
Journal of Symbolic Computation 36 (2003) 79–99

www.elsevier.com/locate/jsc

Stratified resolution

Anatoli Degtyareva,1, Robert Nieuwenhuisb,
Andrei Voronkovc,∗

aDepartment of Computer Science, University of Liverpool, UK
bLSI, Technical University of Catalonia, Spain

cDepartment of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK

Received 1 October 2000; accepted 3 November 2001

Abstract

We introduce a calculus ofstratified resolution, in which special attention is paid to clauses that
“define” relations. If such clauses are discovered in the initial set of clauses, they are treated using the
rule of definition unfolding, i.e. the rule that replaces defined relations by their definitions. Stratified
resolution comes with a powerful notion of redundancy: a clause to which definition unfolding has
been applied can be removed from the search space. To prove the completeness of stratified resolution
with redundancies, we use a novel combination of Bachmair and Ganzinger’s model construction
technique and a hierarchical construction of orderings and least fixpoints.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Automated theorem proving; First-order logic; Ordered resolution with selection; Definition
unfolding; Redundancy elimination

1. Introduction

Most state-of-the-art theorem provers in first-order logic apply some variant of ordered
resolution withselection: in each clause a subset of its literals is selected, and these selected
literals are the only active ones in resolution inferences with this clause. The selection
strategy (deciding which literals are selected) is usually parametrized by a given ordering
on ground atoms.

For several of these strategies refutational completeness is known. For example, in the
ground case, it suffices to select in each clause either a negative literal or else some positive
atom that is maximal with respect to the given ordering among all atoms of the clause.

∗ Corresponding author. Tel.: +44-161-2756-116; fax: +44-161-2756-236.
E-mail address: voronkov@cs.man.ac.uk (A. Voronkov).

1 Present address: Department of Computer Science, King’s College, London, UK.

0014-5793/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0747-7171(03)00036-1

80 A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99

In the non-ground case, one can select either a negative literal or else a subset of the
positive literals such that for all ground instances the maximal literal is among the selected
ones (Bachmair and Ganzinger, 2001).

In the Horn case, completeness is preserved if a single arbitrary literal in each clause
is selected. For example, Prolog’s SLD-resolution amounts to selecting the positive literal
whenever there is any, which, very conveniently, converts the search process into a form of
goal-directed definition unfolding.

In this paper we show that, under some precisely defined circumstances, such a selection
is also complete in the non-Horn case. We introducestratified resolution, a resolution
calculus with special rules for handling hierarchical definitions of relations. Stratified
resolution generalizes SLD-resolution to a more general case, where clauses may be non-
Horn but “Horn with respect to a set ofdefined relations”. In this calculus, one can
select a single positive literalp(· · ·) of a (possibly non-Horn) clauseC, i.e. only useC
for unfolding the definition ofp, even if this atomp(· · ·) is not strictly larger than the
atoms occurring negatively inC. Consider the following (for explanation purposes, naively
simple) propositional example:

Example 1.1. Assume we have, among others, the two clausesp ∨ ¬q ∨ r andq ∨ ¬p.
Then our calculus allows one to consider both these clauses as definitions of their
positive literalsp andq, i.e. to select these positive literals. One cannot use the standard
completeness results for ordered resolution for proving completeness of such a selection.
Indeed, if p � q, then¬p � q, and so we cannot selectq in the second clause without
selecting¬p. Likewise, if q � p and we selectp in the first clause, we must also select
¬q. �

Making the right choices in selection is crucial for the performance of a deduction
process. Consider the following example.

Example 1.2. Suppose we are trying to establish the inconsistency of a set of clauses
S containing a recursive Prolog-style definition of a relationsplit that splits a list of
conferences into two sublists: deduction-related conferences, and all other conferences.

split([x|y], [x|z], u):- deduction(x), split(y, z, u).

split([x|y], z, [x|u]):-¬deduction(x), split(y, z, u).

split([], [], []).

In the standard syntax these clauses can be written as

split([x|y], [x|z], u) ∨ ¬deduction(x) ∨ ¬split(y, z, u).

split([x|y], z, [x|u]) ∨ deduction(x) ∨ ¬split(y, z, u).

split([], [], []).

Suppose thatS also contains other clauses, for example

¬split(x, y, z) ∨ conference list(x)

and assume our ordering on atoms is primarily based on an ordering on their predicate
symbols. Now we face several choices in selecting the order and negative literals in
clauses. For example, if we makededuction greater thansplit, then we must select either

A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99 81

¬deduction(x) or ¬split(y, z, u) in the first clause. It seems much more natural to select
split([x|y], [x|z], u) instead. Then we can use the first clause in the same way it would
be used in logic programming. Likewise, if we always try to select a negative literal in a
clause, the literal¬split(y, z, u) will be selected in the second clause, which is most likely
a wrong choice, since then any resolvent with the second clause will give us a larger clause.

Let us now choose an ordering in which the literalssplit([x|y], [x|z], u) and
split([x|y], z, [x|u]) are maximal in their clauses, and select these literals. Consider
the fourth clause. If we select¬split(x, y, z) in it, we can resolve this literal with all
three clauses definingsplit. It would be desirable to selectconference list(x) in it, since
a resolvent upon¬conference list(x) is likely to instantiatex to a non-variable termt ,
and then the literal¬split(t, y, z) can be resolved with only two, one or no clauses at all,
depending on the form oft .

In all cases, it seems reasonable to choose an ordering and selection function in such a
way that the first three clauses will be used as adefinition of split so that weunfold this
definition, i.e. replace the heads of these clauses with their bodies. Such an ordering would
give us the best results if we have an adequate strategy of literal selection which says: select
¬split(r, s, t) only if r is instantiated enough, or if there is no other choice.�

In order to implement this idea we have to be able to formalize the right notion of
“definition” in a set of clauses2. Such a formalization is undertaken in this paper, in the
form of a calculus ofstratified resolution. Stratified resolution is based on the following
ideas which can be tracked down to earlier ideas developed in logic programming.

1. Logic programming is based on the idea of using definite clauses as definitions of
relations. Similar to the notion of definite clause, we introduce a more general notion
of a set of clausesdefinite w.r.t. a set of relations. These relations are regarded as
defined by this set of clauses.

2. In logic programming, relations are often defined in terms of other relations. The
notion ofstratification (Van Gelder, 1988; Apt and Blair, 1988; Przymusinski, 1988)
allows one to formalize the notion “P is defined in terms ofQ”. We use a similar idea
of stratification, but in our case stratification must be related to a reduction ordering
� on literals.

The difficult problem is to find automatically the right ordering that makes the atom in
the head of a “definition” greater than the atoms in the body of this definition. Consider,
for example, clauses defining reachability in a directed graph.

Example 1.3. Assume a graph is formalized by the binary relationedge. The reachability
relation can be defined by the following two Prolog clauses

reachable(x, y):-edge(x, y).

reachable(x, z):-edge(x, y), reachable(y, z).

2 When we speak about the “right notion of definition” we mean a notion which (i) reflects a particular way
definitions are treated in mathematics and (ii) is convenient for processing by theorem provers. There are some
generally accepted ways of defining mathematical notions, for example, by using least fixpoints of inductive
definitions, which are not captured by our notions.

