ suchthat l contains all theyi , and
all the summandst at top-level position ine′ such that AG-n f (tσ) is u; and l ′ contains
all thezi , and the rest of the summands. ByLemma 40, (l ′, σ ) is (u 
)-irreducible w.r.t.
R\{nu→ r,−u→ (n− 1)u− r }.

We have that AG-n f (lσ) is nu, and AG-n f (l ′σ) is AG-n f (−r ′). Moreover, if l ′ is of
the formx+ l ′′ or−x+ l ′′, andxσ is of the formmv+v′ for some summandv with u 
 v,
then, necessarilyu � v, due to the way we have extendedσ to the variables inl ′. Therefore,
mv is irreducible w.r.t.R, because it is irreducible w.r.t.{nu→ r,−u → (n − 1)u − r },
and w.r.t. R\{nu → r,−u → (n − 1)u − r }, since(l ′, σ ) is (u 
)-irreducible w.r.t.
R\{nu→ r,−u→ (n− 1)u− r }.

Furthermore, if l ′ is of the formt + l ′′ or −t + l ′′, for somesummandt of the form
f (t1, . . . , tn) suchthatu 
 AG-n f (tσ), we have thatu � AG-n f (ti σ), and, byLemma 37,
(ti , σ ) is recursively irreducible w.r.t.R.

Therefore,(l ′, σ ) is (u 
)-irreducible w.r.t. R. And, if wetaker as AG-n f (−l ′), (r, σ )

is (u 
)-irreducible w.r.t. R. �

Lemma 46. Let thereductive form Credof Cσ generatethe rule−u→ (n− 1)u− r ′.
Then there exists an orientation l� r of the positive equation e� 0 of C, and an

extension ofσ satisfying the splitting constraint of the orientation, such that AG-n f(lσ) is
−u, AG-n f(r σ) is (n− 1)u− r ′, and(r, σ ) is (u �)-irreducible w.r.t. R. Moreover, for all
x such that r is of the form x+ s, wehave that xσ is not of the form−u+ s′.

Proof. By Lemma 39, (e, σ ) is irreducible (in fact(u 
)-irreducible) w.r.t.R\{nu →
r,−u → (n − 1)u − r }. This implies that ife is of the formx + e2 or −x + e2 andxσ

is of the formmv + v′ for some summandv with u � v, thenmv is irreducible w.r.t.
R\{nu→ r,−u → (n − 1)u − r }, and, in fact, w.r.t.R. Additionally, if e is of the form
t+e2 or−t+e2 for some summandt of the form f (t1, . . . , tn) suchthatu 
 AG-n f (tσ),
we have that(ti , σ ) is recursively irreducible w.r.t.R\{nu → r,−u → (n − 1)u − r }.
But observe that, sinceu � AG-n f (ti σ), by Lemma 37, (ti , σ ) is recursively irreducible
w.r.t. R. Altogetherthis implies that(e, σ ) is (u �)-irreducible w.r.t. R.

Let us consider now a certain variablex that appears ine at top-level positive variable
position. AC-changes in the substitution do not affect irreducibility. Hence we can assume
thatxσ is of the form (i)v, or (ii) v+w, or (iii) w, wherev (resp.w) contains only positive
(resp. negative) summands at their top-level positions. Lete′ be the result of replacing each
occurrence ofx at top-level positive variable position byy − z, wherey andz are new
variables. Letσ be extended such thatyσ is v (in cases i and ii) or 0 (in case iii), andzσ is
0 (case i) and AG-n f (−w) otherwise. ByLemma 43, (e′, σ ) is (u �)-irreducible w.r.t. R.
We can repeat this process with all the variables ine at top-level position. Let the resulting
term bee′. Again,(e′, σ ) is (u �)-irreducible w.r.t. R.

Since AG-n f (e′σ) is nu− r , either (i) e′ is of the formx + e′′ for some variablex and
xσ is of the formu + e′′′ or u, or (ii) e′ is of the form−x + e′′, andxσ is of the form
−u+ e′′′ or−u, or (iii) e′ is of the formt + e′′ for some summandt suchthat tσ =AG u.

