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Abstract

We introduce a calculus afratified resolution, in which special attention is paid to clauses that
“define” relations. If such clauses are discovered in the initial set of clauses, they are treated using the
rule of definition unfolding, i.e. the rule that replaces defined relations by their definitions. Stratified
resolution comes with a powerful notion of redundancy: a clause to which definition unfolding has
been applied can be removed from the search space. To prove the completeness of stratified resolution
with redundancies, we use a novel combination of Bachmair and Ganzinger's model construction
technique and a hierarchical construction of orderings and least fixpoints.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most state-of-the-art theorem provers in first-order logic apply some variant of ordered
resolution withselection: in each clause a subset of its literals is selected, and these selected
literals are the only active ones in resolution inferences with this clause. The selection
strategy (deciding which literals are selected) is usually parametrized by a given ordering
on ground atoms.

For several of these strategies refutational completeness is known. For example, in the
ground case, it suffices to select in each clause either a negative literal or else some positive
atom that is maximal with respect to the given ordering among all atoms of the clause.
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In the non-ground case, one can select either a negative literal or else a subset of the
positive literals such that for all ground instances the maximal literal is among the selected
ones Bachmair and Ganzinge2001).

In the Horn case, completeness is preserved if a single arbitrary literal in each clause
is selected. For example, Prolog’s SLD-resolution amounts to selecting the positive literal
whenever there is any, which, very conveniently, converts the search process into a form of
goal-directed definition unfolding.

In this paper we show that, under some precisely defined circumstances, such a selection
is also complete in the non-Horn case. We introddeatified resolution, a resolution
calculus with special rules for handling hierarchical definitions of relations. Stratified
resolution generalizes SLD-resolution to a more general case, where clauses may be non-
Horn but “Horn with respect to a set afefined relations”. In this calculus, one can
select a single positive litergd(- - -) of a (possibly non-Horn) clausg, i.e. only useC
for unfolding the definition ofp, even if this atomp(- - -) is not strictly larger than the
atoms occurring negatively i@. Consider the following (for explanation purposes, naively
simple) propositional example:

Example 1.1. Assume we have, among others, the two clayses—q v r andq v —p.

Then our calculus allows one to consider both these clauses as definitions of their
positive literalsp andq, i.e. to select these positive literals. One cannot use the standard
completeness results for ordered resolution for proving completeness of such a selection.
Indeed, ifp > g, then—p > g, and so we cannot selegtin the second clause without
selecting—p. Likewise, ifq > p and we selecp in the first clause, we must also select

-q. O

Making the right choices in selection is crucial for the performance of a deduction
process. Consider the following example.

Example 1.2. Suppose we are trying to establish the inconsistency of a set of clauses
S containing a recursive Prolog-style definition of a relatigphit that splits a list of
conferences into two sublists: deduction-related conferences, and all other conferences.

split([x1y], [x1z], u): - deduction(x), split(y, z, u).
split([x1y], z, [x|ul): ==deduction(x), split(y, z, u).
split([1, [1, [1).

In the standard syntax these clauses can be written as

split([x1y], [x1z], u) v —deduction(x) v —=split(y, z, u).
split([x1y], z, [xIul) v deduction(x) v —split(y, z, u).
split([1, 1, ).

Suppose tha$ also contains other clauses, for example
—split(x, y, z) v conference_list(x)

and assume our ordering on atoms is primarily based on an ordering on their predicate
symbols. Now we face several choices in selecting the order and negative literals in
clauses. For example, if we malleduction greater thargplit, then we must select either
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—deduction(x) or —split(y, z, u) in the first clause. It seems much more natural to select
split([x1y], [x1Z], u) instead. Then we can use the first clause in the same way it would
be used in logic programming. Likewise, if we always try to select a negative literal in a
clause, the literahsplit(y, z, u) will be selected in the second clause, which is most likely
a wrong choice, since then any resolvent with the second clause will give us a larger clause.
Let us now choose an ordering in which the literagfgit([x|y], [x1z],u) and
split([x1y], z, [x1ul) are maximal in their clauses, and select these literals. Consider
the fourth clause. If we seleetsplit(x, y, 2) in it, we can resolve this literal with all
three clauses definingplit. It would be desirable to seleconference list(x) in it, since
a resolvent upor~conference list(x) is likely to instantiatex to a non-variable tern,
and then the literaksplit(t, y, z) can be resolved with only two, one or no clauses at all,
depending on the form df
In all cases, it seems reasonable to choose an ordering and selection function in such a
way that the first three clauses will be used atefnition of split so that weunfold this
definition, i.e. replace the heads of these clauses with their bodies. Such an ordering would
give us the best results if we have an adequate strategy of literal selection which says: select
—split(r, s, t) only if r is instantiated enough, or if there is no other choicél

In order to implement this idea we have to be able to formalize the right notion of
“definition” in a set of clausés Such a formalization is undertaken in this paper, in the
form of a calculus oftratified resolution. Stratified resolution is based on the following
ideas which can be tracked down to earlier ideas developed in logic programming.