82 A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99

In the standard syntax these clauses can be written as

reachable(x, y) ∨ ¬edge(x, y).

reachable(x, z) ∨ ¬edge(x, y) ∨ ¬reachable(y, z).

There is no well-founded ordering stable under substitutions that makes the atom
reachable(x, z) greater thanreachable(y, z). So in the standard resolution with selection,
if the literal reachable(x, z) is selected in the second clause above, then the literal
reachable(y, z) must be selected too. The theory developed in this paper allows one to
select only the literalreachable(x, z) in this clause despite the fact that this literal is not the
greatest. �

Stratified resolution allows not only to select literals in clauses in an intelligent way, but
also to apply certain notions of redundancy in many more cases than in the standard ordered
resolution calculi. To explain this kind of redundancy, let us go back toExample 1.2.

Example 1.4 (Example 1.2Continued). Suppose we have a clause

¬split([cade, www, lpar], y, z), (1)

wherecade, www, lpar are constants andy, z are variables. Stratified resolution can resolve
this clause with the first two clauses in the definition ofsplit, obtaining two new clauses

¬deduction(cade) ∨ ¬split([www, lpar], y, z)
deduction(cade) ∨ ¬split([www, lpar], y, z).

In general, these two clauses would beadded to the search space. However, if one can
ensure that no more inferences will be needed again on (1), then they can as wellreplace
clause (1) thus making the search space smaller. Indeed, in stratified resolution this is the
case for all “defined” predicates likesplit, and hence this situation is far more frequent,
and more easily detectable, than in standard ordered resolution, where this situation applies
only if in all clauses wheresplit occurs in a positive literal, it occurs only once positively,
and it is the only selected literal in its clause.�

When the initial set of clauses contains no definitions or cannot be stratified, stratified
resolution becomes ordinary ordered resolution with selection. However, sets of clauses
which contain definitions and can be stratified in our sense are often met in practice, since
they correspond to a frequently used form of (possibly recursive) definitions of relations.
For example, many TPTP problems can be stratified.

This paper is organized as follows. After the basic notions and notations ofSections
2 and3, in Section 4we first define the ground version of stratified resolution and prove
its completeness. Then, inSections 4.1and4.2 we define stratified resolution derivations
with redundancies, and we show that a clause can be removed from the search space
after definition unfolding has been applied to it. Then inSection 5we explain the full
non-ground version of stratified resolution with redundancy. InSection 6we formulate a
concrete inference system for stratified resolution with redundancies in the non-ground
case. InSection 7we discuss how one can choose a “good” stratification. Finally, in
Section 8we raise some open problems related to stratified resolution.

A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99 83

Related work

There are not many papers in the automated deduction literature relevant to this work.
Our formal system resembles SLD-resolution ofKowalski and Kuehner(1971). When the
initial set of clauses is Horn, our stratified resolution with redundancies becomes SLD-
resolution.

The possibility of arbitrary selection for Horn clauses follows from a result ofde Nivelle
(1996): if a set of clauses has a resolution refutation without factoring, then it has a
refutation with an arbitrary selection of literals in clauses.

A different way of handling definitions is implemented in the Saturate system of
Ganzinger et al.(2001). In this system, the axioms of the formP(x̄) ≡ ϕ(x̄), whereP
is a predicate symbol andϕ is an arbitrary formula, are treated as “definitions” ofP and
unfolded “lazily”. This means that these axioms are not transformed into clausal normal
form immediately. Instead, if a literal with an atomP(t̄) is selected in a clause, the atom is
replaced byϕ(t̄), after which the transformation into clausal normal form is done.

This approach might be an alternative to our approach. It has some attractive
features. For example, the equivalences and the clauses containingP can participate in
simplificationsbefore transformation into clausal form is applied. However,Ganzinger
et al.(2001) do not prove or assert any completeness results.

A connection between resolution on stratified sets of clauses and the perfect models of
these sets is also observed inBachmair and Ganzinger(1991).

A first version (Degtyarev and Voronkov, 2000) of this work appeared in the
Proceedings of CADE-17. Completeness in the presence of redundancy criteria in
Degtyarev and Voronkov(2000) was proved using a proof technique based ontraces, which
may be interesting by itself. But the definitions of stratification as well as the proofs given
here are significantly simpler, and allow us to answer some of the questions left open in
Degtyarev and Voronkov(2000).

2. Basic notions

Let � be a strict (partial) ordering, i.e. a transitive and irreflexive binary relation. The
multiset extension of �, denoted by�mul, is defined as the smallest transitive relation on
finite multisets such that

X ∪ {A} �mul X ∪ {B1, . . . , Bn} if A � Bi for all i ∈ {1 . . . n},
wheren ≥ 0. If � is a well-founded ordering onS then�mul is a well-founded ordering
on finite multisets of elements ofS.

A quasi-ordering is a transitive and reflexive binary relation, denoted in this paper by
 (possibly with subscripts or superscripts), and its inverse is denoted by�. Its strict part,
denoted by�, is the strict ordering \ � (i.e. s � t if s t ands � t). Its equivalence,
denoted by∼, is defined as ∩ �. Note that is the disjoint union of� and∼.

In this paper we will deal with several orderings on the set of ground atoms of a signature
Σ . Forevery such ordering�, let �lit be the smallest extension of� to the set of ground
literals ofΣ such that for all ground atomsR and R′ we have (i)¬R′ �lit ¬R whenever
R′ � R, (ii) ¬R �lit R and (iii) ¬R �lit L �lit R for no L. To keep the notation simple,

84 A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99

we will omit the subscript lit and use the same notation for� and�lit . This causes no
ambiguity, since� and�lit agree on ground atoms.

A clause is a multiset of literals. Theempty clause is denoted by�. We assume
knowledge of substitutions, unifiers, and most general unifiers. A most general unifier
of two atoms (or literals)A and B will be denoted by mgu(A, B). The application of a
substitutionσ to an expression (e.g. an atom, literal, or clause)E is denoted byEσ . An
expression isground if no variable occurs in it. Aground instance of any expressionE is
an expressionEσ which is ground. The set of all ground instances of any expressionE
will be denoted by gnd(E), and if S is a set of clauses, by gnd(S) we denote the set of
ground instances of clauses inS, that is, gnd(S) = {C | C ∈ gnd(D) andD ∈ S}.

We consider (partial) Herbrand interpretations as Boolean functions over a set of ground
atomsA, that is, functionsI : A → {0, 1}. I is calledtotal if A is the set of all ground
atoms over the given signature, andpartial otherwise.I is said to bedefined for the ground
atoms, ground literals and ground clauses built overA. A ground atomR ∈ A is said to be
true in I , if I (R) = 1, andfalse otherwise. This notion of truth and falsehood is extended
in the usual way to ground literals and ground clauses built overA. A non-ground clauseC
is said to bevalid, or true, in a total Herbrand interpretationI if all of its ground instances
are true inI , andfalse if it is not true. The interpretationI is a model of a set of clauses
S if all clauses ofS are valid inI . Finally, if E is an atom, literal, or clause such thatE is
valid in I , then we writeI � E , and we writeI � E if E is false inI .

