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Abstract

A new technique is presented for superposition with first-order clauses with built-in Abelian
groups (AG). Compared with previous approaches, it is simpler, and AG-unification is used
instead of the computationally more expensive unification modulo associativity and commutativity.
Furthermore, no inferences withe AG axoms or abstraction rules are needed; in this sense this is
the first gproach where AG is completely built in.
© 2008 Elsevier Ltd. All rights reseved.

1. Introduction

It is crucial for the performance of a deduction system that it incorporates specialized
techniques to work efficiently with certain theories, since a naive handling of their axioms
leads to an explosion of the search spaceh&gs the most important example of this
is paramodulationan inference rule specialized to equality in the context of resolution-
based systems. Essentially, paramodulation builds the congruence axioms inside the
inference system.

Another well-investigated line of researdoncerns building-in equational theories
inside paramodulation and resolution-based systems. Some axioms generate many slightly
different permuted versions of clauses, and for efficiency reasons it is many times better to
treat all these clauses together as a singleepeesenting the wholdass, i.e. to work with
abuilt-in equational theorfe, andperforming deductin with specializede-matching and
E-unification dgorithms.

Early results on paramodlation moduo E were given by Plotkin (1972), Slagle
(19749 and Lankford and Ballantyné1977 and extended Erewriting was defined by
Peterson and Stick€1981). Special attention has always been devoted to the case &here
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includes axioms of associativity and commutativity (AC), which occur very frequently in
practical applications, and are well suited baing bult in due to their permutative nature.
Note that in general therie no unique most generdt-unifier for a givenE-unification
problem, and that new variables may appear: for examplé,ig an AC-synbol, then

f (x,a) and f (y, b) have the two AC-unifiers1 = {Xx +— b,y > a} andoz = {X —
f(b,2),y— f(a 2)}.

Resdution modulo E is relatively simple: there exist general completeness results for
resoluion with constraints, which essentially say that completeness is preserved when
unification is replaced b¥e-unification. The reason is thagsolution inferences, which
take place at the atomic level, do not interfere with the built-in equational theories, which
affect only the term level, and henliting can still be done (selieuwenhuis and Rubjo
2001). Unfortunately, for paramodulation this far from true, and for each built-in theory
special inference rules have to be designed and their completeness proved.

Paamodulation with built-in Abelian groups (AG) has been investigated by many
authorsCheradec(1986, Zhang(1993, Marché (1994 1996, Ganzhger and Waldmann
(1996, Waldmann(1998 1999, Stuber(1998. This is not surprising since AG are of
course ubiquitous in many applications of (semi-)automated reasoning. But building-in
AG is alsoattractive for at least two more reasons.

On the one hand, due to the fact that Diophantine equation solving is easier in the
integers than in the natural numbers, AG unification is easier than AC and AC1 (i.e. Abelian
monoid) unification. If all free symbols are constants, then there is one single most general
AG unifier and the decision problem is polynomial, whereas for AC and AC1 the decision
problems are NP-complete, and for AC one may need to consider exponentially many
unifiers. Although with arbitrary free symbols the decision problem is NP-complete in
all three cases, AG unification behaves beitepractce. Also the number of unifiers
to be considered is usually much smaller and not doubly exponential as for AC (see
Baader and Siekmanh993 Baader and Snydg2001for surveys on these results).

Another aspect that makes building-in AG attractive is cabgdmetrizatione.g.
in Cherade¢ 1989: modulo AG (+, —, 0), every ground equation can be written as
u+---+u=>t, where tle sunmandu is greater (w.r.t. the given term orderig than
the sunmands int. As we will see, this allows one to restrict inferences to this maximal
summand and to avoid the prolific inferences with extended equations that appear in the
AC case.

Symmetrization is also exploited in Marel framework for Knuth—Bendix completion
of unit equaions with built-in theories (ranging from AC to commutative ringdarché
(1994 1996. His completion procedure decides the ground word problem modulo AG
by bulding a finite convergent rewrite system. However, his procedure is not refutation
complete for equations with variables: in many cases it fails since it cannot handle
symmetrization at the non-ground level.

Full first-order clauses are considered anzhger and Waldmann(1996 and
Waldmann (1997, where symmetrization is also central. This work focusses not on
AG, but on the more general theory of cancellative Abelian monoids. It applies AC1
unification andabstractionrules, which, roughly, turn clauses likeé v f(s) >~ t into
Cvx #sv f(x) > t, wherex is a new variable; this ofaurse increases the number
of possible inferences oh. By specializing to torsion-free divisible AG, AC-unification
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and inferences into variables can be aeal, but abstraction remains necess&ajdmann
(1998 1999.

In Stuber’s work on paramodulation for AG represented as integer modsiigse
1998, symmetrizéion is again crucial, but AG unification is not applied. Instead, AC
unification is used, and hence paramodulation inferences with the AG axioms on the
remaining clauses are needed. Egampe, refuting a clause likdé (—b + x 4+ a) 2= f (0)
requires inferences with the AG axioms, instead of directly finding the contradictory
instanceb — a for x by AG-unification. Technically, even for the ground case, his inference
rules and proofs are tt@er involved. InStubers Ph.D. Thesis 1999, proofs for the
ground case are given in a uniform framework for AG and several other commutative
theories.

Here we apply a variant of Bachmair andagzinger's model generation technique
(Bachmair and Ganzinget994, where the model is defined by rewriting, modulo AC
of +, with the well-known convergent rewrite systeRag for AG, plus a set of ground
rewrite rulesR that consists of symmetrized rules — t (herenu denotesu + --- +u
whereu occursn times) and theimverseversion—u — (n—21)u—t. Herce > has to be an
AC-conpaible reduction ordering orienting these rules, which can be fulfilled by simple
general-purpose orderings like RPO (this was already mentioned by ®)afdis gives
relatively simple completeness proofs for full first-order ground clauses. From our results
it is easy to obtain a decision procedure foe satisfiability of aitrary sets of ground
clauses modulo AG.

For completely building-in AG at the non-ground level, and hence avoiding all
inferences with the AG axiomby gplying AG-unification, the main problem is: how
to lift, to inferences on non-ground claug@ésthe revrite steps withR U Rag on ground
instanceo ? The seps withR indeed become inferences, but for the steps With this
is precisely what we want to avoid. The key ideas to our solution are roughly as follows.
We keep non-ground claus& fully simplified w.r.t. Rag (which is a cheap and useful
simplification anyway). Furthermore, in tlompleteness proofs we consider instances
with reduced substitutions (extending some ideas from thasicsuperposition approach
of Nieuwenhuis and Rubjd 995 Bachmair et al.1995. Some stps withRag may then
still be needed ifCo at the frontier betwee@ ando . But acareful analysis of these steps
reveals that they can be covered by considering inferences with AG-unification on adequate
subterms.

Our AG-superposition inference rules have strong ordering restrictions implying that
inferences only need to involve the maxinsammands of the clause. This generalizes
stendard superposition: summands play the role of terms.

Due to the simplicity and restrictiveness of our inference system, its compatibility with
redundancy notions and constraints, and the fact that standard term orderings like RPO can
be used, we believe that our techniques will become the method of choice for practice. On
the theretical side, we expect that our techniques and results will also lead to logic-based
decidability and complexity results, along the lines of, égsin and Gazinger(1996,

Lin the prdiminary version of this work, Godoy and Nieuwenhujs2000, we used a different notion of
irreducibility. In this article the definitions are more intuitive and we obtain shorter and simpler proofs.
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Nieuwenhuig1996 1998, Ganznger et al(1999, Ganzhger and de Nivell€1999 and
Waldmann(1999.

This article is structured as follows. After the basic notions and notation given in
Section 2 in Section 3we introduce our techniques for the simple case of ground Horn
clauses, and show that this can be used for deciding the satisfiability of set of general
ground clauses modulo AGectbns 4-6 are the core of this article. There, the ideas of the
ground case are extended to Horn clauses with variables. This is again extended to general
clauses with variables iBection 7 Findly, in Section 8we give @nclusions and mention
some optimizations and other ideas for further work.

2. Basic notions

We use the standard notation and terminology for terms and rewriting of
Dershowitzand Jouannaud1990, for inference rules, clauses and equality Herbrand
models ofBachmair and Ganzingdf. 994 and Nieuwenhuis and Rubi(2001), and for
constraints and constrained clauseslogfuwenhuis and Rubi@ 995 2001).

Furthemore, we use the following terminology for positiopsandq in a termt: we
say thatpis (strictly) below qif q is a (pioper) prefix ofp, and thery is (strictly) above p
Similarly, p is beside g(or disjointwith q) if no one is a prefix of thether. We also say
that p is belowa function symbolf int if t|q is headed byf for someq above p, and then
p isimmedately below fif pisq-i for some natural number

The rewite systemRag consists of the following five rules:

X+ 0— X

—X+x—>0

—(—X) —> X

-0—->0

—(X+Yy) = (=X) + (=Y.

By AG we deote the set of seven equations consisting of these five rules (seen as
equations) plus AC, the AC axioms far. By =ac and=ac we denote the corresponding
congruences on terms. In this alticrewriting with a set of ruleR is always considered
moduloAC, tha is, when writing— r, we mean the relatioe=ac — r =ac. We daote by

nfr(t) thenormal form of a ternt by rewriting with R, and instead of writingnfg, _ (t)

we sometimes write AGH (t). By freefunction symbols we mean symbols different from
+,—and 0.

We soméimes write terms witht in infix notation, without parenthesis. For example,
+(@, +(+(b, c), d)) is writtena + b + ¢ + d. But we remark that this is only done at the
notation level (and terms are not considered to be in flattened form as in other approaches,
but this isnot relevant here since we wowith the rewrite relation=ac —r=ac, i.€.
before each rewrite step we can apply AC-stapthe whole term, not only on the subterm
that is rewritten). Asumnand is a termu headed by a free symbol. We writas as a
shorthand for the expressian+ - - - + u whereu occursn times, and-nu as a shorthand
for n(—u), anda — b as a shorthand fa + (—b).
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An AG-context positionn a terms is eitheri or a pogtion p - i such ttat the topmost
symbol of s|; is neither+- nor —. An AG-contexin a terms is any occurrence of a subterm
of s at an AG-context position.

In this article, we assume that is a well-founded strict ordering on ground terms
satisfying:

1. >~ is AC-compatiblethatis,s’ =ac s > t =ac t’' impliess’ > t’.

2. > is total up to=ac on the set of ground terms, that is, for all ground tesmasdt,
we haves > tort > sors =ac t.

3. > orients allrules of Rag, that is,loc >~ ro for every rulel — r of Rag and all
grounding substitutions.

4. > is monotonic on ground terms, that is, for all ground temsns andu, we have
u[slp > ult]lp wheneves > t.

One way to build such an orderingis to simply use the recursive path ordering (RPO)
Dershowitz(1982, applied to the terms to be comparedfimtenedform w.r.t. 4+. This
flattening consists of removing all operatofsthat are immediately below anothéer For
exanple, +(a, +(f (+(a, +(b, ¢))), c)) becomest(a, f(+(a, b, ¢)), ¢), which can also
bewrittena + f(a + b + ¢) + ¢. Note hat in the flattened form of a tertp denoted by
flat(t), different occurrences of can have different arities (but all greater than 1).

Lemma 2. Let> be defined by: s- t if flat(s) >, flat(t), where>po is an RPO with a
total precedence-r such hat f = — = + > Ofor all free symbols f and where all
symbols have a lexicographic status, exceptvhos datus is multiset. Thes fulfills the
aforementioned requirements.