1. Logic programming is based on the idea of using definite clauses as definitions of
relations. Similar to the notion of definite clause, we introduce a more general notion
of a set of clausedefinite w.r.t. a set of relations. These relations are regarded as
defined by this set of clauses.

2. In logic programming, relations are often defined in terms of other relations. The
notion ofstratification (Van Gelder1988 Apt and Blair, 1988 Przymusinski1988
allows one to formalize the notior'is defined in terms of)”. We use a similar idea
of stratification, but in our case stratification must be related to a reduction ordering
> on literals.

The difficult problem is to find automatically the right ordering that makes the atom in
the head of a “definition” greater than the atoms in the body of this definition. Consider,
for example, clauses defining reachability in a directed graph.

Example 1.3. Assume a graph is formalized by the binary relatdge. The reachability
relation can be defined by the following two Prolog clauses

reachable(x, y) : —edge(Xx, y).
reachable(x, z) : —edge(X, y), reachable(y, z).

2 When we speak about the “right notion of definition” we mean a notion which (i) reflects a particular way
definitions are treated in mathematics and (ii) is convenient for processing by theorem provers. There are some
generally accepted ways of defining mathematical notions, for example, by using least fixpoints of inductive
definitions, which are not captured by our notions.
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In the standard syntax these clauses can be written as

reachable(x, y) v —edge(X, ).
reachable(x, z) v —edge(x, y) v —reachable(y, z).

There is no well-founded ordering stable under substitutions that makes the atom
reachable(x, 2) greater thameachable(y, z). So in the standard resolution with selection,

if the literal reachable(x, 2) is selected in the second clause above, then the literal
reachable(y, 27 must be selected too. The theory developed in this paper allows one to
select only the literaleachable(x, 2) in this clause despite the fact that this literal is not the
greatest. (I

Stratified resolution allows not only to select literals in clauses in an intelligent way, but
also to apply certain notions of redundancy in many more cases than in the standard ordered
resolution calculi. To explain this kind of redundancy, let us go badkdample 1.2

Example 1.4 (Example 1.Zontinued). Suppose we have a clause
—split([cade, www, Ipar], y, 2), 1)

wherecade, www, [par are constants ang z are variables. Stratified resolution can resolve
this clause with the first two clauses in the definitiorsgft, obtaining two new clauses

—deduction(cade) v —split([www, lpar], y, 2)
deduction(cade) v —split([www, lpar], vy, z).

In general, these two clauses woulddmieled to the search space. However, if one can
ensure that no more inferences will be needed agairijprthien they can as welkplace
clause 1) thus making the search space smaller. Indeed, in stratified resolution this is the
case for all “defined” predicates likgplit, and hence this situation is far more frequent,
and more easily detectable, than in standard ordered resolution, where this situation applies
only if in all clauses whereplit occurs in a positive literal, it occurs only once positively,
and it is the only selected literal in its clausd]

When the initial set of clauses contains no definitions or cannot be stratified, stratified
resolution becomes ordinary ordered resolution with selection. However, sets of clauses
which contain definitions and can be stratified in our sense are often met in practice, since
they correspond to a frequently used form of (possibly recursive) definitions of relations.
For example, many TPTP problems can be stratified.

This paper is organized as follows. After the basic notions and notatio8gafons
2 and3, in Section 4we first define the ground version of stratified resolution and prove
its completeness. Then, Bections 4.1and4.2 we define stratified resolution derivations
with redundancies, and we show that a clause can be removed from the search space
after definition unfolding has been applied to it. ThenSaction 5we explain the full
non-ground version of stratified resolution with redundancyséetion 6we formulate a
concrete inference system for stratified resolution with redundancies in the non-ground
case. InSection 7we discuss how one can choose a “good” stratification. Finally, in
Section 8we raise some open problems related to stratified resolution.
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Related work

There are not many papers in the automated deduction literature relevant to this work.
Our formal system resembles SLD-resolutiorkofvalski and Kuehnef1971). When the
initial set of clauses is Horn, our stratified resolution with redundancies becomes SLD-
resolution.