3. Stratifications

In this paper, we assume a finite signatureΣ whose set of predicate symbols is the
disjoint union of two sets: the so-calleddefined symbolsP and the remainingundefined
onesQ. In what follows, (possibly indexed)p andq always denote elements ofP andQ
respectively, andr denotes an arbitrary symbol ofP ∪ Q.

Definition 3.1. A P-atom is an atom of the formp(t1, . . . , tn) with p ∈ P . A Q-atom is
an atom of the formq(t1, . . . , tn) with q ∈ Q. A P-literal (resp.Q-literal) is a possibly
negatedP-atom (resp.Q-atom). We denoteP-atoms byP, Q-atoms byQ, and arbitrary
atoms byR, possibly with indices. �

In the sequel we assume a fixed total quasi-orderingpred on P ∪ Q such that if
r ∼pred r ′ andr �= r ′ then bothr andr ′ are inP . We also assume a total fixed quasi-
ordering on the set of ground atoms ofΣ such that its strict part� is well-founded, and
such that respectspred in the following sense:

1. if r �pred r ′, thenr(s1, . . . , sm) � r ′(t1, . . . , tn);
2. if r ∼pred r ′ andr , r ′ ∈ P , thenr(s1, . . . , sm) ∼ r ′(t1, . . . , tn);
3. if r(s1, . . . , sm) ∼ r ′(t1, . . . , tn) andr(s1, . . . , sm) �= r ′(t1, . . . , tn), thenr , r ′ ∈ P ,

i.e. the restriction of� to the set ofQ-atoms is a linear ordering.

Note that if� is well-founded, then�pred is well-founded too. It is also easy to see that the
ordering on ground atoms is determined by the orderingpred on their head symbols,
except forQ-atoms headed with the same symbol, which can be ordered arbitrarily as long
as� remains well-founded.

A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99 85

Definition 3.2 (Definition Clauses). A setS of clauses overP ∪ Q is Horn with respect
to P if no clause inS contains more than one positiveP-literal. Clauses containing exactly
one positiveP-literal are calleddefinition clauses or simplydefinitions. �

The following definition is central:

Definition 3.3 (Stratification). A setS of clauses isstratified by (P,Q,pred) if it is Horn
with respect toP and in every definition clausep(t1, . . . , tn) ∨ C in S, wherep ∈ P , it
holds that for every predicate symbolr occurring (positively or negatively) inC we have
p pred r . If S is stratified by(P,Q,pred), then the triple(P,Q,pred) is called a
stratification for S. �
In the sequel we assume thatP , Q are fixed and say thatpred is a stratification forS if
(P,Q,pred) is also. If the stratification(P,Q,pred) is clear from the context, then we
will simply say thatS is stratified.

Example 3.4. Consider the set consisting of four clauses:r1 ∨ r2, r1 ∨ ¬r2, ¬r1 ∨ r2, and
¬r1 ∨ ¬r2. This set is Horn with respect to{r1} and also with respect to{r2}, but not with
respect to{r1, r2}. To stratify this set of clauses, we can e.g. use the orderingr1 � r2 (i.e.
r1 is considered as a relation defined in terms ofr2). This example shows that in general
there is no single greatest set of defined clauses.�
Definition 3.5 (Stratified Selection Function). Aselection function is a function sel on the
set of clauses such that for all clausesC

1. sel(C) is a submultiset ofC;
2. if C is non-empty, then sel(C) is non-empty too;
3. either sel(C) contains only positive literals, or sel(C) contains exactly one negative

literal.

If L ∈ sel(C), we say thatL is selected by sel in C. We say that a selection function is
stratified if we also have

4. in any definition clauseP ∨ C such thatP ∈ P , only P is selected;
5. in any non-definition clauseC with a positive selected literal a subset{R1, . . . , Rn}

of its positive literals is selected such thatC is of the formR1 ∨ · · · ∨ Rn ∨ D, and
for all ground instancesCσ and every atomB in D, it holds thatRiσ � Bσ for
somei . �

In the following, we will assume a fixed stratified selection function. We underline
selected literals, so when we writeA ∨ C, this means thatA (and maybe some other
literals) are selected inA ∨ C.

4. Stratified resolution: the ground case

Here we introduce ground stratified resolution and illustrate our proof techniques in the
ground case. In this section we only work with ground clauses.

Definition 4.1. The inference system of groundstratified resolution consists of two
inference rules:

86 A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99

1. Ground stratified resolution rule:

R ∨ C ¬R ∨ D

C ∨ D
,

where if R is aQ-atom, then for every
literal L in C we haveR � L .

2. Ground positive factoring rule:

Q ∨ Q ∨ C

Q ∨ C
, where for every literalL in C we haveQ L . �

Note that the stratified resolution rule is defined as the standard rule of binary resolution
with selection, but we use a stratified selection function, and that in the positive factoring
rule Q is aQ-atom.

In the previous stratified resolution rule, the clause¬R ∨ D is sometimes called the
rightmost premise, and in the positive factoring ruleQ ∨ Q ∨ C is the (only, and hence)
rightmost premise.

The choice of which symbols are inP and which ones are inQ, as well as the choice
of the ordering will be crucial for finding stratifications that reduce the search space in
practical theorem provers. In general, good choices lead to stratifications with larger sets
P , in order to minimize the amount of inferences and maximize the amount of redundancy
(seeExamples 1.1–1.3, 3.4and4.4).

The following proposition states that stratification is preserved under our inference
rules. This holds since stratification is a property depending on the subset of definition
clauses, and stratified resolution does not introduce any new definition clauses.

Proposition 4.2. Let predbe a stratification for a set of clauses S. Let C be the conclusion
of an inference in the system of stratified resolution with premises in S. Then pred is also
a stratification for S ∪ {C}. Moreover, C is not a definition clause. �
Theorem 4.3. Ground stratified resolution is refutationally complete for stratified sets of
ground clauses. �

We do not prove this theorem now; it will follow from the more generalTheorem 4.9
proved below. Let us now show that the ordering condition on the definition clausesP ∨C,
namely thatP R for all atomsR occurring inC, is essential for completeness. We show
that violation of this condition causes incompleteness even whenR is aQ-atom.

Example 4.4. This example is taken fromLynch (1997). Consider the following set of
propositional clauses:

¬q ∨ r ¬p ∨ q ¬r ∨ ¬q
¬q ∨ ¬p ¬p ∨ ¬r
¬r ∨ p r ∨ q ∨ p.

This clause set is unsatisfiable and Horn w.r.t.{p}. Consider the orderingr � q � p. This
ordering violates the ordering condition on the definition clauses¬r ∨ p andr ∨ q ∨ p.
The empty clause cannot be derived from it by stratified resolution, even if tautologies are
allowed. Indeed, the conclusion of any inference by stratified resolution is subsumed by
one of the clauses in this set.�

A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99 87

In our completeness proofs we will use a model construction formalized in the following
definition of astratified interpretation.