In case (i), we replace this occurrence ofx by x1+x2, wherex1 andx2 are new variables,
and we extendσ such that x1σ is u, and x2σ is e′′′ or 0, depending on the case. By
Lemma 42, we have that(x1 + x2 + e′′, σ ) is (u �)-irreducible w.r.t. R. By Lemma 40
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(x2 + e′′, σ ) is (u �)-irreducible w.r.t. R. Therefore−x1 � x2 + e′′ is an orientation that
satisfies therequired conditions.

Case (ii) is identical to case (i), but now, the obtained orientation isx1 � −x2+ e′′.
In case (iii), byLemma 40, we have that(e′′, σ ) is (u �)-irreducible w.r.t. R. Therefore

−t � e′′ is an orientation that satisfies the required conditions. �

Lemma 47. Let nu→ r ′ be a rule of R. Let(s, σ ) be (i) irreducible or (ii) recursively
irreducible w.r.t. R. Let AG-n f(sσ) be of the form nu+s′. Let u be in case(i) the maximal
summand of AG-n f(sσ), or in case(ii) maxredR(sσ).

Then, there exists a splitting s1 + s2 of s, and an extension ofσ satisfying the
corresponding splitting constraint, such that(s1 + s2)σ =AG sσ , and s1σ is nu, and
(s2, σ ) is (u 
)-irreducible w.r.t. R.

Moreover, in case(i), the maximal summandof AG-n f(s2σ), and, in case(ii) , the
summandmaxredR(s2σ), is smaller than or equal to u w.r.t.�.

Proof. From our hypothesis, it follows that(s, σ ) is (u 
)-irreducible w.r.t. R (observe
that for the case (ii)u is not determinedby top-level negative reduction). Moreover, ifs is
of the form−x+ t , thenxσ is not of the form−u+ t ′. Since AG-n f (sσ) is nu+ s′, these
nu’s can not be provided by negative variables at top-level position. Thuss has to be of
the formm1x1+ · · · +mqxq + n1t1+ · · · + nptp + s′′, where themi andni are positive,
AG-n f (ti σ) is u for i in 1 . . . p, andxi σ is of the formki u+vi for i in 1 . . .q with positive
ki , andm1∗k1+· · ·+mq∗kq+n1+· · ·np ≥ n. Moreover, suchxi andti can be chosen to
satisfy the following conditions: thexi andti do not appear ins′′, andp is maximal (i.e. if
q is not 0, that is there is at least one chosen variablex1, then no summandt suchthats′′ is
of the formt + s′′′ satisfiestσ =AG u), andq is minimal (i.e. by eliminating one variable,
sayx1, we have thatm2 ∗ k2 + · · · + mq ∗ kq + n1 + · · · + np < n). The case wherep
is 0 andq is 1 andm1 is 1 isnot possible, sincex1σ cannot contain more thann − 1 u’s,
because it would be reducible w.r.t.R, contradicting the(u 
)-irreducibility of (s, σ ).

For facility of explanations, we assume thatm1 ∗ k1 + · · · +mq ∗ kq + n1 + · · ·np is
exactly n. Other situations are treated analogously, by doing the corresponding additional
splittings as explained inLemma 31.

Now, we split everyxi into yi +zi , whereyi andzi are new variables, andσ is extended
suchthat yi σ is ki u, andzi σ is vi . Thanks to Lemma 42, the obtained term is(u 
)-
irreducible w.r.t.R. It may be writtens1+s2, wheres1 contains all theti and all theyi , and
s2 contains the rest of summands and variables. The AG-normal form ofs1σ is nu, andof
s2σ is s′, ands1+s2 is a splitting fors. By Lemma 40, (s2, σ ) is (u 
)-irreducible w.r.t. R.

Moreover, in case (i), the maximal summand of AG-n f (s2σ), and, in case (ii), the
summand maxredR(s2σ), is smaller than or equal to u w.r.t. �. Observe that, omitting
the summandu, the AG-normal forms ofsσ ands2σ coincide. �

Lemma 48. Let n > 1 and−u→ (n− 1)u− r ′ be a rule of R. Let(s, σ ) be recursively
irreducible w.r.t. R. Let AG-n f(sσ) be of the form−u+ s′. Let u bemaxredR(sσ).