Definition 3. A ground equatiomu >~ njvy + - - - + Ngvk in normal form w.r.t.Rag is
said to be inreductive formif n > 0, then; are non-zero integers, andand thev; are
summands withu > v;. The (logically equivalent w.r.t. AG-model#&)verse reductive form
of this equation is-u >~ (n — 1)u — nyvg — - - - — N k.

For everyequatiors = t, its reductiveform can be obtained by normalizisg- (—t) ~
0 w.rt. Rag into ngug + - -+ + nkux >~ 0 where, sayy; is the maximal summand, and
then, if ny is positive, the reductive form isju; >~ —nauy — --- — ngUk; otherwise, it
iS —niu1 =~ nau2 + - - - + NkUk. Note hat the unary minus operator is overloaded in our
notation énce it is also applied to coefficientsybremember that coefficients are not part
of our logical language but just a shorthand in our notation).

Example4. If a = b > c then the equatiorf—a) + ¢ + 0 + (—(—c)) + (=b) ~

(—c) +a+ b+ 0is equivalent to(—a) + (—a) + ¢+ ¢ + ¢ + (—b) + (—b) >~ 0, written

shortly —2a + 3c — 2b ~ 0, and becomes in reductive form 2 3c — 2b, and ininverse
reductive form—a~a—3c+2b. O

Example 5. Equations in reductive form can be adequately used as terminating rewrite
rules.Assume we hava > b > c and the equation (in reductive form3~ —b + c. It
can be applied either as itis, or in its inverse forra ~ 2a + b — c.
For example, 4 is AG-equivalent by this equation te2a — 2b + 2c. Let usprove
it by rewriting both terms into their respective normal forms. On the one hand, by
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simply gplying the equation to three of its foars, 4a rewrites into the normal form
a — b 4 c. On theother hand, by applying the inverse form2a — 2b + 2c rewiites into
—a — 2b + 2c + 2a + b — c which simplifies withRag intoa — b + c.

Note that normal forms w.r.t. both ways of rewriting with such equatimns- v will
always have a positive number 0% between 0 andn — 1, and that the inverse kind of
steps imnot needed ih = 1. The two ground inference rules of AG-superposition that are
given below, in fact, correspond to these two ways of rewriting.

3. Ground Horn case

Here we first introduce part of our techniques on the simple subcase of ground Horn
clauses. We assume all equations in clausdseteagerly maintained in reductive form,
and moreover we assume negative equatiopddto be renoved eagrly from all clauses.

Definition 6. The inference rules for ground AG-superposition are as follows:

. .. Cvnux~r D[nu]p
direct AG-superposition:
CvDI[rlp

Cvnuxr D[—ulp
CvDl[(h—Du-—r]p

inverse AG-siperposition: ifn>1

whereD|p denotes a subterm d modulo AC, that is, eaclD’|q is such a subterm if
D =ac D'.

The ordering restrictions of AG-superposition are such that inferences are needed only
if they take placewith the strictly maximal summand arwh a maximal summand (that is
strictly maximal if it occurs in a pasve equaton), that is, denoting by >~ C the fact that
s > t for every summant occurring inC, these infeences are needed only if:

1. u > C (and remind that, by expression in reductive form, alser)
2. s> D’ wheneveD is D’ v ms= t (in reductive form) withD|p in ms
3. s > D’ wheneve is D’ v ms# t (in reductive form) withD|p in ms

Note that hence inverse AG-superposition is needed only on proper subterms of
summandss since in an (in)equation in reductive form the term cannot occur elsewhere.

3.1. Completeness for the ground Horn case

We now use multiset extensions for lifting the orderirng on terms to orderings on
ground equations (in reductive form) and clauses in the usual way.

Definition 7. Let C be a ground clause, and let erfaul~ t) be {s,t} if s ~ tis a
positive equation irC, and{s, s, t, t} if it is negative. Then we define the ordering
on (occurrences of) ground equations in a clause by. € if emul(e) >myu emuke).
Similarly, >¢ on ground clauses is defin€d>¢ D if mse(C) (>mul)mu Ms&D), where
msgC) is the multiset of all emuye) for occurrences of equationsirC.

Lemma8. Let C and D be ground clauses. If D is the reductive form of C then {D.
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Proof. Let u be the maximal summand of an equat®r~ t occurring (positively or
negatively) inC. If u does not occur in the reductive form®of- t, i.e. it has leen cancelled
out, then the reductive form is small®therwi® the reluctive form ofs =~ t is of the form
nu >~ r whereu > r. If —u occurs ins >~ t then agaimu ~ r is smaller. Otherwise ~ t
is of the formnu + s’ ~ t andnu ~ r is smaller (ifs’ is non-empty) or equal (i’ is
empty). O

We now $iow how to construct a model for se&of ground Horn clauses closed
under ground AG-supposition and wher&l ¢ S (note that this implies the refutation
completeness of ground AG-superposition). As usualBsehmair and Ganzinget9949,
in order to construct the model we will generate a set of rewrite rRleby induction on
>c. Buthere the model will contain as well the rules®ig, and, as saidall rules will be
applied modulo AC.

Definition 9. Let Sbe a set of ground Horn clauses in reductive form, an@ le¢ a clause
in Sof the formC v nu >~ r. ThenC gereratesthe rulenu — r if the following three
conditions are satisfied:

1. (RcUAG)*EC
2.u>randu>C
3. nuis irreducible byRc

where Rc is the set of rules generated by clausesSkmaller thanC w.r.t. >¢.
Furthemore, if C generatesiu — r with n > 1, in additionC generatests inverse
form —u — (n— 1)u —r. The set of all rles generated by clauses$is denoted byRs.

We now stée an essential resulRs U Rag is convergent modulo AC.

Lemma10. Let S be a set of ground Horn clauses in reductive forms R Rag is
terminating and confluent modulo AC on ground terms.

Proof. All rules in RsU Rag are oriented w.r.t-, andhenceRs U Rag is terminating for
rewriting modulo AC, since- is AC-compatible, well founded, and monotonic on ground
terms. @nfluence is a consequence of thédwing facts. By construction oRs, for all
ground ruled — r in Rs, the terml is irreducible by the ground rules iRs\{I — r}.
Furthemore, Rag is well known to beconfluent. Finally, the (extended) critical pairs
betweenRag and Rs are easily shown to be joinable. This is straightforward but long,
so we omit this part here (similar results are given in the literature, eChémadec 1986
Marché, 1996 but we have not found the exact result needed herg).

Theorem 11. AG-superposition is refutation cqptete for ground Horn clauses.

Proof. Let Sbe a set of ground Horn clauses (whose equations are in reductive form) such
thatSis closed under AG-superposition and¢ S. We provethat thenS is satisfiable by
exhibiting an AG-modell for S, wherel is the equality Herbrand interpretation defined

as the congruence on ground terms generateBdy AG. Note that,sinceRs U Rag is
terminating ad confluent] = s ~ t if, andonly if, s >% g, . < RRr, t- We proceed

by induction on>¢, that is, wederive a contradiction from the existence of a minimal

(w.r.t. =¢) clauseD (in reductive form) ofS suchthat| # D.
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Let s be the maimal summand irD. ThenD is either of the formD’ v ms >~ t with
s > D’ (a), orelse itisD’ v ms# t with s > D’ (b). We first show that in both casess
is reducible byRs.

(a) Sincel ¥ D, it has geerated no rule oRs. According toDefinition 9, thiscan only
be becausensis reducible byRp. (b) Shcel ¥ D, we havel £ ms~ t. Therdorems
andt are joinable byRsU Rag, and shcems > t, the maimal sidems which isin normal
form w.r.t. Rag, has to be rducible byRs. The rulereducingms has been generated by
a clause bthe form C v nu ~ v, and there ®sts an inference by (direct or inverse)
AG-superpogion

Cvlz~r D[l1p
CvDIrlp

wherel ¥ Cv D[r]p andD is larger w.r.t>-¢ thanC v D[r ]p, and theefore, byLemma 8
also larger than the reductive form©fv DJr]p, contradicting the minimality ofD. O

3.2. Séecting negative literals

It is easy to see that our inferemcules remaircomplete withselectionof negative
literals (see, e.gBachmair and Ganzinget994, where it is assumed that in each clause
with a non-empty antecedent one of its negative equations hasskeeted In the Horn
case this leads to positive unit strategies (and in the non-Horn case to positive strategies):
all left premises of AG-superpositions are positive unit clauses, and the only inferences
involving non-unit clauses are AG-superfimns on the selected negative equation. The
following result is a simple modification of the previous one; it is immediate if we define
Rs such that only unit clauses generate rules:

Theorem 12. AG-superposition with selection is ghtion complete for ground Horn
clauses.

3.3. Deciding the satisfiality of sets ofground clauses

From our results it is not difficult to obtain a decision procedure for the satisfiability of
arbitrary sets of ground clauses modulo AG.

For the Horn inference system with selection, each inference of r on a clause
D produces a smaller clau®’. Furthermorep is a logical consequence (modulo AG)
of the sndler clausesl ~ r and D’, i.e. D has becomeedundantin the sense of
Bachmair and Ganzingét994. In our procedure such redundant clauses can be removed
without loss of completeness (redundant clauses never generate any rules, and in the
proof of the completeness theorem, they are never the smallest counter example; see, e.g.
Bachmair and Ganzinget994 for details). Hence, if after each inference the maximal
premiseD is removed, the procedure remains cdetg, and at each inference the clause
set decreases w.r.t. the multiset extension of the ordering and hence the process terminates,
thus deciding satisfiability.

A decision procedure for the satisfiability sés of arbitrary ground clauses modulo
AG can be obtained by first transforming into Horn clauses (WB&re& v Ap v --- Vv Ap
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is split into the disjunction of set§ of the formSU C v A;; thenSis satisfiable if some
ofthe § is).

Theorem 13. AG-superposition with selection decides the satisfiability of sets of ground
clauses modulo AG.

4. Inferencerulesfor clauseswith variables

In this section, we adapt the inference system in order to deal with equality constrained
clauses with variables, where constraints are conjunctions of equalities. As usual,
the semantics of a constrained cla@se T is the st of its ground instances, that is, the
ground instance€o suchthat To evaluates to true it is interpreted as=pg. Theno
is called a solution fofl . The enpty clause with a constraifit is hence a contradiction,
denoted simply by, if, andonly if, T is true for some ground.

Very roughly, the following is needed for lifting our completeness results from the
ground case to equality constrained clauses with variables. If for clatlisdsT; and
C, | T2 there is an inference between ground instances

Cio Coro
D
then there exists an inference by the non-ground version of the inference rules

Ci|IT1 C| T
DT

suchthatD isa goundinstance oD’ | T.

As we will see inSection 5 for compleeness it suffices to be able to do this only
for instances witho of C; and C; that are, in some technically rather involved sense,
irreduciblew.r.t. Rs, whereRs is the set of rules generated in a way similar to the previous
section (but now by ground instances of clauses).

Definition 14. An equations = t is in one-siakd formif it is of the forme ~ 0 whereeis
in normal form w.r.t.Rag.

Note that each equation has two (AG-eqlevd) one-sided forms: for exampbes+y —
z >~ 0 is guivalent to—x — y + z >~ 0. In the following, we assume that all equations in
clauses are kept in one-sided form. Unless explicitly stated otherwise, it does not matter
which one of the two. Furthermore, for all substitutiensve asume w.b.g. thatxs is in
normal form w.r.t.Rag for all x.