Definition 4.5 (Stratified Interpretation). Letpredbe a stratification for a setS of ground
clauses. Thestratified interpretation I of S w.r.t. is a total interpretation defined by
induction on�. To define the value ofI on an atomR, we will use the partial interpretation
defined in this construction for all ground atomsR′ with R � R′, i.e. the restriction ofI
on {R′ | R � R′}, denotedI≺R . The valueI (R) is defined in terms ofI≺R as follows:

1. ForQ-atomsQ, we defineI (Q) = 1 if there is some clauseQ ∨ C in S such that (i)
Q � R for all atomsR in C, and (ii) I≺Q � C (note thatI≺Q is defined forC due to
condition (i)).

2. ForP-atomsP, let P denote the set{P ′ | P ∼ P ′}, and letSP be the set of all
definition clauses inS of the form

P ′ ∨ ¬P1 ∨ · · · ∨ ¬Pn ∨ C (2)

such that (i)P ∼ P ′ ∼ Pi for all i in {1 . . . n}, (ii) P � R for all atomsR in C
(again, note that henceI≺P is defined forC), and (iii) I≺P � C.

Now, in a similar way as was done in the iterated fixpoint construction of the
perfect model for stratified logic programs (see, e.g.Apt, 1990), we define a sequence
P0, P1, . . . of subsets ofP by induction as follows:

• P0 = {P ′ ∈ P | there exists a clause of the form (2) in SP s.t.n = 0}.
• For i ≥ 0 definePi+1 = Pi ∪ {P ′ ∈ P | there exists a clause of the formEq.(2)

such that{P1, . . . , Pn} ⊆ Pi }.
Finally, for everyP ′ ∈ P we defineI (P ′) = 1 if P ′ is in

⋃
i Pi . In that case we say

that P ′ ∈ P haslevel k, denotedlevel(P) = k, if k is the smallest number such that
P ′ ∈ Pk . �

We denote by�S the smallest ordering on ground atoms extending� such thatP �S P ′
if P ∼ P ′, bothP andP ′ have levels, andlevel(P) > level(P ′). It is not hard to argue that
�S is well-founded.

Note that�S in general depends onS, but for all S we have that�S is an extension of
�. This implies that�mul

S is an extension of�mul.

Example 4.6 (Stratified Interpretation). Consider the quasi-ordering such that

q2 � p1 ∼ p2 � q1.

Assume thatq1, q2 ∈ Q and consider the following setS of clauses

1. p1 ∨ ¬p2
2. p1 ∨ q1
3. p2 ∨ ¬p1
4. ¬p1 ∨ q2
5. q2 ∨ q1.

In the stratified interpretation ofS the atomsp1, p2, q2 are true andq1 is false. The atom
p1 becomes true in this interpretation due to clause 2,p2 due to clause 3, andq2 due

88 A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99

to clause 5. This interpretation satisfies all the clauses. The ordering�S extends� by
p2 �S p1 because the level ofp2 is greater than the level ofp1. �

4.1. Redundancy in the ground case

The following notions are adaptations of well-known concepts for redundancy in
saturation-based first-order theorem proving (seeBachmair and Ganzinger, 2001). There is
a significant difference, however: in addition to relying on the atom ordering�, our clause
ordering�mul

S is based on the extension�S of �, which depends on the level information
of the fixpoint construction for the given setS of clauses. For the completeness proofs to
go through, we will use the ordering�S. But as for practical use of redundancy criteria,
we can only use its approximation� since�S can be undecidable and even not recursively
enumerable3.

Definition 4.7below, defining the redundancy of inferences w.r.t. a given fixed setS
and definingsaturatedness of S, is given in terms of the ordering�mul

S . In Definition 4.11,
defining redundancy of clauses in stratified resolution derivations, the approximation�mul

of �mul
S is used instead.

Definition 4.7. Let S be a set of ground clauses,C a ground clause, and> any ordering on
ground clauses. DenoteS<C = {C ′ ∈ S | C > C ′} and by� the usual logical consequence
relation on ground clauses. We will use this definition with> either equal to�mul or �mul

S .

1. An inference (by stratified resolution or positive factoring) with the rightmost
premiseC and conclusionD is redundant w.r.t. S and > if S<C � D.

2. S is saturated if for every inference (by stratified resolution or positive factoring)
with premises inS, either (i) the rightmost premise of the inference is not larger w.r.t.
�mul

S than the conclusion, or (ii) the inference is redundant w.r.t.S and�mul
S . �

Example 4.8 (Saturated Set). Consider again the setS of clauses ofExample 4.6. The set
S is saturated. Indeed, the resolution inference between clauses 1 and 4 satisfies condition
(i) of the definition of a saturated set. Likewise, the resolution inference between clauses 2
and 4 is redundant because the conclusionq1 ∨ q2 follows from clause 5, and 5 is smaller
than the rightmost premise¬p1 ∨ q2. �

Note that in practice one usually cannot exploit case (i) of the definition of saturatedness,
nor the actual ordering�mul

S for case (ii). Instead, one can use a sufficient condition that
a setS of clauses is saturated if inferences with premises inS are redundant w.r.t.S and
�mul, seeTheorem 5.4below. As usual, in practice one uses redundancy criteria which are
weaker but can be checked effectively.

Theorem 4.9. Let S be a saturated stratified set of ground clauses. Then � ∈ S whenever
S is unsatisfiable.

Proof. We assume� /∈ S and show thatS is satisfiable, from which the theorem trivially
follows. We show the satisfiability ofS by actually exhibiting a model ofS, namelyI , the

3 Notice that the completeness is preserved when using�mul instead of�mul
S because�mul

S is an extension

of �mul.

A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99 89

stratified interpretation (seeDefinition 4.5) of S w.r.t. . We will use some notation from
Definition 4.5in the proof.

We now showI � S by contradiction: assumeI is not a model ofS. Then there is a
clauseC ∈ S which is false inI . Let C be aminimal w.r.t. �mul

S clause such thatI � C
(such a clause exists since�mul

S is well-founded).
Consider four cases depending on the set of selected literals ofC.

1. A positive Q-literal is selected, i.e. C has the formQ ∨ D. By our definition of
stratified selection function, for all literalsL ∈ D we haveQ L. Now we
distinguish two cases, depending on whetherQ ∈ D or not.

If Q ∈ D, then (again by our notion of selection)C is of the formQ ∨ Q ∨ D′
for someD′. Then, consider the inference by positive factoring:

Q ∨ Q ∨ D′

Q ∨ D′ .

SinceS is saturated, and the conclusionQ∨D′ is smaller w.r.t.�mul
S than the premise,

the inference must be redundant inS w.r.t.�S, that is, the conclusionQ ∨ D′ follows
from clauses inS strictly smaller w.r.t.�mul

S than the premiseQ ∨ Q ∨ D′. But then,
sinceQ ∨ D′ is false inI , at least one of these smaller clauses is false too inI which
contradicts the minimality ofQ ∨ Q ∨ D′.

If Q /∈ D, and hence for all literalsL ∈ D we haveQ � L, then I (Q) = 1 by
the construction ofI and thereforeI � Q, which contradictsI � C.

2. A positive P-literal is selected, i.e.C has the formP ∨¬P1 ∨ · · · ∨¬Pn ∨ D, where
P ∼ Pi for all i ∈ {1, . . . , n} and P � L for all atomsL occurring inD. Since
I � C, then I � D and I � Pi for all i ∈ {1, . . . , n}. By the construction ofI this
implies thatI � P, which contradictsI � C.