Then, there exists a splitting s1 + s2 of s, and an extension ofσ satisfying the
corresponding splitting constraint, such that(s1 + s2)σ =AG sσ , and s1σ is −u, and
(s2, σ ) is (u �)-irreducible and recursively irreducible w.r.t. R. Moreover, we have that
u 
 maxredR(s2σ).
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Proof. From our hypothesis, it follows that(s, σ ) is (u �)-irreducible w.r.t. R. Moreover,
if s is of the formx + s′′, thenxσ is not of the form−u+ s′′′. Sincethe AG-normal form
of sσ is −u + s′, then, either (i) s is of the form−v + t for some summandv suchthat
AG-n f (vσ ) is u, or (ii) s is of the form−x + t for some variablex suchthatxσ is of the
form u+ s′′′ or u.

In case (i), we may take−v ass1, andt ass2. Thens1 + s2 is a splitting fors, and
u 
 maxredR(s2σ).

In case (ii), we maysplit x into x1+ x2, for new variablesx1 andx2, and extendσ such
that x1σ is u andx2σ is s′′′ or 0, depending on the case. ByLemma 42, −x1 − x2 + t is
(u �)-irreducible and recursively irreducible w.r.t.R. We may take−x1 ass1, and−x2+ t
ass2. Thens1+ s2 is a splitting fors, andu 
 maxredR(s2σ).

In both cases, byLemmas 40and 41, we have that(s2, σ ) is (u �)-irreducible and
recursively irreducible w.r.t.R. �
Lemma 49. Let t be a summand. Let(t + s, σ ) be recursively irreducible w.r.t. R. Let
AG-n f(tσ) be smaller than or equal tomaxredR((t + s)σ ) w.r.t.�. Let t′ be a summand
such that (t ′, σ ) is recursively irreducible w.r.t. R, and AG-n f(tσ) � AG-n f(t ′σ).

Then(AG-n f(t ′ + s), σ ) is recursively irreducible w.r.t. R.

Proof. Let u be maxredR(tσ + sσ). After replacing t by t ′, this maximal reducible
summand does not increase. Moreover, ifu is maxred(t ′σ + sσ), then it isdue tothe same
reason as before (top-level positive reduction, or top-level negative reduction or non-top-
level reduction). Except fort ′, the variables and summands that appear in AG-n f (t ′ + s)
at top-level position are the same ones that appear int + s at top-level position, and with
the same sign. Therefore, the conditions for irreducibility are satisfied for the variables at
top-level position. But also fort ′, sinceit is recursively irreducible w.r.t.R. �
Lemma 50. Let (s, σ ) be recursively irreducible w.r.t. R. Let t be an AG-normal form of
sσ . Let p be an AG-context position in t such that t|p is reducible w.r.t. R.

Then there exists an AG-context position q in s such that sσ |q =AG t|p, and(s|q, σ ) is
recursively irreducible, and for all terms r, s[r ]qσ =AG t[r σ ]p.

Moreover, let(r, σ ) be recursively irreducible w.r.t. R, and let t|p � AG-n f(r σ).
Then(AG-n f(s[r ]q), σ ) is recursively irreducible w.r.t. R.

Proof. This is proved by induction on the size ofs. In thecase wherep is λ, q is λ, and
all the results are obvious. Therefore, suppose thatp is notλ. Then, p is of the formp′.p′′,
wheret|p′ is a summand of the formf (t1, . . . , tn) at the AG-contextλ. Letu be maxred(t).
Since t|p′ is reducible, we have thatu 
 t|p′ . An AG-context of t|p′ is reducible, and
therefore there is ani suchthatti is reducible, andp is of the formp′.i .p′′′.

Sincet is an AG-normal form ofsσ , we have that, either (i) s is of the formx + s′ or
−x + s′, andxσ is of the formt|p′ + s′′ or−t|p′ + s′′; or (ii) s is of the formv + s′ for
some summandv suchthatvσ =AG t|p′ andt is of the formt|p′ + t ′; or (iii) s is of the
form−v + s′ for some summandv suchthatvσ =AG t|p′ andt is of the form−t|p′ + t ′.