The possibility of arbitrary selection for Horn clauses follows from a resudedflivelle
(1996: if a set of clauses has a resolution refutation without factoring, then it has a
refutation with an arbitrary selection of literals in clauses.

A different way of handling definitions is implemented in the Saturate system of
Ganzinger et al(2001]). In this system, the axioms of the forR(X) = ¢(X), whereP
is a predicate symbol ang is an arbitrary formula, are treated as “definitions"Rfnd
unfolded “lazily”. This means that these axioms are not transformed into clausal normal
form immediately. Instead, if a literal with an ato(f) is selected in a clause, the atom is
replaced by (f), after which the transformation into clausal normal form is done.

This approach might be an alternative to our approach. It has some attractive
features. For example, the equivalences and the clauses cont&riag participate in
simplificationsbefore transformation into clausal form is applied. Howev@anzinger
et al.(2001) do not prove or assert any completeness results.

A connection between resolution on stratified sets of clauses and the perfect models of
these sets is also observeddachmair and Ganzingét991).

A first version Degtyarev and Voronkqv2000 of this work appeared in the
Proceedings of CADE-17. Completeness in the presence of redundancy criteria in
Degtyarev and Voronkof2000 was proved using a proof technique basetraces, which
may be interesting by itself. But the definitions of stratification as well as the proofs given
here are significantly simpler, and allow us to answer some of the questions left open in
Degtyarev and Voronkof2000).

2. Basic notions

Let > be a strict (partial) ordering, i.e. a transitive and irreflexive binary relation. The
multiset extension of >, denoted by-""' is defined as the smallest transitive relation on
finite multisets such that

XU{A} =™ X U{By,...,By} if A= Bjforalli e {1...n},

wheren > 0. If = is a well-founded ordering o8 then>"" is a well-founded ordering
on finite multisets of elements &

A quasi-ordering is a transitive and reflexive binary relation, denoted in this paper by
> (possibly with subscripts or superscripts), and its inverse is denoted ltgstrict part,
denoted by, is the strict ordering- \ < (i.e.s > t if s > t ands £ t). Its equivalence,
denoted by~, is defined ag- N <. Note that- is the disjoint union of- and~.

In this paper we will deal with several orderings on the set of ground atoms of a signature
X/, Forevery such ordering-, let =;; be the smallest extension sfto the set of ground
literals of X' such that for all ground aton® and R" we have (i))—~R’ >jii =R whenever
R = R, (ii) =R =jit Rand (iii) =R =jit L =t R for noL. To keep the notation simple,
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we will omit the subscript lit and use the same notation:foand >i;. This causes no
ambiguity, since- and>i; agree on ground atoms.

A clause is a multiset of literals. Theempty clause is denoted by]. We assume
knowledge of substitutions, unifiers, and most general unifiers. A most general unifier
of two atoms (or literals)A and B will be denoted by mg(A, B). The application of a
substitutiono to an expression (e.g. an atom, literal, or clausd} denoted byEo. An
expression iground if no variable occurs in it. Aground instance of any expressioft is
an expressioEo which is ground. The set of all ground instances of any expredsion
will be denoted by gn¢E), and if Sis a set of clauses, by gt we denote the set of
ground instances of clauses$that is, gndS) = {C | C € gnd(D) andD < S}.

We consider (partial) Herbrand interpretations as Boolean functions over a set of ground
atomsA, that is, functiond : A — {0, 1}. | is calledtotal if A is the set of all ground
atoms over the given signature, guaitial otherwisel is said to beadefined for the ground
atoms, ground literals and ground clauses built o4eA ground atomR € A is said to be
truein I, if I (R) = 1, andfalse otherwise. This notion of truth and falsehood is extended
in the usual way to ground literals and ground clauses built gveé non-ground claus€
is said to bevalid, ortrue, in a total Herbrand interpretatidnif all of its ground instances
are true inl, andfalse if it is not true. The interpretatioh is amodel of a set of clauses
Sif all clauses ofSare valid inl . Finally, if E is an atom, literal, or clause such ttais
valid in I, then we writel F E, and we writel ¥ E if E is false inl .

3. Stratifications

In this paper, we assume a finite sighatufevhose set of predicate symbols is the
disjoint union of two sets: the so-calleldfined symbolsP and the remainingindefined
ones@. In what follows, (possibly indexed) andq always denote elements #fandQ
respectively, and denotes an arbitrary symbol 8fU Q.