In order to define the non-ground inferenciess, we now analyze for each inference
rule how their premises have to be expressed. For simplicity, we omit the constraints, since
they do not matter at this point; let us only remark that the amount of possible inferences
can be further restricted in many different ways by checking their compatibility with the
constraints.
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4.1. Left premises of direct AG-superposition

Intuitively, our aim is the following. LeC be a clause with a pi&/e equatione >~ 0,
and assume a ground instarCe of it generates a rulau — r with n > 0, andCo is
the left premise of an AG-superposition. Then for the non-ground case we have to be able
to expresse ~ 0 ass >~ t such that the termso andto have, respectivelyju andr as
normal forms w.r.t.Rag, and thermperform the inference with AG-unification betwesn
and the corresponding subterm of the right premBxenting e~ 0 ass >~ t in this way
may require tcsplit the variables oé into two parts:

Example 15. Consider the clauses + 2x >~ b and f(4a) # f(a + b — 2c), where
a > b > c. Assume that, for th instance wherex — a + ¢, the guationa + 2x >~ b
generates the rulea3— b — 2c. Then there exists a ground inference

3a— b-2c f(da) 2 f(a+b—2c)
f@+b—2c) % f(a+b—20c)
applied to three of tha's in f (4a), where the onclusion in reductive form becomeg00
and hence the empty clause.
To cover this inference at the non-ground lewehas to be st into y (which, roughly,

will contain the maimal summands ixo) andz (for the remaining summands). Hence
a + 2x >~ b can beorientedasa + 2y >~ b — 2z. Then there is a non-ground inference

at+2y~b—2z f(da) 2 f(a+b—20)
f@+b—-22) % f(a+b—-20)
unifying a 4+ 2y with three of thea’s in f (4a). AG-unifying both sides of the conclusion
(which will be another inference rulege below) detects the instance wherés c;

the arresponding instance has a reductive formt00 andhence the contradiction is
found. O

Definition 16. Letebe aterm of the formys; +- - - +npSp+MmMiX1+- - -+mMgXq Where the
§ are non-variable summands, theare variables, and thg andm; are non-zero integers.
By splitting each; into two new variabley; andz, and splitting the summands into two
disjoint sets, the equatian~ 0 can be written as an equivalent equatson t of the form

NSy + - - -+ NS+ Miyr + - - + MgYq = —Nk+1Sk+1

In the following, we call each such an equat®rr t anorientationfor e >~ 0 and wecall
the corresponding constraintof the form

Xlzyl+21/\/\Xq:yq+Zq

thesplitting constraintfor this orientation.

It is not difficult to see that this notiorf @rientaion fulfills what we wanted: itoc ~ 0
generates a rulau — r then indeed for some orientatien~ t of e ~ 0 and some
extenson of o in order to include they;, andz;, the termso andto have, respectivelyyu
andr as normal forms w.r.lRag. This we will see in detail in thecompleteness proofs.
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Of course, the fewer orientations have to be considered for a given eqeatio,
the fewer inferences will be prmed, which is better for efficiency in practice. Indeed,

a little more careful analysis reveals that a large number of optimizations are possible.
In Section 8we will mention some of them. It is alsmportant for efficiency to exploit

the unifiability and ordring restrictions as the strongest possible filters to avoid redundant
inferences with such orientatioes t. For exanple, apart from the unification restrictions

of the inference itself, whergis unified with a sibterm of the right premise, in the above
orientation we can adsf = --- = g to the constraint; in particular, this means, e.g. that

if eis f(--)+g(--) + ---, then no orentations ~ t is needed wherboth summands
headed withf andg are in the left hand side In Section 8the problem of checking the
ordering restrictions is addressed.

Note that this notion of orientatiadoes not depend on which onesof 0 or—e >~ O we
consider as the one-sided form, and that the non-deterministic aspect of orientation is the
guess of a subset . . . ¢ of the (non-variable) summands (where the guess is constrained
by the requirement that all of them are AG-unifiable and by the requirement$.on

4.2. Left premises of inverse AG-superposition

Example 17. Considera > b > ¢ and the clauses(—a+ b +c¢) # f(a—c) and
2x =~ b. With the instancex — a — c, the seond equation becomesa2~ b + 2c. At
the ground level, there exists an inferemdgéh inverse AG-superposition which produces
f(a—c) 2 f(a—c). Atthe non-ground levek is splitintoy + z, and tke inference is
performed with—y ~ y 4+ 2z — b, and weobtain f (a + ¢ + 2z) % f (a — ¢). From this,
by AG-unification the instance+— —c is found and the empty clause is obtainedl

Definition 18. Lete (or —e) be a term ofhe formxy +- - - +Xn + v, wherev contains only
negative variables and (positive or negative) summands, ared bete but where every
occurrence ok; at top-level position has been replacedyby- z;, wherey; andz; are new
variables. The splitting constraimtis X1 = y1 — 21 A - -+ A Xn = Yn — Zn. Herce€' is of
theformy; —z3 +--- 4+ Yn — Zy + v.

Then, if € is of the forms + € wheres is a positive summand, thens ~ €’ is an
inverse orientatiorfor e >~ 0 with splitting constraint.

Furtheamore, if € is of the formw + €’ wherew is a variable (i.ew is somey;),
then —w1 >~ wy + € is aninverse orientationfor e ~ 0 with splitting constraint
TAW = w1+ wa.

Finally, if € is of the form—w + €’ wherew is a variable, but none of the;,
thenwi1 >~ —wy + € is aninverse orientationfor e ~ 0 with splitting constraint
TAW = w1+ wa.

The splitting of the variablev in the second case of inva orientation is the one
illustrated by the previous examplexample 24shows the necessity of the splittings of
the onstraintz.

4.3. Right premises for direct AG-superposition

Example 19. Considera > b > c, the leftpremise & ~ b, and the mht premise
f(2x,x) % f(a+ b+ 2c, 2a + c). With the instancgx — 2a + c}, the right premise
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is f(da+ 2c,2a+c) % f(a+ b+ 2c,2a + ¢) which gives in one ground inference
f(a+b+2c,2a+c) # f(a+ b+ 2c, 2a+ c¢), which inreductive form is Q% 0.

Now the question is: how can we, at the non-ground level, perform the inference into
the term X? (which B the ternt in the definition below). By splitting into only the two
variablesy andz, one getsf (y+y+2z+2,y+2) 2 f(a+b+ 2c, 2a+ c), for which the
ground inference cannot be lifted: it is impossible to spht y + z + z into t; + t2 such
thattyo is 3a, andtyo isa + 2c¢ for someo .

As we will see, by splitting into three variabley, y’, andz, lifting is always possible.
In our example, then one gefs2y + 2y’ +2z,y+ Yy +2) % f(a+ b+ 2c,2a+ o),
where 3/ + 2y’ + 2zis splitinto 2y + y’ andy’ + 2z (these are the ternig andt; in the
ddfinition below). Then an AG-unifier of8and 2/ + y’ instantiatesy andy’ with a, and
the aonclusion of the non-ground inferencefisa+b+2z, 2a+2z) ¢ f (a+b+2c, 2a+c),
which byone more AG-unification, wherzis instantiated wittt, becomes @2 0. O

Definition 20. Lett be a non-variable subterm efin a literale >~ 0 ore 2 0 wheret is
not immediately below an AG-symbol and the head symbolisfree or+. W.l.0.g., lett
be of the form

NiSt + -+ + NpSp + MiXg + -+ - + MgXq + t’

where alls are summands, al; variables, alln; andm; are positive coefficients, artd
contains only negative summands and variables.
Thent; +t; is asplitting for t if t is a term whose heaymbol is free or+ of the form

kiS1 + - + KpSp +Muy1 + - +mMgyq +l1y; + - +1qYg
where 0< ki < nj and 0<|; < m;, andt is

(N —k)sp + - 4 (Np —Kp)sp +mMzg + - - - +Mgzq +17y) + - +1gyg +t
wherel! is 0 if l; is O (i.e. therx; is split only inb two partsy; andz), andl; is mj — ||

otherwise. Again we denote hythe corresponding $ifting constraint.

As before, other restriains apply; for example it is also not necessary to congidefr
the formy; + y/ (i.e. if mj is 1).

4.4. Right premises for inverse AG-superposition

Definition 21. Lett be a non-variable subterm efin a literale >~ 0 ore ¢ 0 wheret is
not immediately below an AG-symbol.

If tis of the form—s +t/, wheres is a sunmand, ther; + t2 is aninverse splittingor
t with empty splitting constraint if t; is —s andty ist’.

If t is of the form—x +t/, wherex is a variable, thety + t2 is aninverse splittingor t
if t1 is —y andty is —z + t/, and the splitting constraint isx =y + z.

4.5. AG-supeposition rules

Based on the notions of orientations and splittings defined in the previous subsections,
we are now ready to define the inferencetsyn for Horn clauses with variables.
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Definition 22. In the left premiseC v | >~ r of the direct AG-superposition rule below, it
is assumedhat the actual clause 8 v e >~ 0 and thal ~ r is an orientation o& >~ 0.
Similarly, in the right premiseD[t; + t2]p denotes thaD|p, is anon-variable ternt that
is not immediately below an AG symbol, with a splittibig+ t2. In the samavay, for the
inverse AG-superposition rule, they denote inverse orientations and splittings. In all cases,
7 is the conjunction of the splitting constraints of the two premises. The inference system
H consists of the following thréeules for constrained clauses:

direct AG-superposition:

Cvl~r|T Dlt1 +t2]p | T/
CvDIr+tlp | TAT Al =t1A7T

inverse AG-siperposition:

Cvlx~r T Diti +t]p | T
CvDIr+tlp | TAT Al =t1AT

AG-zero-instance:
Cvez0|T
C|TAre=0

The ordering restrictions of the superfims rules are the ones corresponding to the
ground rules. More precisely, a direct {averse) superposition with premis€s | T; and
C> | T and conclusio | T is needed if, for some solutighof T, there is a ground direct
(resp. inverse) inference between the reductive forn@ 6fandC,0, and wth conclusion
D6. The AGzero-instance rules can be restricted to maximal equations of the clause.

In the following sections, we will prove the refutation completeness of this
inference system. But let us first illustrate some of the limitations and technical
difficulties when dealing with constrained clauses, by means of an example taken from
Nieuwenhuis and Rubi¢2001). Note that in such examples where only free symbols
occur, AG-superposition boils down to normal superposition.

Example 23. Consider the unsatisfiable clause set, with the orderinglasrinma 2based
onf ~ra>=rb>rc:

l.ax~b
2. fX)~c|x=a
3. f(b) #c.

No inferences that are compatible with ttenstraint of the second clause can be made (a
superposition inference between 2 and 3 leads to a clause with an unsatisfiable constraint
X = a A b =Xx). Thisincompleteness is due to the fact that the usual lifting arguments for
superposition (sedieuwenhuis and Rubj@001) do not work here, since they are based

on the existence ddll ground instances of the clauses; in this case, it requires an instance
f(b) ~ c of clause 2, which does not exist. This example also shows that one cannot

2For explanation purposes we prefer to keep the direct and inverse versions of the superposition rules, like in
the ground case, in spite of the fact that the two rules itself are written identically here.
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deal with arbitrary initial constraints. For constrained clauses, the alternative technique for
lifting is based on the notion of irreducible instancBguwenhuis and Rubj@001). In

this article we extend this idea of irreducible substitution. It becomes technically more
complex due to the built-in properties of AG&Xample 29jives an idea of it). O

Example 24. In this example it is shown how the inference system performs and also
the need of the splitting of variables in the right premise of inverse AG-superposition is
illustrated. Consider the clauggx) # f(—a) Vv x+3a ~ 0. With the instancgx — —a},

the negative equation in reductive form ig00. The positive equation isa2~ 0, which

may generate the two rulea2> 0 and—a — a. If one wants to refutd (—3a) % f(a),

then the inverse rule has to be used. Indeed, widh— a, the termf (—3a) rewiites into

f (—2a+ a), which is f (—a), which rewites into f ().