In case (i),xσ is of the formmt|p′ + s′′, andt|p′ is reducible at non-top position by
R, and maxredR(t) 
 t|p′ , but t|p′ cannot be maxredR(t) by top-level reduction (observe
that for the rulesnu → r of R suchu’s are irreducible at non-top byR). Altogether
this contradicts the hypothesis of recursive irreducibility, and therefore, only cases (ii)
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and (iii) are possible. In fact, we consideronly case (ii), since case (iii) is analogous.
The summandv has to be of the formf (v1, . . . , vn), and vi σ =AG ti . By induction
hypothesis, there exists an AG-context positionq′ in vi suchthatvi σ |q′ =AG ti |p′′′ , and
for all termsr , vi [r ]q′σ =AG t[r σ ]p′′′ . Moreover, if (r, σ ) is recursively irreducible w.r.t.
R, and t|p � AG-n f (r σ), we have that(AG-n f (vi [r ]q′), σ ) is recursively irreducible
w.r.t. R. Moreover,( f (v1, . . . , AG-n f (vi [r ]q′), vn), σ ) is recursively irreducible w.r.t.R.
Finally, by Lemma 49, ( f (v1, . . . , AG-n f (vi [r ]q′), vn) + s′, σ ) is recursively irreducible
w.r.t. R. �

Lemma 51. Let (s, σ ) be irreducible w.r.t. R. Let t be an AG-normal form of sσ . Let p be
anAG-contextposition in t different fromλ such that t|p is reducible w.r.t. R.

Then there exists an AG-context position q in s different fromλ, such that s|qσ =AG t|p,
and(s|q, σ ) is recursively irreducible, and for all terms r we have s[r ]qσ =AG t[r σ ]p.

Moreover, let(r, σ ) be recursively irreducible w.r.t. R, and let t|p � AG-n f(r σ).
Then(AG-n f(s[r ]q), σ ) is irreducible w.r.t. R.

Proof. The proof is analogous to the previous one, except for the fact that, instead of doing
induction, it refers to the previous lemma, and that we need a modification ofLemma 49
for dealing with irreducible pairs instead of recursively irreducible pairs w.r.t.R. �

Lemma 52. Let (s, σ ) be(u 
)-irreducible w.r.t. R.
If maxredR(sσ) is smaller than or equal to u, then(s, σ ) is recursively irreducible

w.r.t. R.
If the maximal summand of AG-n f(sσ) is smaller than or equal to u, then(s, σ ) is

irreducible w.r.t. R.

Proof. Direct by applying the definition. �

Lemma 53. Let (r, σ ) and(t, σ ) be(u 
)-irreducible w.r.t. R.
Then,(AG-n f(r + t), σ ) is (u 
)-irreducible w.r.t. R.
Additionally, suppose thatmaxredR((r + t)σ ) is smaller than or equal to u w.r.t.�.

Then(AG-n f(r + t), σ ) is recursively irreducible w.r.t. R.
Moreover, if the maximal summandof AG-n f((r + t)σ ) is smaller than or equal to u,

then(AG-n f(r + t), σ ) is irreducible w.r.t. R.

Proof. Observe thatr and t are in AG-normal form. Therefore, the AG-normal form of
r + t is obtained by eliminating some summands at the AG-contextλ, by the inverse rule. If
AG-n f (r+t) is of the formx+sor−x+s, then, eitherr or t is of the formx+s′ or−x+s′,
and, therefore,xσ satisfies the corresponding requirements. If AG-n f (r + t) is of the form
v + s or−v + s for a given summandv = f (v1, . . . , vn) suchthatu 
 AG-n f (vσ ), then,
eitherr or t is of the formv+ s′ or−v+ s′, andhence such av satisfies the corresponding
requirements. Therefore(AG-n f (r + t), σ ) is (u 
)-irreducible w.r.t. R.

The rest of the proof is a direct consequence ofLemma 52. �

Lemma 54. Let n > 1, and−u → (n − 1)u − r ′ be a rule of R. Let AG-n f(r σ) be
(n− 1)u− r ′.

Let (r, σ ) be(u �)-irreducible w.r.t. R, and if r is of the form x+ s, then, xσ is not of
the form−u+ s′.
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Let (t, σ ) be(u �)-irreducible, and recursively irreducible w.r.t. R, and AG-n f(tσ) is
not of the form u+ s′.

Let maxredR(tσ) be smaller than or equal to u w.r.t.�.
Then,(AG-n f(r + t), σ ) is recursively irreducible w.r.t. R.