3. A negative Q-literal is selected, i.e. C has the form¬Q ∨ D. Then I � Q and by
construction ofI then there is some clauseQ ∨ D′ in S such thatQ is strictly greater
than all literals inD′ w.r.t. � and I � D′. Then Q is also strictly greater than all
literals in D′ w.r.t. �S. Consider the inference by stratified resolution

Q ∨ D′ ¬Q ∨ D

D′ ∨ D

whose conclusionD′ ∨ D is false in I and smaller w.r.t.�mul
S than the rightmost

premise¬Q ∨ D. SinceS is saturated, this inference is redundant w.r.t.S and�mul
S ,

so the conclusionD′ ∨ D of this inference must follow from clauses inS strictly
smaller w.r.t.�mul

S than¬Q ∨ D. But then, sinceD′ ∨ D is false inI , at least one of
these clauses is false too inI which contradicts the minimality of¬Q ∨ D.

4. A negative P-literal is selected, i.e.C has the form¬P ∨ D. ThenI � P. Hence by
construction ofI , P has some levell. Again by the construction, there exists some
clauseP ∨¬P1∨· · ·∨¬Pn ∨ D′ in S whereP ∼ Pi for all i ∈ {1, . . . , n}, P � L for
all atomsL occurring inD′, andP1, . . . , Pn have levels strictly smaller thanl. This
implies P �S Pi for all i ∈ {1, . . . , n}. ThenP is strictly greater w.r.t.�S than all
literals in¬P1∨· · ·∨¬Pn ∨ D′. By repeating the argument of the previous case with
an inference of stratified resolution between¬P ∨ D andP ∨¬P1 ∨· · ·∨¬Pn ∨ D′,

90 A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99

the false conclusion¬P1 ∨ · · · ∨ ¬Pn ∨ D′ ∨ D follows from clauses inS strictly
smaller w.r.t.�mul

S than¬P ∨ D, and so we obtain a contradiction.�

As said, in the following definition, where one considers derivations in which the sets
of clauses dynamically change, we define redundancy of clauses and fairness in terms of
the approximation ordering�mul.

Definition 4.10. Let C be a ground clause, let> be an ordering on ground clauses, and let
S be a set of clauses. ThenC is calledredundant w.r.t. S and > if S<C � C. �
Definition 4.11 (Derivation).

1. A stratified resolution derivation is a sequence of sets of clausesS0, S1, . . . such that
S0 is stratified, and eachSi+1 is obtained fromSi either by adding toSi a logical
consequence ofSi that is not a definition or by removing fromSi some clause that is
redundant w.r.t.Si and�mul.

2. A clause ispersistent in the derivation if, for somej , it belongs to allSk with
k ≥ j . �

Note that in the definition of derivation we do not refer to any particular inference system.
We use the inference system of stratified resolution in the following definition.

Definition 4.12 (Fair Ground Stratified Resolution Derivation). LetS0, S1, . . . be a deriva-
tion. It is called afair ground stratified resolution derivation if for every inference with
persistent premises in the ground stratified resolution inference system there exists some
Sj such that either the inference is redundant w.r.t.Sj and�mul, or else its conclusion
belongs toSj . �
Theorem 4.13. Let S0, S1, . . . be a fair ground stratified resolution derivation. Then
� ∈ Sj for some j if and only if S0 is unsatisfiable.

Proof. It is not hard to argue that each clause occurring in the derivation is a logical
consequence ofS0, hence� ∈ Sj implies thatS0 is unsatisfiable.

To prove the “if” direction, suppose thatS0 is unsatisfiable. Denote the set of persistent
clauses byS. Using well-foundedness of�mul one can prove that every clause removed
from the derivation is a logical consequence of smaller w.r.t.�mul clauses inS. This implies
that S is logically equivalent toS0, and henceS is unsatisfiable. SinceS is stratified (no
new definition clauses are generated in the derivation), if we now prove thatS is saturated,
then byTheorem 4.9we obtain� ∈ S and hence� ∈ Sj for somej . To this end consider
any inference by stratified resolution with premises inS (the case of factoring is similar):

R ∨ C ¬R ∨ D

C ∨ D
.

To prove thatS is saturated, we have to show that either (i) the rightmost premise¬R∨D
of the inference is not larger w.r.t.�mul

S than the conclusionC ∨ D, or (ii) the inference is
redundant w.r.t.S and�mul

S .
To this end we assume that (i) does not hold, i.e. we assume¬R ∨ D �mul

S C ∨ D, and
show (ii). Since the derivation is fair, there exists someSj such that either the inference is
redundant w.r.t.Sj and�mul, or else its conclusionC ∨ D belongs toSj . Note that, since

A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99 91

�mul
S extends�mul, in both cases the conclusionC ∨ D follows from clauses inSj smaller

w.r.t. �mul
S than¬R ∨ D.

But each one of these smaller clauses inSj follows from persistent clauses that are
again smaller or equal w.r.t.�mul (and hence w.r.t.�mul

S) than¬R ∨ D. Therefore,C ∨ D
follows from persistent clauses that are smaller w.r.t.�mul

S than¬R ∨ D, i.e. the inference
is redundant w.r.t.S and�mul

S . �

4.2. Deletion of unfolded clauses

There are standard ways for computing fair derivations in practice. For example, the
clauses can be stored in some (priority) queue ensuring that for every inference with such
clauses, either it is eventually proved redundant or else its conclusion is added. A simpler
possibility used in most provers is to only remove clauses redundant w.r.t. the currentSi

instead of using redundancy w.r.t. allSj .
However, with stratified resolution one can also remove some clauses that do not follow

from smaller ones. This is based on the observation that no new definition clauses are
generated during derivations, so no clause¬P ∨ C resolved against all definition clauses
of the form P ∨ D can participate in any new inference. Thus, we can delete¬P ∨ C at
the point of the derivation when it has already been resolved with all definitions available
at this point.

This can be formalized as follows. Let us change the notion of derivation by adding a
new deletion rule, calleddeletion of unfolded clauses. Suppose thatSi contains a clause
¬P ∨ C, and for every definition clauseP ∨ D in Si , either the resolventD ∨ C of these
two clauses belongs to someSj for j ≤ i , or else the corresponding inference is redundant
w.r.t. �mul and someSj for j ≤ i . Then¬P ∨ C can be deleted fromSi .

Let us call the resulting inference systemstratified resolution with deletion of unfolded
clauses. The notion of fair derivation in this system remains as before.

Theorem 4.14. Stratified resolution with deletion of unfolded clauses is complete, i.e.
every fair derivation from an unsatisfiable set S0 of clauses contains the empty clause.

Proof. Let S0, S1, . . . be such a derivation. Consider the derivationS0, S′
1, S′

2, . . . obtained
from S0, S1, . . . by keeping all deleted unfolded clauses. It is not hard to argue that
S0, S′

1, S′
2, . . . is fair, and hence someS′

i contains the empty clause. Since the empty clause
cannot be deleted, it is also contained in someSj . �

In a practical theorem prover an unfolded clause¬P ∨ D can be either deleted or
blocked for further inferences, although it can still be used in redundancy proofs of other
clauses or inferences. Blocking the clause would result in space consumption and slower
simplification tests, but it can also result in deleting some clauses which would not be
deleted otherwise. The issue of deletion versus blocking requires experiments.