Now we want to perform, at the non-ground level, the ground refutation corresponding
to these two rewrite steps. Assume that, at the non-ground level, we consider the orientation
—a ~ 2a+ X, i.e. without the aditional splitting ofx as explained iDefinition 18 Then,
by the corresponding inverse AG-superposition inference we olftain % f(—a) v
f(x) 2 f(a). If one adds constraints forcirggto be the maximal summand in the clause
f(x) 2 f(—a) v x + 3a >~ 0 and such constraints are inherited, then no substitution
different from{x — —a} is possible (such constraints can be handled with the methods
presented irsodoy and Nieuwenhuij2001). Now, one would want to do a new inference
on X, but in’H no inferences below variables are computed. So this shows the need of a
splitting of x into y — z in an inverse AG-superposition inference.

Indeed, if we do this additional splitting, the orientation becomes>~ 2a + y — z.

Then the instance under consideration is extended sucHyhat 0,z — a}, and the
obtained clause i (x) # f(—a) v f(y — 2 % f(a), with the splitting constraint

x = y—2z.Now, it is possible to do the second inverse AG-superposition inference (the one
corresponding to the second rewrite step with — a). Applying —a on —z, one obtains

f(xX) 2 f(—a)v f(X) f(—a)Vv f(y+2a+y —27Z) % f(a) (here, thex of the left
premise is renamed int’) with the splitting constraink’ = y’ — Z/, and exteding the
substitution(y’ — 0, Z +— a}. With this substitution, all these equations are of the form
0 ~ 0, and three AG-zero-instance infaces give us the digsd refutation. O

5. Completeness for a simple subcase

For explanation purposes, in this section we consider the simpler subcase where all free
symbols are constants. Hence this is assumed in all results of this section. It is interesting
to observe that in this subcase the inference rule of inverse AG-superposition is not needed.

As said before, we will deal with instances with ground substitutioref clausesC
that are in some sense irreducible with respe®4¢pwhereRs is the set of rules generated
in a way similar to how it was done for the ground case in the previous section.

Example 25. Let s be a term and a aubditution, both in normal form w.r.tRag. Then
still so needs not be in normal form w.rRac.

For example, ifsis —x + y + a, xo isa + b, andyo is b, then—xo is AG-equal to
—a+ (—b) andso in AG-normal formis 0. O
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Example 26. The problems illustrated iBxample 23still occur in this simple case where
all free symbols are constants. Again with the ordedng b > c, consider

l.ax~b
2.b+x~c|x=a
3. Db#c.

No inferences are possibla ¢thisunsatisfiable set. [

Definition 27. Let C be a claus, lett be a term, letc be a sibditution in AG-normal
form, and letR be a ground TRS.

The pair(t, o) isirreduciblew.r.t. R if for all variablesx occurring int, the termxo is
irreducible w.r.t.R=~Y whereu is the maximal (w.r.t>) sunmand of AGnf (to).

The pair(C, o) is irreducible w.rt.Rif (e, o) is irreducible w.r.t.R for all equations
e~ 0ofC.

Note that the notion of irreducibility fo(C, o) does not depend on which one-sided
forme ~ 0 is monsidered.

We now adapt the notion of rule generation to the non-ground case. Instead of having
the ules generated by ground clauses in reductive form, now the rules are generated by the
reductive forms of instancé3o of clause<C | T of S, where(C, o) is irreducible:

Definition 28. Let Sbe a set of constrained Horn clausesQet T be a clause irs with
a gound instanc€o, and letG be the (ground) reductive form @fo, whereG is of the
form G’ v nu ~ r. ThenG gereratesthe rulenu — r if the following four conditions are
satisfied:

1. (R UAG*EG

2. u>randu > G

3. nuis irreducible byRg

4., (C, o) isirreducible w.r.tRg

whereRg is the set of rules generated by reduetiorms of instances of clauses Sthat

are smaller thai w.r.t. =¢. Furthermore, for each generated rale — r withn > 1, in
addition the rule-u — (n—1)u —r is generated. The set of all rules generated by clauses
in Sis denoted byRs.

In the remainder of this sectioRs always denotes the ground TRS generated for a
givenSas in the previous definition.

Example 29. This example illustrates how the apgdtion of generated rules correspond

to inferences at the non-ground level. Is@lsfows why the irreducibility notion is more

complicated than the standard one of superposition with constrairBaaimair et al.

(1999 andNieuwenhuis and Rubi 995, where, roughly speaking, one simply imposes

that for evey variablex the termxo has to be irreducible wtr.the rewrite systenk.
Consider the equatiom~ 0 of theform 2x — 2a — 2b + ¢ ~ 0 wherea > b > ¢, and

the substitutiorr suchthatxo isa+b. We have thatéo ~ 0is2a+2b—2a—2b+c >~ 0,

and its reductive form is ~ 0. The corresponding orientation at the non-ground level is

¢ >~ 2a+ 2b — 2x. Due tothis instance the rule — 0 may begenerated. Later on, the rule
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b — 0 may begenerated too, due to other equations. The variablih the substitution

o is reducible bysuch a ruleb — 0. So with the standard notion of irreducibility,

rules generated later on could reduce the substitution of clauses generating smaller ones.
Therefore this classical notion is not adequate in our context. Roughly speaking, we need
to allow such big summands that are cancelled out to be reducible.

Indeed, withthe notion used here, the oneéfinition 27, we will see inLemma 30
thatxo will be irreducible w.r.t. all generated rules with maximal summand smaller than
or equal to—c. Andindeed this irreducibility is preserved in the conclusions of inferences.
Assume we want to refutec2+ y £ 0, whereyo is 0 with the rulec — 0. Observe that
(2c+vy, o) isirreducible w.r.t. the generatél At the non-ground level, the reduction with
¢ — 0 corresponds to an inference with the orientatian 2a+ 2b — 2x, andthe resulting
clause i+ 2a+ 2b—2x +y ¢ 0. Observe thatc + 2a+ 2b — 2x + vy, o) is irreducible
w.r.t. R, sincethe maximal summand of A@f (c+ 2a+ 2b — 2xo + yo) isc. Here, some
constraints can be added, like for example- 2a + 2b — 2x. Such onstraints can be
handled with the methods presenteddadoy and Nieuwenhui€001J). In this case, the
only possible solutiow isxec =a+hb. O

The following lemma shows that our notion of orientation for left premises of direct
AG-superpogion fulfills the requirements.

Lemma 30. Let C | T be a chuse whose instancesCwith reductive form € generates
the rule nu—r.

Then there exists an orientation 4~ ry of the positive equation & 0 of C, and some
exten®n of o in AG-normal form satisfying the splitting constraint of the orientation, and
AG-nf(l10) = nuand AG-nf(rio) = r. Furthermore,all variables x in . satisfy that xr
is irreducible w.rt. .

Proof. W.l.o.g., lete be of the formkyx; + - - - + KpXp + ku + v where thek; andk are
(possibly zero) integers, the are variables, and is the (possibly 0) sm of constants
different fromu. Now considerthe orientation o€ ~ 0 intol1 ~ r1 where

|1=k1y1+"'+kpyp + ku
r1=—k121—«~—kpzp — v

i.e. where eaclx; has been djt into y; + z. Furthermoreconsider the extension ef
wherey; o consists of all (positive or negativa)in xjo, andz; is the sum of tle remaining
constants, that is, ¥jo =aco mju + vi whereu does not occur imj, thenyjoc = mju and
zio = vj. Note hat inv; constants larger or smaller thammay appear, but nat itself.
Then AGnf(lio) = nu and AGnf(rio) = r. It remains to be shown that every
variablez; inrq satisfy thaiko isirreducible w.r.th’“. Weknow that(e, o) isirreducible
w.r.t Re,, i.e. xjo is irreducible w.r.t.Ra’“. Then, sincez;o is a sumof constants that

already appear iR o, we have thar;o is irreducible w.r.t.Ré’“. O

Note that in this case where all free symbols are constants, for a given clause with
positive equatior ~ 0 there are amost twoorientationd; ~ r1: one where the maximal
constant symbol o (if there isany) is inl1, and aother one where there is no constant
symbol at all inl; (if there is any variable i®).
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Lemma3l. Let e be a tem sud that (e, o) is irreducible w.r.t. R, and let e ~ 0in
reductive form be mu~ v. Furthermae, let nu— r be arde in Rgwithl <n < m.

Then there exists a splitting e+ e; of e and an extension af in AG-normal form
saisfying the correspondingglitting constrint, and(e; + )0 =ac €0 and o =ac hu.
Moreover, all variables x in gsatisfy that % is irreducible w.r.t. £~

Proof. For everyvariablex; in e, w.l.o.g. we havexic =aco miju + vi whereu does
not occur invj, and wheran; > 0 becausee, o) is irreducible w.r.t.Rs (which contains
nu— r and hence ifi > 1 also—u — (n— Lu —r).

Therefore, sinces ~ 0 in reductive form isnu ~ v, andm > n, we can assume that
e~ 0 (inone of its one-sided forms) is of the form

Kixy+ -+ kpxp +ku+€ ~0

wherek > 0, € is the (possibly D sum of the remaining constants and variables,
and {xy, ..., Xp} is @ minimal set of variables with positive coefficieris such that
kimy +--- +kpmp + Kk > nor, if k is negative,kymg + - - - + kpmp > n.

Now we dstinguish three possible situations:

1. k > n, andhencep is 0. Then some splitting of the form
e =nu
e=Kk-nu+¢€

fulfills the requirements. Note thét,, o) is irreducible w.r.t.Rs sincee; has the
same variables as and the maximal summand of AGf(exo) is smaller than or
equal tou, the maimal summand of AGif (eo).

2.n > k > 0. Thenkimy + --- + kpmp + kK > n > komy + - -- 4+ kpmp + Kk (the
latter relation by minimality of the s€ky, ..., Xp}). Now letl ben — (komp 4+ - - - 4
kpmp +K), i.e. intutively, | is the nunber ofu’s we reed from thekymy u's in x10.
We assume that modk; is not O (the case dfmodk; = 0 is analogous and the
differences are commented on below). Nowtétel div ki, letk’ bel modky, and
consider the splitting

er = ku+kiy + Ky +koys + - + kpyp
e =(k—K)Y +kiz+kozo+ -+ kpzp + €

where everyx; is split intoy; + z, except forx; that is split intoy + y' + z (if
I modk; is O then the variabley’ is not needed in the splitting andis split into
y + 2) and letyo bem'u, let y'o beu, let zo be (m; — M’ — 1)u + v1, and fori
in2...p, letyjoc bemju, and letzio bewv;. This fulfills the requirements, and, for
similar reasons as ihemma 30we have that every variablein e, satisfies thako
is irreducible w.r.tRg .