Proof. Sincer andt are in AG-normal form, the AG-normal form ofr + t is obtained by
eliminating some summands at the AG-contextλ, by the inverse rule.

Observe that, since AG-n f (r σ) is (n − 1)u − r ′, and AG-n f (tσ) is not of the form
u + s′, it holds that AG-n f ((r + t)σ ) is of the formmu+ s′′ or s′′, wheres′′ does not
containu’s at the AG-contextλ, andm is negative, or positive but smaller thann.

If m is positive, or AG-n f ((r+t)σ is of the forms′′, then, maxredR((r+t)σ ) is a certain
v smaller thanu w.r.t.�, and(AG-n f (r + t), σ ) is (v 
)-irreducible w.r.t. R, sinceboth
(r, σ ) and(t, σ ) are(u �)-irreducible. ByLemma 52, (AG-n f (r + t), σ ) is recursively
irreducible w.r.t.R.

From now on, we assume that AG-n f ((r + t)σ ) is of the formmu+ s′′, for a given
negativem. In this case, AG-n f (tσ) contains more thann − 1 negativeu’s, andhence
maxredR(tσ) and maxredR(r + tσ) has to beu by top-level negative reduction.

If AG-n f (r + t) is of the formx+ s andxσ is of the formkv+ v′ for a given summand
v with u 
 v, then, either r or t is of the formx + s1. In both cases, ifu � v, then,
sinceboth (r, σ ) and(t, σ ) are(u �)-irreducible, we have thatkv is irreducible w.r.t.R.
Therefore assume thatxσ is of the formku+ v′ (i.e. v is u), and then, for satisfying the
recursive-irreducibility conditions it is enough to show thatk is positive. Ifr is of the form
x + s1, by our hypothesisk is positive. Ift is of the formx + s1 then,k is positive due to
the fact that(t, σ ) is recursively irreducible, andu is maxredR(tσ) determined by top-level
negative reduction.

If AG-n f (r+t) is of the form−x+s, andxσ is of the formkv+v′ for a given summand
v with u 
 v, then, either r or t is of the formx + s1. In both cases, ifu � v, then, since
both(r, σ ) and(t, σ ) are(u �)-irreducible, we have thatkv is irreducible w.r.t. conditions
for such−x + s andkv are satisfied trivially.

If AG-n f (r + t) is of the formv+ s or−v+ s for a given summandv = f (v1, . . . , vn)

suchthat u 
 AG-n f (vσ ), then, either r or t is of the formv + s′ or −v + s′. Since
both (r, σ ) and (t, σ ) are (u �)-irreducible, it holds that all the(vi , σ ) are recursively
irreducible w.r.t.R. �

Theorem 55. H is refutation complete for constrained Horn clauses if the initial set of
clauses has only empty constraints.

Proof. This proof is analogous to the one forTheorem 32. Thedifferences are in how it is
proved thatI � I r RS(S).

Let Cred be the minimal, w.r.t�c, reductive form of someCσ in I r RS(S) that is an
instance of a clauseC | TC suchthat I � Cred.

If Cred is adisjunction of literals of the form 0�� 0, then an inference by AG-zero-
instance applies to any one of these literals, eliminating it, and its conclusion has a smaller
false counter example.

Otherwise, as in the ground case (the proof ofTheorem 11), let s be the maximal
summand inCred. ThenCred is either of the formCred′ ∨ ms� t with s � Cred′ (a),
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or elseit is Cred′ ∨ ms �� t with s 
 Cred′ (b). As in Theorem 11, in both casesms is
reducible byR. Then, byLemma 44there exists an AG-contexts′ that is a subterm ofms,
and a summandu suchthatu is maxredR(s′) by top-level reduction. Therefore, a rule inR
of the formnu→ r ′ or−u→ (n− 1)u− r ′ reducess′, and ithas to benu→ r ′ if s′ is
ms; and moreover, no rulewith bigger left-hand side reducess′.

Therefore,C is of the formC′ ∨ e� 0 or C′ ∨ e �� 0, wherems− t is an AG-normal
form of eσ .