Definition 3.1. A P-atom is an atom of the forrp(ty, ..., t,) with p € P. A Q-atom is
an atom of the forng(ty, ..., tn) with g € Q. A P-literal (resp.Q-literal) is a possibly
negatedP-atom (respQ-atom). We denot@-atoms byP, Q-atoms byQ, and arbitrary
atoms byR, possibly with indices. O

In the sequel we assume a fixed total quasi-ordergq on P U Q such that if
I ~pred I’ @andr # r’ then bothr andr’ are in?. We also assume a total fixed quasi-
ordering> on the set of ground atoms éf such that its strict part is well-founded, and
such that- respects-preq in the following sense:

1. ifr >predr’, thenr(sy, ..., sm) > r'(ty, ..., th);

2. ifr ~prear’ andr,r’ € P, thenr(sy, ..., sm) ~r'(ty, ..., tn);

3.i0fr(sy,...,Sn) ~r'(ty, ..., ty) andr(sy, ..., Sm) # r'(ty, ..., tp), thenr, r’ € P,
i.e. the restriction of- to the set of9-atoms is a linear ordering.

Note that if> is well-founded, thempreqis well-founded too. Itis also easy to see that the
ordering> on ground atoms is determined by the orderifjgeq on their head symbols,
except forQ-atoms headed with the same symbol, which can be ordered arbitrarily as long
as> remains well-founded.
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Definition 3.2 (Definition Clauses). A se$ of clauses oveP U Q is Horn with respect
to P if no clause inS contains more than one positifeliteral. Clauses containing exactly
one positiveP-literal are calleddefinition clauses or simplydefinitions. O

The following definition is central:

Definition 3.3 (Stratification). A seSof clauses istratified by (P, Q, =pred ifitis Horn

with respect toP and in every definition clausp(ts, ..., ty) V Cin S, wherep € P, it

holds that for every predicate symbyobccurring (positively or negatively) i€ we have
P >pred I. If Sis stratified by(P, Q, >pred, then the triple(P, Q, >pred is called a
dtratificationfor S. [

In the sequel we assume tifat Q are fixed and say thatpreq is a stratification forS if
(P, Q, >pred is also. If the stratificatiotP, Q, >pred is clear from the context, then we
will simply say thatSis stratified.

Example 3.4. Consider the set consisting of four clausasv rp, r1 v —ra, =rq1 vV ra, and
—r1 Vv —ry. This set is Horn with respect {01} and also with respect t@,}, but not with
respect tdri, ro}. To stratify this set of clauses, we can e.g. use the ordefingr; (i.e.

ri is considered as a relation defined in terms)f This example shows that in general
there is no single greatest set of defined clausés.

Definition 3.5 (Stratified Selection Function). gelectionfunctionis a function sel on the
set of clauses such that for all clausgs

1. selC) is a submultiset o€;

2. if C is non-empty, then s@T) is non-empty too;

3. either sglC) contains only positive literals, or €) contains exactly one negative
literal.

If L € selC), we say that is selected by sel inC. We say that a selection function is
stratified if we also have

4. in any definition claus® v C such thatP € P, only P is selected;

5. in any non-definition clausé with a positive selected literal a subg&, ..., Ry}
of its positive literals is selected such tt@&is of the formRy v --- v R, v D, and
for all ground instance€o and every atonB in D, it holds thatRic >~ Bo for
somei. [

In the following, we will assume a fixed stratified selection function. We underline
selected literals, so when we wrig v C, this means thalA (and maybe some other
literals) are selected iA v C.

4, Stratified resolution: the ground case

Here we introduce ground stratified resolution and illustrate our proof techniques in the
ground case. In this section we only work with ground clauses.

Definition 4.1. The inference system of grourdratified resolution consists of two
inference rules:
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1. Ground stratified resolution rule:

RvC =RvD where if Ris a Q-atom, then for every
CvD ’ literal L in C we haveR > L.

2. Ground positive factoring rule:

QvQvC
QvC

Note that the stratified resolution rule is defined as the standard rule of binary resolution
with selection, but we use a stratified selection function, and that in the positive factoring
rule Q is aQ-atom.

In the previous stratified resolution rule, the clausR v D is sometimes called the
rightmost premise, and in the positive factoring rul® v Q v C is the (only, and hence)
rightmost premise. -

The choice of which symbols are # and which ones are i@, as well as the choice
of the ordering= will be crucial for finding stratifications that reduce the search space in
practical theorem provers. In general, good choices lead to stratifications with larger sets
P, in order to minimize the amount of inferences and maximize the amount of redundancy
(seeExamples 1.41.3 3.4and4.4).