3. k < 0. Thenkymy +- - -4+Kpmp > n > komz +- - - +kpmyp. As in theprevious case,
assume thatt modky is not 0, and let ben — komp + - - - + kpmyp, letm’ bel div kq,
letk’ bel modk;, and consider the splitting

er =kiy + Ky +koyz2 + -+ + Kpyp
e=(k—K)Y +kiz+kozo+ - +kpzp+ku+¢€
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and letyo bem'u, lety’c beu, letzo be(m; — m’' — 1)u + v1, and fori in 2. .. p,
let yio bemju, and letzio be v;. This fulfills the requirements, and, for similar
reasons as ihemma 30 every vaiable x in e satisfies thako is irreducible w.r.t.
R:7Y. O

S

The proof of the previous lemma reveals that the definition of splitting of right premises
(Definition 20 could be made wre restrictive. Indeed this is possible, thus reducing the
number of inferences that need to be con®deln fact, the following more restrictive
definition is also adequate for the general case handled in the next section, where we
consider arbitrary free symbols. We decided to gdefinition 20 as it is because it is
simpler, but here we ge&vthe moreestrictive alternative (it can be skipped by all readers
except the ones interested in implementing these techniques in the most optimized way).

Lett be a non-variable subtermein a literale >~ 0 ore % 0 where is notimmediately
below an AG-symbol and the head symbot @ free or+. W.l.0.g., lett be of the form

NiSt + -« + NpSp + MiXg + - - + MgXg + t’

where alls are summands, alj variables, alln; andm; are positive coefficients, artd
contains only negative summands and negative variables.

We choose a subset of theg, say{s;...sy} with p’ < p, and a sbset of thex;, say
{X1, ..., Xq} with @" < g. Thecase where the subset of summands is empty, the subset
of variables contains only; andms is 1 is not accepted (no inferences in variables are
permitted). If (i) the subset of variables is empty, we choose a summégg.in sy}, say
s1, and anumbem] < ny. Otherwise, if (ii) the subset of variables is non-empty we choose
one of those variables, say and a numbem) < m.

In case (i)t1 + t2 is asplitting for t if t; andty are of the form

nist+--- 4+ NySy

(N1 — NSt 4+ Ny 1Sp41- .. + NpSp + MiXy + - - - + MgXg + '
respectively. In case (ii), split every variableof {xz, . .., Xy} into yi +z. If (ii.1) m} is O,
then splitx; into y; +z1, andotherwisejf (ii.2) mj is not 0, then spliky into y1 +y; +21.
In case (ii.1)t1 + t2 is asplitting for t if t; andty are of the form

NiSy + -+ 4+ NySpyMiys + -+ Mg yg +t

Np41Sp+1--- + NpSp +M1z1 + - - - + My Zg + My y1Xg41 + - - + MgXq + t
respectively. In case (ii.2); + t2 is asplitting for t if t; andt; are of the form

NiSt + -+ 4+ NySpyM1y1 + Miy; + Mayo + - - + Mg Yy + t

Np41Sp41 ...+ NpSp + (M1 — MDY + Mizg + -+ + My Zy

+ Mg 41Xq+1 + -+ + MgXg + t

respectively.

Theorem 32. H is refutation complete for constined Horn clauses where all free
symbols are constants and the initial set of clauses has only empty constraints.

Proof. In fact, we will show that in this case where all free symbols are constants, no
inferences by inverse superposition are needed Sl the closure undét of a set of
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Horn clausesy) without constraints, and assumik ¢ S. Again weprove thatthen the
equality Herbrand interpretationdefined as the congruence on ground terms generated
by Rs U AGis an AG-nodel for S. But now this is done in two steps. Latr(S) denote

the st of ground instanceSo of C | T in Ssuchthat(C, o) is irreducible w.r.t.Rs.

1. First,itis proved thatl = Irrg(S), in avery similar way as for the ground case, by
deriving a contradiction from the existence of sucBa whose reductive form is
minimal w.r.t. =¢. This is done in detail below.

2. Second, from E Irrg(S) it follows that! F Sfor the following reasons. For each
ground instanc€o of a clauseC | T in &, consider another instandgs’ of C,
wherexo’ is the normal 6rm w.r.t. Rs of xo for every variablex of C. SinceT is
empty (asS has no constraintsf;o’ is also an instance &. Itis also inlr rg(S),
since (C, o”) is obviously irreducible. Sinc& < Sandl E Irrs(S) we have
| E Irrg(S) and hencd E Co’, which imdies | E Co, andhence we also have
| ES. ButsnceS F S, thisgvesusl F S

We now ppove the first prt. LetC; be the ninimal, w.r.t =¢, reductive form of some
Co in Irrg(S) that is an instance of a clau€e| Tc suchthat!l ¥ C;.

If C; is a disjunction of literals of the form @ 0, then an inference by AG-zero-
instance applies to any one of these literals, eliminating it, and its conclusion has a smaller
false munter example.

Otherwise, as in the ground case (the proofTdfeorem 1}, let s be the naximal
summand inC,. ThenC; is either of the formC/ v ms >~ t with s > C/, or else it is
C/ vms# t withs = C/. ThenC is of the formC’ ve >~ 0 orC’ v e % 0, where the
reductive forms oC’c andes ~ 0 areC,; andms~ t respectively.

As in Theorem 11in both casesnsis reducible byRs. Sinceall free symbols are
constants, the rule reducimgs must be of the forrms — r, with m > n > 1. Thisrule
has been generated by the reductive f@pof an instancddo of a clauseD | Tp. Let D
be of the formD’ v € ~ 0.

Then byLemma 3Gthere exists an orientatidn ~ r1 of € ~ 0 and an extesion ofc
preserving AG-equality such that A@f(l10) is nsand AGnf(rio) isr, and seh that
every\ariablex in r1 satisfies thako is irreducible w.r.t.Rg’”.

Furthemore, byLemma 31 there exists a splittinge; + e of e and a new extension of
o (here we assume as usual that both clatasd D contain different variables and that
the splittings in them are done also with diffetgariables) that is AG-preserving such that
(e1 +&)o =ac €0, andejo =ac NS, and where evy variablex in e satisfies thako is
irreducible w.r.t.R5 .

Now, since every variable of r1 + e; satisfies thako is irreducible w.r.t.Rg’”, and
since he maximal summand of A@f ((r1 + e1)o) is smaller than or equal to, it holds
that(ry + e, o) is irreducible w.r.t.Rs.

Now, the following inference exists:

D'vli~r1|Tp Cvei+e~0]|Tc
C'vri+e>~0|TpAaTcAl=e AT ~

Its conclusion belongs t6, sinceSis closed undef{, and ithas an instance with that
contradicts the minimality of,. O
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6. Completenessfor arbitrary Horn clauses

In this section we drop the restriction that all free symbols are constants. All definitions
and proofs that are needed for this purpadkofv the same intuition as in its analogue for
the constants-only case, but several asplstome technically a bit more involved.

Example 33. This example shows that in the presence of arbitrary free symbols a more
refined notion of irreducibility than the one @fefinition 27is needed. We continue with
Example 29 and consider new problems due to the non-constant symbols. Suppose we
have a unary symbal bigger thama, b andc, and anequationf (c) ~ 0. It is reducide

with the rulec — 0, that, at the non-ground level, s — 2a + 2b — 2x, with the
substitution{x +— a + b}. By the corresponding direct AG-superposition inference we
obtain f (2a + 2b — 2x) ~ 0. At the ground level it is of the fornf (0) ~ 0. Observe

that f (0) = xo, andhence xo would be reducible by a ralwith left-hand sideb, that

is smaller than the ma@mal summand of the equation. For this reason, we need a more
complex notion of irreducibility, where the irreducibility of a variallen an AG-mntextis

only necessary for summandsxa that are smaller than or equa the maimal reducible
summand of such an AG-context, and not to the maximal summand in the equafiibn.

The following definitions are paranmetzed by the given rewrite systeR, and we
always denote (possibly with subscripts) termshy u, v, positions byp, q and variables
by x,y, z.

We first define irreducibility for pairgs, o) wheres is a term and> a aubditution,
both in normal form w.r.t.Rag. Then gill so needs not be in normal form w.rRag,
because the following two kinds sfeps may be applicable: (i) ¥ is a variable occurring
immediately below a- in s andxo is headed bw-, then his — is “moved inwards”; (ii)
after this, some “complementary” painsand—u’ below the same- are cancelled iéi and
u’ are summands with =ag U’.

Definition 34. Letsbe a ground term, and I& be a ground TRS. We define maxggd)
to be the maximal summandsuch ttat either:

e AG-nf(s) is of the formnu 4+ v andnu — r € R; In this case we say that is
deternined by atop-level positive reduction

o AG-nf(s) is of the form—u + v, and—u — r € R; Thenu is determined by a
top-level negative reduction

e AG-nf(s) is of the formu 4 v or —u + v andu is reducible at non-top-level big;
Thenu is determined by aon-top-level reduction

o AG-nf(s) isirreducible andi is 0.

Definition 35. Lets be aterm and let bea aubditution, both in normal form w.r.tRag,
and letR be a ground TRS.

The pair(s, o) is calledrecursively irreduciblav.r.t. R if the following conditions hold.
Let u be maxre@(so).

1. For allx suchthats is of the formx + §’, and all smmands with u > v and such
thatxo is of the formmuv + v/,
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o if uis determined by a top-level negative reduction, then eitherv andmv is
irreducible w.r.t.R, orv is u andm is positive;

e otherwise (top-level positive or non-top-level reductian) is irreducible
w.r.t. R.

2. For allx suchthats is of the form—x + s, and all simmands with u > v and such
thatxo is of the formmuv + v/,

o if uis determined by a top-level negative reduction, then eitherv andmv is
irreducible w.r.t.R, orv is u;

e otherwise (top-level positive or non-top-level reductian) is irreducible
w.r.t. R.

3. Forallt of the formf (ty, ..., tm) such tlat AGnf(so) is of the formt +v or -t +v
andu > AG-nf(to), each(ti, o) is recursively irreducible w.r.iR.

Definition 36. Let s be a term, leu be a summand, and let be a subditution, both in
normal form w.r.t.Rac, let C be a clause, and I&® be a ground TRS.

The pair (s, o) is called (u >)-irreducide (resp.(u >)-irreducibe) w.r.t. R if the
following conditions hold.

1. For allx suchthats is of the formx + s’ or —x + s, and all smmands with u > v
(resp.u > v) and sih thatxo is of the formmuv + v/, the termmu is irreducible
w.r.t. R.

2. Forallt of the formf (t1, ..., tm) such tlat AGnf(so) is of the formt +v or -t +v
andu > AG-nf (to), each(tj, o) is recursivey irreducibe.

If uis the maximal summand of AG{ (so’) w.r.t. =, then, we simply say that the pair
(s, o) isirreduciblew.r.t. R.

The pair(C, o) is irreducible w.r.t.R if (e, o) is irreducible for all its equations >~ 0
(note tha this ndion does not depend on which one of the two possibilities of writing the
equation likee >~ 0 is chosen).