5. Non-ground clauses

In this section we extend the results of the previous section to the case of non-ground
clauses.

92 A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99

No ordering on non-ground items is used. We keep the orderingpred and, on the
set of ground atoms, the total fixed quasi-ordering respectingpred (remember: is
determined bypred, except forQ-atoms headed with the same symbol, which can be
ordered in any way by as long as� is well-founded). In a practical prover usually
general-purpose orderings like the Knuth–Bendix ordering (KBO) or the lexicographic or
recursive path ordering (LPO or RPO) can be used for ordering suchQ-atoms (see, e.g.
Nieuwenhuis and Rubio, 2001) for precise definitions.

In practice, for selection functions on non-ground clauses (and, as we will see, for
restricting more the non-ground inference rules), it will be useful to be able to approximate
 at the non-ground level, that is, to check for non-groundQ-atomsQ and Q′, whether
there exists some grounding substitutionσ such thatQσ � Q′σ , or, more generally,
whether for a Boolean formulaF over relationsQ � Q′ or Q Q′, there exists some
groundingσ such thatFσ evaluates to true. This kind ofordering constraint satisfiability
problem can indeed be decided for LPOs and RPOs (Comon, 1990; Jouannaud and
Okada, 1991; Nieuwenhuis, 1993; Nieuwenhuis and Rivero, 1999) and KBOs (Korovin
and Voronkov, 2000).

Definition 5.1. The inference system ofstratified resolution consists of two inference
rules:

1. Stratified resolution rule:

R ∨ C ¬R′ ∨ D

(C ∨ D)σ
,

whereσ = mgu(R, R′) and if R is aQ-atom,
then there exists a grounding substitutionγ

such thatRσγ � Lσγ for all literals L in C.

2. Positive factoring rule:

Q ∨ Q′ ∨ C

(Q ∨ C)σ
,

whereσ = mgu(Q, Q′) and there exists a
grounding substitutionγ such that
Qσγ Lσγ for all literals L in C. �

Now again remember that is determined bypred, except forQ-atoms headed with
the same symbol (which can be ordered in any way by as long as� is well-founded).
Therefore, the only ordering restrictions of these inference rules that have to be checked
“on the fly”, i.e. at each attempt of applying an inference rule, are the ones involving
comparisons ofQ-atoms headed with the same predicate symbol (the ones that depend on
pred can already be imposed by the selection function). Some of these inferences can be
ruled out a priori, i.e. because a literalR cannot be maximal w.r.t. independently of the
concrete mguσ , others can be ruled out only a posteriori, i.e. onceσ has been computed.

This is one of the applications of the aforementioned procedures for checking ordering
constraint satisfiability; another one is finding a minimal subset of positiveQ-atoms for
selection. Other applications arise in the context of proving the redundancy of clauses and
inferences.

As in the previous section for the ground case, the following theorem is a consequence
of more general results that are given below, in this case of its version with redundancy,
Theorem 5.5, combined withTheorem 5.4.

A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99 93

Theorem 5.2. Stratified resolution is refutationally complete for stratified sets of
clauses. �

5.1. Redundancy

We now adapt to general clauses the machinery developed inSection 4.1for redundancy
in the ground case.

Definition 5.3. Let S be a set of clauses and let> be any ordering on ground clauses.

1. A ground instance of a stratified resolution inference

R ∨ C ¬R′ ∨ D

(C ∨ D)σ
, whereσ = mgu(R, R′),

is any ground stratified resolution inference of the form

(R ∨ C)σθ (¬R′ ∨ D)σθ

(C ∨ D)σθ
.

2. A ground instance of a positive factoring inference

Q ∨ Q′ ∨ C

(Q ∨ C)σ
, whereσ = mgu(Q, Q′),

is any ground positive factoring inference of the form

(Q ∨ Q′ ∨ C)σθ

(Q ∨ C)σθ
.

3. A non-ground inference (by stratified resolution or positive factoring) isredundant
w.r.t. S and > if all its ground instances are redundant w.r.t. gnd(S) and>.

4. S is saturated if there exists some stratified selection function for which gnd(S) is
saturated. �

As in the ground case, in practice one can usually only use sufficient conditions showing
saturatedness of a setS. In particular, we have the following.

Theorem 5.4. A set of clauses S is saturated if, for all inferences with premises in S, either
the inference is redundant w.r.t. S and �mul, or else its conclusion belongs to S.

Proof. Consider a selection function for gnd(S) that is compatible with the one forS in
the following sense: ifL ∨ C is in gnd(S), then there is some clauseL ′ ∨ C ′ in S such that
L ′θ = L andC ′θ = C for someθ . It is not difficult to argue by Zorn’s lemma that such a
selection function always exists.

We prove that gnd(S) is saturated for any such a selection function. To this end, we take
any inferenceπ with premises in gnd(S) such that the rightmost premise ofπ is larger
w.r.t. �mul

gnd(S) than the conclusion, and prove that thenπ is redundant w.r.t. gnd(S) and

�mul
gnd(S)

. We consider only resolution inferences; the case of factoring is analogous. Letπ

be the following inference by ground stratified resolution:

Rθ ∨ Cθ ¬R′θ ∨ Dθ

Cθ ∨ Dθ
. (3)

94 A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99

By compatibility of the selection function, then indeed there exist clausesR ∨ C and
¬R′ ∨ D (not sharing any variables) inS. Since Rθ = R′θ , the atomsR and R′ are
unifiable withσ = mgu(R, R′). The following

R ∨ C ¬R′ ∨ D

Cσ ∨ Dσ
(4)

is a valid inference by stratified resolution, because, since (3) is an inference by ground
stratified resolution, ifR is a Q-atom we haveRθ � Lθ for every literal L in C and
therefore alsoRσγ � Lσγ for every literalL in C, whereγ is the substitution such that
σγ = θ .

Since (4) is an inference with both premises inS, either it is redundant w.r.t.S and�mul,
or else its conclusion belongs toS. In the former case (3) is redundant w.r.t. gnd(S) and
�mul, because it is a ground instance of (4), and hence (3) is also redundant w.r.t. gnd(S)

and�mul
gnd(S)

, because�mul
gnd(S)

extends�mul. In the latter case, i.e. whenCσ ∨ Dσ is in

S, we have thatCθ ∨ Dθ is in gnd(S). Then¬R′θ ∨ Dθ �mul
gnd(S) Cθ ∨ Dθ implies that

Cθ ∨ Dθ follows from a smaller w.r.t.�mul
gnd(S) clause in gnd(S) than the maximal premise,

namely from itself, and hence (4) is redundant w.r.t. gnd(S) and�mul
gnd(S)

. �
We call a set of non-ground clausessatisfiable if their universal closures are satisfiable.

By the Herbrand theorem, a setS of non-ground clauses is satisfiable if and only if the
set gnd(S) of all ground instances of clauses inS is also. The following theorem is an
immediate consequence ofTheorem 4.9since, by definition, a setS is saturated if and only
if gnd(S) is also.