The rule reducingms− t (at the AG-contextms− t or in an AG-context insides), has
been generated by the reductive form Dred of an instanceDσ of a clauseD | TD. Let D
be of the formD′ ∨ d � 0. Now, we distinguish two cases:

(a) If the rule reducingms is nu→ r ′, then, by Lemma 45, there exists an orientation
l � r of d � 0 such that AG-n f (lσ) is nu and AG-n f (r σ) is r ′. Moreover,(r, σ ) is
(u 
)-irreducible w.r.t. R. Now, we analyze two possibilities:

(a.1) If s′ is ms, thens is u, and AG-n f (eσ) is mu− t , for m ≥ n. Moreover,u is the
maximal summand ofms− t and(e, σ ) is irreducible w.r.t.R. By Lemma 47,
there exists a splittinge1 + e2 of e suchthat (e1 + e2)σ =AG eσ , ande1σ

is nu, and(e2, σ ) is (u 
)-irreducible w.r.t. R, and the maximal summand of
AG-n f (e2σ) is smaller than or equal tou. By Lemma 53, (AG-n f (r + e2), σ )

is irreducible w.r.t.R. Now, thefollowing inference exists:

D′ ∨ l � r | TD C′ ∨ e1+ e2 � 0 | TC

C′ ∨ r + e2 � 0 | TD ∧ TC ∧ l = e1. ∧ τ

Its conclusion belongs toS, sinceS is closed underH, and ithas an instance
with σ contradicting the minimality ofCred.

(a.2) If s′ is inside s, i.e. (ms− t)|p is s′ for some position p below somes,
then, by Lemma 51, there exists an AG-context positionq in e such that
e|qσ =AG s′, and(e|q, σ ) is recursively irreducible w.r.t.R, and for all terms
r ′′, e[r ′′]qσ =AG (ms− t)[r ′′σ ]p. Moreover, if (r ′′, σ ) is recursively irreducible
ands′ � AG-n f (r ′′σ), then, (e[r ′′]q, σ ) is irreducible w.r.t.R.

Now, we will obtain the concreter ′′ that is interesting for us. Denotee|q by
e′. Observe thate′ is recursively irreducible w.r.t.R, ands′ is of the formnu+s′′,
and maxredR(s′) isu. By Lemma 47, thereexists a splittinge′1+e′2 of e′ suchthat
(e′1+e′2)σ =AG e′σ , ande′1σ is nu, and(e′2, σ ) is (u 
)-irreducible w.r.t. R, and
maxredR(e′2σ) is smaller than or equal tou. By Lemma 53, (AG-n f (r +e′2), σ )

is recursively irreducible w.r.t.R. This AG-n f (r + e′w) is the r ′′ we wanted.
Now, the following inference exists:

D′ ∨ l � r | TD C′ ∨ e[e′1+ e′2]q � 0 | TC

C′ ∨ e[r + e′2]q � 0 | TD ∧ TC ∧ l = e′1 ∧ τ
.

Its conclusion belongs toS, sinceS is closed underH, and ithas an instance
with σ contradicting the minimality ofCred.

(b) If the rule reducingms is −u → (n − 1)u − r ′, then, the contradiction of the
minimality of Cred follows, now, fromLemmas 46, 48, 51 and54; in a similar way
to case (a.2). �
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7. General clauses

The inference system is extended to non-Horn clauses in the standard way, with
(equality) factoring, which in the ground case is

AG-factoring : C ∨ nu� r ∨ nu� r ′

C ∨ r �� r ′ ∨ nu� r ′

with the ordering restrictions thatu is the maximal summand in the clause, which does not
appear in a negative equation, and wherenu� r is maximal w.r.t.�e.

For the non-ground case, the two equations involved have to be oriented as the left
premises of AG-superposition (note that if both orientations require to split a certain
variablex, then it needs to be split only once). Let us denote byI the rules ofH (with
the same ordering restrictions as the factoring rule) plus this additional rule. By a relatively
standard adaptation of the rule generation with respect to the Horn case (i.e. as for standard
superposition, seeBachmair and Ganzinger, 1994), we obtain the following:

Theorem 56. The inference systemI is refutation complete for general clauses.