6.1. Model generation

As in the case where all feesynbols are constants, which was explaine®erction 5
now the AG-model induced by is built. Again the rules are generated, exactly as in
Definition 28 of Section 5 by the ra@uctive forms of instance€o of clausesC | T
of S, where (C, o) is irreducible. But now the notion of irreducibility is according to
Definition 36 The maintheorem of this section says th&t is refutation complete for
constrained Horn clauses if the initial set of clauses has only empty constraints. Its proof
follows the same arguments as its analogue in the constants-only Taserem 32
Lemma 44finds, for a given term that is reducible BY, a mntext inside it where the
maximal summand is reducible at the top. This gives us an inference at the ground level.
Lemmas 4548 justify that there exist orientations and splittings at the non-ground level
corresponding to the inference at the ground level. This new inference at the non-ground
level has to satisfy some conditions of irreducibility that are justified.ésnmas 5153
and54.
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Lemma 37. Letu be the mximal summand in AG-n$o0), let Ry be a rewite system and
let R be a rewrite system with left hand sides of the fonmor —w, where n> 0 andw
is a summand such thatv > u. Let(s, o) be recursively irreducible w.r.t. R

Then,(s, o) is recursively irreducible w.r.t. RU Ro.

Proof. We prove it by induction on the size & Let v be maxreg, (so). Obseve that
u > v. Sinceu is the maximal summand of AG{(so), and for dl the w, we have that
w > u, then maxregd,ur,(So) is v. Moreoverthe setstm” and(R; U Ry)=™ coincide
for anym. Therefore the conditions of recursive irreducibility for variablessuchthats

is of the formx + s’ or —x + &’ are satisfied. Let be of the formt +s" or —t + &, fora
sunmandt of the form f (t1, ..., ty), and seh thatv > AG-nf(to). Then, we have that
v > AG-nf(tjo). Therdore, for all thew, we have thatv is greater than the maximal
summand in AGhf (tjo). By induction hypothesig};, o) is recursively irreducible w.r.t.
RRUR. O

Lemma 38. Let u be the rmximal summand in AG-n$0), let Ry be a rewite system and
let R> be a rewrite system with left hand sides of the fomar —w, where n> 0 andw
isa summand. Let be a ground summand in AG-normal form such that u and(s, o)
is (v >)-irreducible w.r.t. R.

If all suchw satisfy thatw > v, then, (s, o) is (v >)-irreducible w.r.t. R U Ro.
If all suchw satisfy thatw > v, then, (s, o) is (v >)-irreducible w.r.t. R U Ry.

Proof. We only prove the first statement (the second one is analogous). Observe that the
sets Rfm” and (Ry U Ry)=™ coincide for anym. Therdore, the conditions ofv >)-
irreducibility for variablesk suchthats is of the formx + s’ or —x + s’ are satisfied. Let

s be of the formt + s’ or —t + &/, for a Immandt of the form f (ty, ..., tn), and such

thatv = AG-nf(to). Then, we have that = AG-nf(tjo). Therdore, for all thew, we

have thatw is greater than the maximal summand in AG¢jo). By Lemma 37 (tj, o) is

recursively irreducible w.r.tRy U Rp. O

Lemma 39. If, as in the defiition of R, the reductive form @dof Co generateshe rules
nu— r and—u — (n—Lu —r, then(C, o) is irreduciblenot only w.r.t. Ryeq, but w.r.t.
R\{hu — r, —u — (n — Lu —r}. Moreover, if e >~ 0 is a negative equation of C, then
(e, o) isirreducible w.r.t. R.

Proof. Lete~ 0 be an equation df. Let R°™9 be the set of rules generated by reductive
forms bigger tharCred w.r.t.>¢. Then, R°®d is of the form{J; {niui — ri, —uj —

(nj — Du; — rj}. All theseu;’s are arger than the maximal summand of AG{eo).
Moreover, if e >~ 0 is a ngative equationy is larger than the maximal summand
AG-nf(eo). By applyingLemma 38with RC®dandRC™®%U{nu — r, —u — (n—1)u—r}

for negative equations, the lemma followd]

Lemma40. Let s be a term bthe form § + . Let (s, o) be (u >)-irreducible (resp.
(u >)-irreducible) w.rt. R, for a given summand u. The(s;, o) and(sp, o) are (u >)-
irreducible (resp(u >)-irreducible) w.r.t. R.
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Lemma4l. Lets be atermfithe form g + . Let(s, o) be recursively irreducible w.r.t.
R'. Letmaxregk(so) > maxrek(sio).
Then,(s1, o) is recursively irreducible w.r.t. R

Lemmad42. Let (s,0) be (u >)-irreducible (resp.(u >)-irreducible or recursively
irreducible) w.r.t. R. Let s be of the for() nx + s’ or (i) —nx + s. Let x and % be
variables notin s such that® and %o are in AG-normal form, angx; +X2)o =aco Xo.

Then, wéhave thati) (nx+nxe+S', o) or (i) (—nx1—nxp+S', o) is (U >)-irreducibde
(resp.(u >)-irreducible or recursivey} irreducide) w.r.t. R.

Lemma43. Let(s, o) be (u >)-irreducible w.r.t. R. Let s be of the form nixs'. Let xo
be:(ui+---4+um—wvy—---—wg, or(ii) ug +--- 4+ umor (i) —vy —--- — vk, where
the y andv; are summands. Letpand » be variables notins. Letpg bew + - - - +um
in caseq(i) and(ii), andO otherwise. Let 0 bev1 + - - - 4+ vk in casedi) and(iii), and0
otherwise.

Then, wenave that(nx; — nx, + 5/, o) is (u >)-irreducible w.r.t. R.

Proof. Sinces’ is a stbbsum ofs andxio is a sibbsum ofxo, the only doubt foreducibility
is what hapens withxeo . If x20 is of the formmu; + v’ for somew; suchthatu > v,
thenxo is of the form—mu; +v”. Since(s, o) is (u >)-irreduciblev; is irreducible w.r.t.
R, andno rule with left-hand side-v; norv; appears irR, andhence, a term of the form
n'v; is not a lefthand side of a rule oR. Herce, such variablex, satisfy the conditions
for irredudbility, and (nx; — nxo + 8/, o) is (u >)-irreducide w.rt. R. O

Lemma44. Lett be a term in AGrormal form and reducible by R. Then, there exists an
AG-mntext t of t, and a summand u such that unimxregk(t’) by top-level reduction.

Proof. This can be proved by induction on the sizetofrhe termt by itself is an AG-
context oft. Let v be maxreg(t). If it is by top-level reduction, theny is v, and we are
done. Otherwise, it is by non-top-level reduction, and then,of the formf (v1, ..., vp),
and one of they is reducible. Then, by induction hypothesis, thiscontains theé’ andu
satisfying the rquired condition. OJ

Lemma 45. Let thereductive form @Gedof Co generde the rule nu— r’.

Then there exists an orientation r of the positive equation e 0 of C, and an
extenon of o satisfying the splitting constraint of the orientation, such that AGlaf is
nu, AG-nf(ro) isr’, and(r, o) is (u >)-irreducible w.r.t. R.

Proof. By Lemma 39 (e, o) is irreducible w.rt.R\{fnu — r,—u — (n — Hu —r}.

In fact, it is (u >)-irreducide w.r.t. R\{nu — r, —u — (n — 1)u — r}, sinceu is the
maximal summand of AGH (ecs). Observe that AC-changes in the substitution do not
affect irreducibility. Hence we can suppose tkat is of the form (i)l u, or (i) lju+vi, or

(iii) v, for all variablesx; in e, wherev; has no occurrences afat top-level position. Let

€ be the result of replacing each occurrenceg;adt top-level position by; + z;, wherey;
andz are new variables. Let be extended such thgito islju (in cases i and ii) or O (in
case iii), andz o is 0 (case i) and;j otherwise. ByL,emma 42 (€, o) is (u >)-irreducible
wrt. R\fnu—-r,—u— (n—Lu—r}.
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Now, we may writee’ asl + I, for termsl andl’ suchthatl contains all they;, and
all the summands at top-level position ire’ such tlat AGnf (to) is u; andl’ contains
all the z;, and the rest offte summands. Bitemma 40 (I, o) is (u >)-irreducide w.r.t.
R\{nu—r,—u— (n—2u—r}.

We have that AGif (o) is nu, and AGnf(l'o) is AG-nf(—r’). Moreover, ifl’ is of
the formx+1” or —x +1”, andxo is of the formmuv + v’ for some summandwith u > v,
then, necessarily >~ v, due to the way we have extendedo the variables V. Therdore,
mu is irreducible w.r.t.R, because it is irreducible w.rtnu — r, —u — (n — )u —r},
and w.rt. R\{nu — r,—u — (n — 1u —r}, since(l’, o) is (u >)-irreducide w.r.t.
R\{(nu—r,—u— (n—2u—r}.

Furthemore, ifl’ is of the formt +1” or —t + |”, for somesunmandt of the form
f(tg,...,ty) suchthatu = AG-nf(to), we have thati = AG-nf (tjo), and, byLemma 37
(tj, o) is recursively irreducible w.r.&R.

Therefore(l’, o) is (u >)-irreducide w.r.t. R. And, if wetaker as AGnf(—I"), (r, o)
is (U >)-irreducidew.rt.R. O

Lemma 46. Let thereductive form @edof Co generatehe rule—u — (n — Lyu —r’.

Then there exists an orientation¥ r of the positive equation e 0 of C, and an
extengon of o satisfying the splitting constraint of the orientation, such that AGla ¥ is
—u, AG-nf(ro) is(n—Lu—r’,and(r, o) is (u >)-irreducible w.r.t. R. Moreover, for all
x such batr is of the form x+ s, wehave that x is not of the form—u + §'.

Proof. By Lemma 39 (e, o) is irreducible (in fact(u >)-irreducible) w.rt.R\{nu —

r,—u — (n— 1)u — r}. This implies that ife is of the formx + e or —x + e andxo

is of the formmu + v' for some summand with u > v, thenmv is irreducible w.r.t.
R\{hu — r, —u — (n — Du —r}, and, in fact, w.r.tR. Additionally, if e is of the form
t + e or —t + e for some summantof the formf (ty, . . ., t,) suchthatu > AG-nf (to),

we have thatt;, o) is recursively irreducible w.r.tR\{nu — r, —u — (n — LHu —r}.

But observe that, since >~ AG-nf(tjo), by Lemma 37 (t;, o) is recursivey irreducble
w.r.t. R. Altogethetthis implies thate, o) is (u >)-irreducide w.r.t. R.

Let us consider now a certain variablehat appears ie at top-level positive variable
postion. AC-changes in the substitution do not affect irreducibility. Hence we can assume
thatxo is of the form (i)v, or (i) v+ w, or (iii) w, wherev (resp.w) contains only positive
(resp. negative) summands at their top-level positionselled the result of replacing each
occurrence ok at top-level positive variable position by— z, wherey andz are new
variables. Letr be extended such thgt is v (in cases i and i) or O (in case iii), arzd is
0 (case i) and AGif (—w) otherwise. ByL,emma 43 (€, o) is (u >)-irreducide w.r.t. R.
We can repeat this process with all the variables @t top-level position. Let the resulting
term be€'. Again, (€, o) is (u >)-irreducide w.r.t. R.

Since AGnf(€o) isnu —r, dther (i) € is of the formx + €” for some variablex and
Xo is of the formu + €” or u, or (i) € is of the form—x + €’, andxo is of the form
—u+ €” or —u, or (iii) € is of the formt + €’ for some summantsuchthattoc =ag u.

In case (i), we replace this occurrencexddy X1+ X2, wherex; andx, are new variables,
and we extendr suchthat xio is u, andxzo is €” or 0, depending on the case. By
Lemma 42 we have thatxy + x2 + €, 0) is (u >)-irreducide w.r.t. R. By Lemma 40
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(X2 + €', 0) is (u >)-irreducide w.r.t. R. Therdore —x1 ~ x» + €’ is an orientation that
satisfies theequired conditions.