Theorem 5.5. Let S be a saturated stratified set of clauses. Then � ∈ S whenever S is
unsatisfiable. �

We now consider stratified resolution derivations as defined in the previous section, but
applied to non-ground clause sets and the non-ground inference system. The only new
notion that is needed is a notion of redundant clause in the non-ground case:

Definition 5.6. Let C be a clause, let> be an ordering on ground clauses, and letS be a set
of clauses. ThenC is redundant w.r.t. S and > if all ground instances ofC are redundant
w.r.t. gnd(S) and>. �

We definefair stratified resolution derivations in the same way as fair ground stratified
resolution derivations, by using stratified resolution inferences instead of ground stratified
resolution inferences.

Theorem 5.7. Let S0, S1, . . . be a fair stratified resolution derivation. Then � ∈ Sj for
some j if and only if S0 is unsatisfiable.

Proof. The proof proceeds like the one ofTheorem 4.13, with an additional lifting argu-
ment similar to the one used in the proof ofTheorem 5.4. Again each clause occurring in
the derivation is a logical consequence ofS0, hence� ∈ Sj implies thatS0 is unsatisfi-
able, and again as inTheorem 4.13, for the “if” direction, it suffices to prove that the set
S of persistent clauses is saturated. To prove that gnd(S) is saturated, we consider again a
selection function for gnd(S) that is compatible with the one forS as inTheorem 5.4.

A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99 95

Consider any inferenceπ with premises in gnd(S). We have to show that either (i)
the rightmost premise ofπ is not larger w.r.t.�mul

gnd(S) than the conclusion ofπ or (ii) the

inference is redundant w.r.t. gnd(S) and�mul
gnd(S). We assume that (i) does not hold, and

show (ii). As inTheorem 5.4, π is an instance of some non-ground inferenceπ ′. Since the
derivation is fair, there exists someSj such that eitherπ ′ is redundant w.r.t.Sj and�mul,
or else the conclusion ofπ ′ belongs toSj . But in both cases the conclusion ofπ follows
from clauses in gnd(Sj) smaller w.r.t.�mul

gndS than the rightmost premise ofπ . Each one of
these smaller clauses in gnd(Sj) follows from clauses in gnd(S) that are again smaller or
equal w.r.t.�mul (and hence w.r.t.�mul

gnd(S)). Therefore, the conclusion ofπ follows from

clauses in gnd(S) that are smaller w.r.t.�mul
gnd(S) than the maximal premise ofπ , i.e. π is

redundant w.r.t. gnd(S) and�mul
gnd(S). �

All the observations about deletion of unfolded clauses ofSection 4.2, of course, also
apply to the non-ground case handled in this section.

5.2. Redundancy and more refined orderings

The previous framework of redundancy is well known to cover most, if not all, practical
notions for the elimination of redundant inferences and clauses. As a simple example,
considerproper subsumption, where a clauseC is properly subsumed by a clauseD if
there exists some substitutionσ such thatDσ ⊂ C. It is clear thatC is redundant w.r.t. any
clause set containingD and can hence be removed.

But, up to now, for reasons of simplicity, we have considered only an ordering� on
ground atoms and a version of it for clauses. However, in some redundancy proofs it
is convenient to consider more refined orderings. For instance, subsumption, where one
requires onlyDσ ⊆ C, cannot be handled by the redundancy notions defined up to now;
for example, the unit clauser(a) is not redundant by these definitions in the presence of
the unit clauser(x).

This can again be solved by well-known techniques (see, for example,Bachmair and
Ganzinger, 2001; Nieuwenhuis and Rubio, 2001), which we do not want to treat in detail
here. Let us only mention one possibility: compare ground instancesAσ andBθ of atoms
(or clauses)A and B by an ordering�pair on pairs defined by:(A, σ) �pair (B, θ) if
either Aσ � Bθ or elseAσ coincides withBθ and A is an instance ofB but not vice
versa. Then adapt the definitions of redundancy accordingly.

6. A calculus for stratified resolution with redundancies

In this section we formulate a concrete derivation system of stratified resolution with
redundancies in the non-ground case. We will formulate rules on sets of clauses, using the
symbol→ to denote derivation steps.

Definition 6.1 (CalculusSRR). The calculus ofstratified resolution with redundancies,
denotedSRR consists of the following inference rules.

96 A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99

1. Positive factoring is the following inference rule:

S → S ∪ {C}
such thatC is obtained from a clause inS by the positive factoring rule for clauses.

2. Stratified resolution is the following inference rule:

S → S ∪ {C}
such thatC is obtained from two clauses inS by the stratified resolution rule for
clauses upon aQ-literal.

3. Definition rewriting. Suppose(¬P ∨C) ∈ S. Suppose also thatP1∨D1, . . . , Pk ∨Dk

are all definition clauses inS such thatPi is unifiable withP. Then

S → (S − {¬P ∨ C}) ∪ {(C ∨ D1)θ1, . . . , (C ∨ Dn)θn},
where eachθi is a most general unifier ofP and Pi is an inference bydefinition
rewriting.

4. Subsumption andtautology deletion defined as usual.�

Note that a derivation of definition rewriting combinesdefinition unfolding of Degtyarev
and Voronkov (2000) with deletion of unfolded clauses. The completeness of this
derivation system w.r.t. fair derivations follows from our results.

7. How to select a stratification

Example 3.4shows that a set of clauses may admit several different stratifications. How
can we choose a “good” stratification? When we select a stratification for a given set of
clausesS, we should first find a set of predicatesP such thatS is Horn w.r.t.P , and then
select a quasi-ordering.

Suppose thatP is already chosen so thatS is Horn w.r.t.P . Then we can always use the
stratification in which allP-literals are strictly greater than allQ-literals. Unfortunately,
this stratification may not be good enough, since it gives us too little choice for selecting
positiveQ-literals. Let us illustrate this for clauses ofExample 1.2. Assume thatP is
{split}. We can use the precedence relation

split �pred deduction �pred conference list.

This stratification does not allow us to select the literalconference list(x) in

¬split(x, y, z) ∨ conference list(x),

while intuitively it should be the right selection.
This observation shows that for a givenP it can be better to use precedence relations

in whichQ-literals are as large as possible. Then we will have more options for selecting
positiveQ-literals in clauses. InExample 1.2, such a more flexible stratification is based
on the precedence relation

conference list �pred split �pred deduction.

A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99 97

In general, there is a tradeoff between the size ofP and the flexibility of literal selection.
The largerP is, the less choice we have for selecting positiveQ-literals.

We are planning experiments with the choice of stratification using the theorem prover
Vampire (Riazanov and Voronkov, 2002).

8. Conclusion

We believe that the SLD-resolution-like definition unfolding approach of stratified
resolution will allow theorem provers to make the search process more goal-oriented for
large classes of problems with the typical admissible kind of (recursive) definitions that can
be stratified. Moreover, we believe that it will be possible to find adequate stratifications
automatically and inexpensively in practice. An implementation of all results exposed in
this paper is currently being developed inside Vampire, and we hope to be able soon to give
statistical evidence of this belief.

Finally, we now briefly mention some open problems associated with stratified
resolution.