8. Conclusions

A new technique has been presented for superposition with first-order clauses with
built-in AG. Compared with previous approaches, it is simpler, and AG-unification is used
instead of the computationally more expensive unification modulo AC. Furthermore, no
inferences with the AG axioms or abstraction rules are needed; in this sense this is the first
approach where AG is completely built in. It may be possible to extend our techniques
to other built-in theories, like rings or fields, provided suitable convergent term rewrite
systems (possibly modulo AC) exist.

On the theoretical side, we believe thatour techniques and results may lead to logic-
based decidability and complexity results, along the lines of, e.g.Basin and Ganzinger
(1996), Nieuwenhuis(1998), Ganzinger and de Nivelle(1999) andWaldmann(1999).

On the practical side, due to the simplicity and restrictiveness of our inference system,
its compatibility with redundancy notions and constraints, and the fact that standard term
orderings like RPO can be used, we believe that our techniques will become the method
of choice for practice. However, it is clear that much work remains to be done in order to
make the techniques described inthis article ready for practice, in spite of the fact that, in
the meantime, some of the problems for dealing with AG-ordering constraints have been
solved (Godoy and Nieuwenhuis, 2001). The authors plan to develop a first experimental
implementation in the coming years in order to obtain more insight in aspects like how and
when to compute redundancies, ororientations and splittings.

We now very briefly comment on a few aspects that have not been treated yet in this
article.

Our completeness proofs are compatible with the notions for redundancy and saturation
as in thebasicframework ofNieuwenhuis and Rubio(1995) andBachmair et al.(1995).
Note that, by dealing with constrained clauses, no AG-unifiers are computed. Instead,
the unification problems are stored in the constraints and a constrained clauseC | T
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is redundant ifT is unsatisfiable. Apartfrom the well-known basicness restriction, an
additional advantage is that only one conclusion isgenerated, instead of one conclusion
for each AG-unifierVigneron(1994) andNieuwenhuis and Rubio(1997).

Checking the ordering restrictions in our framework is different from the usual situation.
Instead of checking whether, say, for given termss and t , there exists some ground
σ suchthat sσ �rpo tσ , we need to check whether this holds after normalizing both
sides byRAG, that is, whether AG-n f (sσ) �rpo AG-n f (tσ). Deciding the satisfiability
of such constraints is NP-completeGodoy and Nieuwenhuis(2001). One can also add
information to the constraint language ofGodoy and Nieuwenhuis(2001) for stating that
if n1s1+ · · · +m1y1+ · · · is the left hand side of an orientation (Definition 16) then allsi

are equal and all summands in theyi are equal to thesesi .
It is also possible to find sufficient conditions for ruling out redundant inferences

without fully deciding satisfiability. In practice, for efficiency reasons, such approximations
are used as well for standard superposition. Neither soundness nor completeness require to
actually decide ordering constraints.

Example 57. Supposes is f ( f (0) − x) andt is x. It is easy to see thatsσ �rpo tσ for
all σ . But if σ is {x→ f (0)}, both terms normalize w.r.t.RAG into f (0). �

The fact that ordering restrictions are checked after normalization w.r.t.RAG
complicates optimizations related to the analysis of the so-calledshieldedvariables of a
clauseC, that is, variables that occur below afree symbol inC.

Example 58. In the context ofGanzinger and Waldmann(1996) and Stuber (1998),
shieldedness of variables likex in the clausef (x − f (a)) �� 0 ∨ 2x � b allow one to
conclude that 2x cannot contain the maximal summand ofCσ for any σ and hence 2x
need not be used as left premise in any inference. In our case, the instance wherexσ is
f (a) may generate the rule 2f (a)→ b, andhence we can rule out the inferences only for
other instances. Similar optimizations apply to right premises.�

Also other shieldedness-related optimizations can be used. For example, lete� 0 be an
equation of a clauseC wheree is of the forms+ n1x1 + · · · + nkxk � 0 and the distinct
variablesxi do not occur elsewhere ins or in C. If ni = 1 (or ni = −1) for somei , then
suchan equatione � 0 collapses the theory: s+ x � 0 implies s+ (−s+ t) � 0 and
hencet � 0 for everyt . Hence one can assume that any such a clauseC ∨ s+ x � 0 is
eagerly replaced byC. Thiscan be combined with the fact thate� 0 is logically equivalent
modulo AG tos+ nz� 0, wheren = gcd(n1, . . . , nk) andz is a new variable.
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