Case (ii) is identical to case (i), but now, the obtained orientation s —x» + €”.

In case (iii), byLemma 4Qwe have thate’, o) is (u >)-irreducide w.r.t. R. Therdiore
—t ~ €” is an orientation that safies the rgquired conditions. [

Lemma47. Let nu — r’ be a rule of R. Lets, o) be (i) irreducible or (ii) recursively
irreducible w.r.t. R. Let AG-n(so) be of the form nu-s'. Let u be in casé) the maximal
sumnand of AG-nf(so), or in case(ii) maxredr(so).

Then, there exists a splitting; s+ s of s, and an extension of satisfying the
corresponding dlitting constrant, such that(s; + )0 =ac So, and o is nu, and
(S, 0) is (U >)-irreducible w.r.t. R.

Moreover, in casdi), the maxinal summandf AG-nf(so), and, in case(ii), the
sumnandmaxregk(spo), is andler than or equal to u w.r.t-.

Proof. From our hypothesis, it follows thas, o) is (u >)-irreducide w.r.t. R (observe
that for the case (il is not determinetby top-level negative reduction). Moreoversifs
of the form—x + t, thenxo is not of the form—u + t’. Since AGnf(so) isnu+ ¢S/, these
nu's can not be provided by negative variables at top-level position. $tas to be of
the formmaxy + - - - + MgXq + N1ty + - - - + Nptp + S”, where them; andn; are positive,
AG-nf(tio)isuforiinl... p, andxo is of the formkju+v; fori in 1...q with positive
ki, andmy Ky +- - -4+ mgqxKg+n1+---np > n. Moreover, suchx; andtj can be chosen to
satisfy the following conditions: the andt; do not appear is”, andp is maximal (i.e. if
g is not 0, that is there is at least one chosen varighléhen no smmand suchthats” is
of the formt + s satisfieto =g u), andq is minimal (i.e. by eliminating one variable,
sayxy, we have thamy x ko + - -- + Mg % Kqg + N1 + - -- + np < n). The case wherp
is 0 andq is 1 andm;y is 1 isnot possible, sincg&i o cannot contain more than— 1 u’s,
because it would be reducible w.iR, contradicting thgu >)-irredudbility of (s, o).

For facility of explanations, we assume thaf « ky 4 --- + Mg *x kg +ng +---np is
exadly n. Other situations are treated analogoublydoing the corrgsonding additional
splittings as explained ihemma 31

Now, we split every; into y; + z;, wherey; andz; are new variables, andis extended
suchthat yjo is kju, andzjo is vi. Thanks toLemma 42 the obtained term iu >)-
irreducible w.r.t.R. It may be writters; + sp, wheres; contains all the; and all they;, and
Sy contains the rest of summands and variables. The AG-normal fomdé nu, andof
S0 iss, ands; + s is a splitting fors. By Lemma 40 (s, o) is (u >)-irreducibde w.r.t. R.

Moreover, in case (i), the maximal summand of A®G¢syo), and, in case i), the
summand maxrefd(so), is smdler than o equal tou w.r.t. >=. Observe that, omitting
the sunmandu, the AGnhormal forms ofso andsyo coincide. O

Lemmad48. Letn> land—u — (n— 1)u —r’ be arule of R. Lets, o) be recursively
irreducible w.r.t. R. Let AG-nfso) be of the form-u + s'. Let u bemaxregk(so).

Then, there exists a splitting; s+ s of s, and an extension of satisfying the
corresponding dltting constraint, such that(s; + )0 =ac So, and o0 is —u, and
(s, 0) is (u >)-irreducible and recursively irreducible w.r.t. R. Moreover, we have that
u > maxrek(so).
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Proof. From our hypothesis, it follows thds, o) is (u >)-irreducide w.r.t. R. Moreover,
if sis of the formx + §”, thenxo is not of the form—u + s”. Sincethe AGnormal form
of so is —u + &, then, ather (i) s is of the form—v + t for some summand suchthat
AG-nf(vo) isu, or (i) sis of the form—x + t for some variablex suchthatxo is of the
formu +s” oru.

In case (i), we may take-v ass;, andt assp. Thens; + s is a splitting fors, and
u > maxrek(so).

In case (i), ve maysplit x into X3 + X2, for new variablex; andx;, and exendo such
thatxio is u andxzo is s” or 0, depending on the case. Bgmma 42 —x; — X2 +t is
(u >)-irreducible and recursively irreducible w.iR. We may take-x; ass;, and—xz +t
assy. Thens, + s is a splitting fors, andu > maxredk(s0).

In both cases, byemmas 40and 41, we have that(sy, o) is (u >)-irreducible and
recursively irreducible w.r.tR. O

Lemma49. Let t be a summand. Lat + s, o) be recursively irreducible w.rt. R. Let

AG-nf(to) be smaller than or equal tmaxregk((t + s)o) w.r.t. =. Let t be a summand

such hat (t’, o) is recursively irreducible w.r.t. R, and AG-iith) = AG-nf(t'o).
Then(AG-nf(t’ + s), o) is recursively irreducible w.r.t. R.

Proof. Let u be maxreg(toc + so). After replacingt by t’, this maxinal reducible
summand does not increase. Moreovet) i maxredt’'s + so), then it isdue tothe same
reason as before (top-level positive reduction, or top-level negative reduction or non-top-
level reducton). Except fort’, the variables md summands that appear in AG{t’ + s)

at top-level position are the same ones that appebrirs at top-level position, and with

the same sign. Therefore, the conditions for irreducibility are satisfied for the variables at
top-level position. But also fdr, sinceit is recursively irreducible w.r.tR. O

Lemma50. Let(s, o) be recursively irreducible w.r.t. R. Lett be an AG-normal form of
so. Let p be an AG-context position in t such thgt is reducible w.r.t. R.

Then there exists an AG-context position ¢ in s such that s=ac t|p, and(s|q, o) is
recursively irreducible, and for all terms r[1iglqo =ac tlrolp.

Moreover, let(r, o) be recursively irreduible w.r.t. R, and letfty > AG-nf(ro).

Then(AG-nf(s[rlg), o) is recursively irreducible w.r.t. R.

Proof. This is proved by induction on the size sifin thecase where is A, g is A, and
all the results are obvious. Therefore, supposephianoti. Then, p is of the formp’. p”,
wheret|y is a summand of the formf (ty, . . ., ty) at the AG-context. Letu be maxred).
Sincet|y is reducible, we have that > t|y. An AG-context oft|y is reducible, and
therefore there is ansuchthatt; is reducible, ang is of the formp’.i.p”.

Sincet is an AGnormal form ofso, we hae that, éher (i) s is of the formx + s’ or
—Xx + ¢/, andxo is of the formt|y + s” or —t|y + s”; or (i) sis of the formv + s’ for
some smmandv suchthatve =ac t|y andt is of the formt|y + t’; or (iii) sis of the
form —v + s’ for some summand suchthatve =ag t|y andt is of the form—t| +t'.

In case (i),xo is of the formmt|y 4 s”, andt| is reducible at non-top position by
R, and maredk(t) > t|y, butt|y cannot be maxregt) by top-level reduction (observe
that for he rulesnu — r of R suchu’s are irreducible at non-top bRR). Altogether
this contradicts the hypothestf recursive irreducibility, and therefore, only cases (ii)



G. Godoy, R. Nieuwenhus / Journa of Symbolc Computatio 37 (2004) 1-33 27

and (iii) are possible. In fact, we considenly case (ii), since case (iii) is analogous.
The summand has to be of the formf (v1, ..., vy), andvic =ac ti. By induction
hypothesis, there exists an AG-context positiprin v; suchthatvio|y =ac ti|p», and
for all termsr, vi[r]qyo =ac t[ro]p~. Moreover, if (r, o) is recursively irreducible w.r.t.
R, andt|p, > AG-nf(ro), we have thalAG-nf(vi[r]y), o) is recursivey irredudble
w.r.t. R. Moreover, (f (v, ..., AG-nf(vi[r]lg), vn), o) is recursively irreducible w.r.&R.
Finally, by Lemma 49 (f (v1, ..., AG-nf(vi[r]y), vn) + S/, o) is recursivey irredudble
wrt. R O

Lemma5l. Let(s, o) beirreducible w.r.t. R. Lett be an AG-normal form ef.d et p be
an AG-contextpostion in t different fromi such hat t|, is reducible w.r.t. R.
Then there exists an AG-context position g in s different ftpsuch hat §qo =ac t|p,
and(s|g, o) is recursively irreducible, and for all terms r we havig ko =ac tlrolp.
Moreover, let(r, o) be recursively irreduible w.r.t. R, and letfty >~ AG-nf(ro).
Then(AG-nf(s[rlq), o) is irreducible w.r.t. R.

Proof. The proofis analogous to the previous one, except for the fact that, instead of doing
induction, it refers to the previous lemma, and that we need a modificatioenofia 49
for deding with irreducible pairs instead of recursively irreducible pairs wR.t. O

Lemmab52. Let(s, o) be(u >)-irreducible w.r.t. R.

If maxregk(so) is snaller than or equal to u, thergs, o) is recursively irreducible
w.rt. R.

If the maximal summand of AG-tsv) is snaller than or equal to u, therfts, o) is
irreducible w.r.t. R.

Proof. Direct by plying the definition. [

Lemmab53. Let(r, o) and(t, o) be(u >)-irreducible w.r.t. R.

Then,(AG-nf(r +1), o) is (u >)-irreducible w.r.t. R.

Additionally, suppose thahaxregk((r + t)o) is snaller than or equal to u w.r.t>.
Then(AG-nf(r +t), o) is recursively irreducible w.rt. R.

Moreover, if the maxnal summanaf AG-nf((r + t)o) is smaller than or equal to u,
then(AG-nf(r +1t), o) is irreducible w.r.t. R.

Proof. Observe that andt are in AG-normal form. Therefore, the AG-normal form of
r 4+t is obtained by eliminating soesummands at the AG-context by the invese rule. If
AG-nf(r+t) is of the formx+sor —x-+s, then, g@therr ort is of the formx+s’ or —x+¢/,
and, thereforexo sdisfies the corresponding requirements. If AG{r +1t) is of the form
v+ sor—v + sforagiven summand = f (v, ..., vy) suchthatu = AG-nf(vo), then,
eitherr ort is of the formv + s’ or —v 4 &', andhence such a saisfies the corresponding
requirements. Therefof&G-nf(r +t), o) is (u >)-irreducide w.r.t. R.

The rest of the proof is a direct consequenckehma 52 O

Lemmab4. Letn > 1, and—u — (n — Du —r’ be a rule of R. Let AG-nf o) be
n—DLHu-—r’.

Let(r, o) be(u >)-irreducible w.r.t. R, and if r is of the form % s, then, x is not of
the form—u + 5.



28 G. Godoy, R. Nieuwenhus / Journa of Symbolc Computatio 37 (2004) 1-33

Let(t, o) be(u >)-irreducible, and recursively irreducible w.r.t. R, and AG@d) is
not of the form u- <.

Letmaxreck(to) be smaller than or equal to u w.rt.

Then,(AG-nf(r +1), o) is recursively irreducible w.r.t. R.

Proof. Sincer andt are in AG-normal form, the AG-normal form of+ t is obtained by
eliminating some summands at the AG-contexby the invese rule.