1. The standard semantics of stratified logic programs is based on non-monotonic
reasoning. Stratified resolution makes one think of a logic that combines non-
monotonic reasoning with monotonic resolution-based reasoning. Such a logic, its
semantics and ways of reasoning automatically in it, could be investigated. Hence
it might be interesting to investigate a combination of stratified resolution with non-
monotonic logics.

2. Is there any powerful generalization of stratified resolution for logic with equality4?
3. Stratified resolution is different from ordered resolution with selection in that it

allows one to select heads of clauses, even when they are not strictly maximal in
their clauses. Therefore, it may be interesting to see if stratified resolution can lead
to new decision procedures for decidable fragments of predicate calculus.

Another method of proving completeness of stratified resolution was recently proposed
by Harald Ganzinger (personal communications). The idea is to transformP-literals by
adding an additional argument to them so that the selected literal of every transformed
definition clause becomes strictly greater than any other literal in this clause. For
example, adding additional arguments to the clausep(x) ∨ ¬p(f (x)) results in the clause
p(g(y), x) ∨ ¬p(y, f (x)). If we use an ordering� on transformedP-literals which first
compares the additional arguments then we havep(g(y), x) � ¬p(y, f (x)). One can
prove that this transformation on clauses preserves satisfiability. Then every inference
in the standard resolution system on the transformed clauses can be simulated by a
stratified resolution inference on the original clauses, thus giving us completeness of
stratified resolution. However, this transformation does not preserve redundancies, such as
subsumption, so we cannot prove completeness of the calculus with redundancies using this
method. Harald Ganzinger also pointed out that his transformation can be used for a simple

4 As pointed out by Harald Ganzinger, the completeness proof should work if equality does not belong to the
setP of defined symbols and all equality literals (as usual) are smaller than non-equality literals.

98 A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99

implementation of stratified resolution in existing theorem provers since it will only require
modification of the clause form transformation but not of the inference mechanism5.

Acknowledgement

The idea of this work appeared due to discussions of the third author during CADE-16
with Harald Ganzinger and Tanel Tammet. Harald Ganzinger explained that the SATURATE

system tries to use an ordering under which the heads of “definition-like” clauses are the
greatest in their clauses, and hence can be selected. This allows one to use definitions
in the way they are often used in mathematics. Tanel Tammet explained that he tried to
implement in his prover GANDALF “rewriting on the clause level”, again for clauses that
look like definitions. The third author was supported by an EPSRC grant.

References

Apt, K.R., 1990. Logic programming. In: van Leeuwen, J. (Ed.), Handbook of Theoretical Computer
Science, Formal Methods and Semantics, vol. B. Elsevier Science, Amsterdam, pp. 493–574
(Chapter 10).

Apt, K.R., Blair, H.A., 1988. Towards a theory of declarative knowledge. In: Minker, J. (Ed.),
Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann, pp. 89–148.

Bachmair, L., Ganzinger, H., 1991. Perfect model semantics for logic programs with equality.
In: Furukawa, K. (Ed.), ICLP-91, Logic Programming, Proceedings of the Eighth International
Conference. MIT Press, pp. 645–659.

Bachmair, L., Ganzinger, H., 2001. Resolution theorem proving. In: Robinson, A., Voronkov, A.
(Eds.), Handbook of Automated Reasoning, vol. I. Elsevier Science, Amsterdam, The
Netherlands, pp. 19–99 (Chapter 2).

Comon, H., 1990. Solving symbolic ordering constraints. International Journal of Foundations of
Computer Science 1 (4), 387–411.

de Nivelle, H., 1996. Ordering Refinements of Resolution. Ph.D. Thesis, Technische Universiteit
Delft.

Degtyarev, A., Voronkov, A., 2000. Stratified resolution. In: McAllester, D. (Ed.), CADE-17, 17th
International Conference on Automated Deduction. Lecture Notes in Artificial Intelligence, vol.
1831. Springer-Verlag, Pittsburgh, pp. 365–384.

Ganzinger, H., Nieuwenhuis, R., Nivela, P., 2001. The Saturate system. Max-Planck-Institut f¨ur
Informatik. Maintained and distributed on the Web at:
http://www.mpi-sb.mpg.de/SATURATE/Saturate.html.

Jouannaud, J.-P., Okada, M., 1991. Satisfiability of systems of ordinal notations with the subterm
property is decidable. In: Albert, J.L., Monien, B., Rodr´ıguez-Artalejo, M. (Eds.), Automata,
Languages and Programming, ICALP’91, 18th International Colloquium. Lecture Notes in
Computer Science, vol. 510. Springer-Verlag, Madrid, Spain, pp. 455–468.

Korovin, K., Voronkov, A., 2000. A decision procedure for the existential theory of term algebras
with the Knuth–Bendix ordering. In: Proceedings of the 15th Annual IEEE Symposium on Logic
in Computer Science, Santa Barbara, California, June 2000, pp. 291–302.

5 The original completeness proof ofDegtyarev and Voronkov(2000) uses an idea similar to Harald
Ganzinger’s transformation. The proof ofDegtyarev and Voronkov(2000) can also only handle special cases
of redundancy criteria.

http://www.mpi-sb.mpg.de/SATURATE/Saturate.html

A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79–99 99

Kowalski, R.A., Kuehner, D., 1971. Linear resolution with selection function. Artificial Intelligence
2, 227–260.

Lynch, C., 1997. Oriented equational logic is complete. Journal of Symbolic Computations 23 (1),
23–45.

Nieuwenhuis, R., 1993. Simple LPO constraint solving methods. Information Processing Letters 47,
65–69.

Nieuwenhuis, R., Rivero, J.M., 1999. Solved forms for path ordering constraints. In: Narendran, P.,
Rusinowitch, M. (Eds.) RTA, Proceedings of the 10th International Conference on Rewriting
Techniques and Applications. Lecture Notes in Computer Science, vol. 1631. Trento, Italy, 2–4
July 1999. Springer, pp. 1–15.

Nieuwenhuis, R., Rubio, A., 2001. Paramodulation-based theorem proving. In: Robinson, A.,
Voronkov, A. (Eds.), Handbook of Automated Reasoning, vol. I. Elsevier Science, Amsterdam,
The Netherlands, pp. 371–443 (Chapter 7).

Przymusinski, H., 1988. On the declarative semantics of deductive databases and logic programs.
In: Minker, J. (Ed.), Foundations of Deductive Databases and Logic Programming. Morgan
Kaufmann, pp. 193–216.

Riazanov, A., Voronkov, A., 2002. The design and implementation of Vampire. AI Communications
1–25 (submitted for publication).

Van Gelder, A., 1988. Negation as failure using tight derivations for general logic programs.
In: Minker, J. (Ed.), Foundations of Deductive Databases and Logic Programming. Morgan
Kaufmann, pp. 149–177.

	Stratified resolution
	Introduction
	Related work

	Basic notions
	Stratifications
	Stratified resolution: the ground case
	Redundancy in the ground case
	Deletion of unfolded clauses

	Non-ground clauses
	Redundancy
	Redundancy and more refined orderings

	A calculus for stratified resolution with redundancies
	How to select a stratification
	Conclusion
	Acknowledgement
	References