Observe that, since AGf(ro) is (n — Lu — r’, and AGnf(to) is not of the form
u 4+ ¢, it holds that AGaf((r + t)o) is of the formmu+ s” or s”, wheres” does not
containu’s at the AGeontexth, andm is negative, or positive but smaller than

If mis positive, or AGhf ((r +t)o is of the forms”, then, maxreg((r +t)o) is a certain
v smaller tharu w.r.t. =, and(AG-nf(r +1t), o) is (v >)-irreducide w.r.t. R, sinceboth
(r,o) and(t, o) are(u >)-irreducible. ByLemma 52 (AG-nf(r + t), o) is recursively
irreducible w.r.t.R.

Fromnow on, we assume that AGF((r + t)o) is of the formmu + s”, for a given
negativem. In this case, AGhf(to) contains more than — 1 negativeu’s, andhence
maxreck(to) and maxred(r + to) has to bau by top-level negative reduction.

If AG-nf(r +1) is of the formx + s andxo is of the formkv + v’ for a given summand
v with u > v, then, dtherr ort is of the formx + s;. In both cases, iti > v, then,
sinceboth (r, o) and(t, o) are(u >)-irreducible, we have thatw is irreducible w.r.t.R.
Therefore assume that is of the formku + v’ (i.e. v is u), and then, for satisfying the
recursive-irreducibility conditions it is enough to show thas positive. Ifr is of the form
X + s1, by our hypothesig is positive. Ift is of the formx + s; then,k is positive due to
the fact thatt, o) is recursivelyireducible, andi is maxreg(to) determined by top-level
negative reduction.

If AG-nf(r +t) is of the form—x+s, andxo is of the formkv+v’ for a given summand
v with u > v, then, atherr ort is of the formx + s1. In both cases, ifi > v, then, since
both(r, o) and(t, o) are(u >)-irreducible, we have that is irreducible w.r.t. conditions
for such—x + s andkv are satisfied trivially.

If AG-nf(r 41) is of the formv + s or —v + s for a given summand = f(vy, ..., vy)
suchthatu > AG-nf(vo), then, @therr ort is of the formv + s’ or —v + §'. Since
both (r, o) and (t, o) are (u >)-irreducible, it holds that all thévj, o) are recursively
irreducible w.rtR. O

Theorem 55. H is refutation complete for constrained Horn clauses if the initial set of
clauses has only empty constraints.

Proof. This proofis analogous to the one foheorem 32Thedifferences are in how it is
proved thatl = It rg(S).

Let Cred be the minimal, w.r.t¢, reductive form of someCo in Irrg(S) that is an
instance of a clausé | T¢ suchthat! ¥ Cred.

If Cred is adisjunction of literals of the form @£ 0, then an inference by AG-zero-
instance applies to any one of these literals, eliminating it, and its conclusion has a smaller
false counter example.

Otherwise, as in the ground case (the proofTdieorem 1}, let s be the naximal
summand inCred. ThenCred is éther of the formCred v ms >~ t with s > Cred (a),
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or elseit is Cred v ms £ t with s > Cred (b). As in Theorem 11in both casesnsis
reducible byR. Then, byLemma 44there exists ma AG-contexts’ that is a subterm ahs,
and a summand suchthatu is maxreg(s’) by top-level reduction. Therefore, a rulef
of the formnu — r’ or —u — (n — Hu — r’ reduces’, and ithas to benu — r’ if ' is
ms and morever, no rulewith bigger left-hand side reduces

ThereforeC is of the formC’ v e~ 0 orC’ v e 2 0, wherems—t is an AGhormal
form of eo.

The rule reducingns—t (at the AG-contexins—t or in an AG-context insids), has
been generated by the reductive form Dred of an instéheef a clauseD | Tp. Let D
be of the formD’ v d ~ 0. Now, we distinguish two cases:

(a) If the rule reducingnsis nu — r’, then, by Lemma 45 there exits an orientation
| ~r ofd ~ 0suchhat AGnf(lo) isnuand AGnf(ro) isr’. Moreover(r, o) is
(u >)-irreducide w.r.t. R. Now, we andyze two possibilities:

(a.1) Ifs’isms thensisu, and AGnf(es) ismu—t, for m > n. Moreover,u is the
maximal summand ains—t and(e, o) is irreducible w.r.t.R. By Lemma 47
there exists a splitting; + e of e suchthat (e; + ex)o0 =ac €0, andejo
is nu, and(ez, o) is (u >)-irreducibde w.r.t. R, and the maximal summand of
AG-nf(exo) is smaller than or equal to. By Lemma 53 (AG-nf(r + e2), o)
is irreducible w.r.t.R. Now, thefollowing inference exists:

D'vl~r|Tp Cve+e>~0|Tc
CVvr+e~0|TpATcAl=e.AT
Its conclusion belongs t§, sinceS is closed undef+, and ithas an instance
with o contradicting the minimality o€Cred.

(a.2) If ' is insides, i.e. (ms — t)|p is S’ for some pogion p below somes,
then, by Lemma 51 there exists an AG-context positiom in e such that
elqo =ac S, and(elq, o) is recursively irreducible w.r.tR, and for d terms
r”,elr"lqo =ac (Ms—1t)[r"o]p. Moreover, if (r”, o) is recursivey irredudble
ands’ > AG-nf(r”o), then, (e[r"]q, o) is irreducible w.r.tR.

Now, we will obtan the @ncreter” that is interesting for us. Denoggy by
€. Obseve thate' is recursively irreducible w.r.R, ands’ is of the formnu+s”,
and maxreg(s') isu. By Lemma 47thereexists a splittingg} +€, of & suchthat
(€, +6)0 =ac €0, andgjo isnu, and(e), o) is (u >)-irreducide w.r.t. R, and
maxreqr(€,0) is smaller than or equal i By Lemma 53 (AG-nf(r +€}), o)
is recursively irreducible w.r.tR. This AGnf(r + €,) is ther” we wanted.
Now, the following inference exists:

D'vl~r|Tp C'vele]+6&]lqg=0]|Tc
C'velr+6lg~0[ToAaTcAl=€ At~

Its conclusion belongs t§, sinceS is closed undef+, and ithas an instance
with o contradicting the minimality o€red.

(b) If the rule reducingnsis —u — (n — 1)u — r’, then, the contradiction of the
minimadlity of Cred follows, now, from_Lemmas 4648, 51 and54; in a similar way
to case (a.2). O
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7. General clauses

The inference system is extended to non-Horn clauses in the standard way, with
(equality) factoring, which in the ground case is
Cvnux~rvnuxr’

AG-factoring: CVrZrvnusr

with the ordering restrictions thatis the maximal summand in the clause, which does not
appear in a negative equation, and whewe~ r is maximal w.r.t. >.

For the non-ground case, the two equations involved have to be oriented as the left
premises of AG-superposition (note that if both orientations require to split a certain
variablex, then it reeds to be split only once). Let us denoteZbthe rukes of H (with
the same ordering restrictions as the factoringyplus this additional rule. By a relatively
standard adaptation of the rule generation with respect to the Horn case (i.e. as for standard
superposition, seBachmair and Ganzinget994, we obtain the following:

Theorem 56. The inference systefhis refutation completeok general clauses.

8. Conclusions

A new technique has been presented for superposition with first-order clauses with
built-in AG. Compared with previous approaches, it is simpler, and AG-unification is used
instead of the computationally more expensive unification modulo AC. Furthermore, no
inferences with the AG axioms or abstraction rules are needed; in this sense this is the first
approach where AG is completely built in. It may be possible to extend our techniques
to other built-in theories, like rings or fields, provided suitable convergent term rewrite
sysems (possibly modulo AC) exist.

On the theoretical side, we believe thatr techniques and results may lead to logic-
based decidability and complexity results, along the lines of, Bagin and Gazinger
(1996, Nieuwenhuig19998, Ganznger and de Nivell¢1999 andWaldmann(1999.

On the practical side, due to the simplicity and restrictiveness of our inference system,
its compatibility with redundancy notions and constraints, and the fact that standard term
orderings like RPO can be used, we believe that our technigques will become the method
of choice for practice. However, it is clear that much work remains to be done in order to
make the techniques describedtliis article ready for practice, in spite of the fact that, in
the meantime, some of the problems for dealing with AG-ordering constraints have been
solved Godoy and Nieuwenhuj2001). The authors plan to develop a first experimental
implementation in the comingaars in order to obtain more insight in aspects like how and
when to compute redundancies,asrentations and splittings.

We now very bréfly comment on a few aspects that have not been treated yet in this
article.

Our completeness proofs are compatible with the notions for redundancy and saturation
as in thebasicframework ofNieuwenhuis and Rubi(1995 andBachmair et al(1995.

Note that, by dealing with constrained clags no AG-unifiers are computed. Instead,
the unification problems are stored inetlionstraints and a constrained clauBe| T
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is redundant ifT is unsatisfiable. Aparfrom the well-known basicness restriction, an
additional advantage is that only one corsitun isgenerated, instead of one conclusion
for each AG-unifieVigneron(1994 andNieuwenhuis and Rubi{997.

Checking the ordering restrictions in our framework is different from the usual situation.
Instead of checking whether, say, for given termandt, there exists some ground
o suchthatso >y to, we reed to check whether this holds after normalizing both
sides byRag, that is, wiether AGnf(so) >po AG-nf(to). Deciding the satisfiability
of such constraints is NP-comple@odoy and Nieuwenhui§200]). One can also add
information to the constraint language ®@doy and Nieuwenhui€@001]) for staing that
if Nn1s1 +--- + myy1 + - - - is the left hand side of an orientatioDéfinition 16 then alls
are equal and all summands in t)eare equal to thesg.

It is also possible to find sufficient conditions for ruling out redundant inferences
without fully deciding satisfiability. In praate, for efficiency reasons, such approximations
are used as well for standard superposition. Neither soundness nor completeness require to
actually decide ordering constraints.

Example 57. Supposes is f(f(0) — x) andt is X. It is easy to see thatr >y, to for
allo. Butif o is {x — f(0)}, both terms normalize w.r.Rag into f(0). O

The fact that ordering restrictions earctecked after normalization w.r.tRag
complicates optimizations related to the analysis of the so-caléldedvariables of a
clauseC, that is, variakes that occur belw afree symbol inC.

Example58. In the context ofGanznger and Waldmanr{1996 and Stuber (1998,
shieldedness of variables likein the clausef (x — f(a)) 2 0V 2x >~ b allow one to
conclude that  cannot contain the maximal summand@# for any o and hence 2
need not be used as left premise in any inference. In our case, the instancexwhisre
f (a) may generate the rulefZa) — b, andhence we can rule out the inferences only for
other instances. Similar optimizations apply to right premisés.

Also other shieldedness-related optimizations can be used. For example; @be an
equation of a claus€ wheree is of the forms + nix; + - - - + ngXx =~ 0 and the @btinct
variablesx; do not occur elsewhere mor in C. If n; = 1 (orn; = —1) for somei, then
suchan equatiore >~ 0 cdlapses tle theory: s + x >~ 0 impliess + (—s+t) ~ 0 and
hencet ~ 0 for everyt. Herce one can assume that any such a cl&lises + x >~ 0 is
eagerly replaced b§. Thiscan be combined with the fact that- 0 is logically equivalent
modulo AG tos + nz >~ 0, wheren = gcd(ny, ..., Nk) andzis a new variable.
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