The following proposition states that stratification is preserved under our inference
rules. This holds since stratification is a property depending on the subset of definition
clauses, and stratified resolution does not introduce any new definition clauses.

, where for every literalL in C we haveQ = L. O

Proposition 4.2. Let >preqbea stratification for a set of clauses S. Let C be the conclusion
of an inference in the system of stratified resolution with premisesin S. Then >preqdisalso
a dratification for SU {C}. Moreover, C isnot a definition clause. [

Theorem 4.3. Ground stratified resolution is refutationally complete for stratified sets of
ground clauses. O

We do not prove this theorem now; it will follow from the more gendraéorem 4.9
proved below. Let us now show that the ordering condition on the definition cl&ug€3,
namely thatP > R for all atomsR occurring inC, is essential for completeness. We show
that violation of this condition causes incompleteness even wisra Q-atom.

Example 4.4. This example is taken froraynch (1997). Consider the following set of
propositional clauses:

-qVvr -pvg —r v -q
—~qv—-p -~pvzr
—-rvp rvqvp.

This clause set is unsatisfiable and Horn w{p{.. Consider the ordering > q > p. This
ordering violates the ordering condition on the definition clauses’ p andr v q v p.

The empty clause cannot be derived from it by stratified resolution, even if tautologies are
allowed. Indeed, the conclusion of any inference by stratified resolution is subsumed by
one of the clauses in this set(]
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In our completeness proofs we will use a model construction formalized in the following
definition of astratified interpretation.

Definition 4.5 (Stratified Interpretation). Letpreqbe a stratification for a s&of ground
clauses. Thestratified interpretation 1 of Sw.r.t. > is a total interpretation defined by
induction on>. To define the value df on an atonR, we will use the partial interpretation
defined in this construction for all ground atoRSwith R > R/, i.e. the restriction of
on{R' | R > R}, denoted r. The valuel (R) is defined in terms of.r as follows:

1. ForQ-atomsQ, we definel (Q) = 1 if there is some claus® v C in Ssuch that (i)
Q > RforallatomsRin C, and (ii) I<q ¥ C (note thatI<Q_is defined forC due to
condition (i)).

2. ForP-atomsP, let P denote the setP’ | P ~ P’}, and letSp be the set of all
definition clauses irg of the form

P v—=Piv...v=P,vC (2)

such that ()P ~ P’ ~ B foralli in {1...n}, (i) P = R for all atomsRin C
(again, note that hende p is defined forC), and (iii) | <p ¥ C.

Now, in a similar way as was done in the iterated fixpoint construction of the
perfect model for stratified logic programs (see, &y, 1990, we define a sequence
Po, P1, ... of subsets oP by induction as follows:

e Pg = {P’ € P | there exists a clause of the for@) {n Sp s.t.n = 0}.
e Fori > 0 definePij1 = Pj U {P’ € P | there exists a clause of the foily. (2)
suchthaf{ Py, ..., Ph} C Pi}.

Finally, for everyP’ € P we definel (P") = 1if P’ isinJ; Pi. In that case we say
that P’ € P haslevel k, denotedevel (P) = k, if k is the smallest number such that
P eP. O

We denote by-s the smallest ordering on ground atoms extendinguch thatP ~g P’
if P ~ P/, bothP andP’ have levels, antbvel (P) > level (P’). Itis not hard to argue that
>sis well-founded.

Note that-s in general depends d8 but for all S we have that-s is an extension of
>. This implies that-T" is an extension of ™!,

Example 4.6 (Stratified Interpretation). Consider the quasi-ordesnguch that

02 > P11~ P2 > Q.

Assume thaty;, g2 € Q and consider the following s&of clauses

1. prv—p2
2.&vq1
3. p2V—p1
4. -p1Vv Qe
5.%vq1.

In the stratified interpretation & the atomsps, pz, gz are true andy; is false. The atom
p1 becomes true in this interpretation due to clausg2due to clause 3, and, due
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to clause 5. This interpretation satisfies all the clauses. The orderngxtends> by
p2 >s p1 because the level gf; is greater than the level gf;. O

4.1. Redundancy in the ground case

The following notions are adaptations of well-known concepts for redundancy in
saturation-based first-order theorem proving @aehmair and Ganzingg200)). There is
a significant difference, however: in addition to relying on the atom orderingur clause
ordering>g‘“' is based on the extensions of =, which depends on the level information
of the fixpoint construction for the given s8tof clauses. For the completeness proofs to
go through, we will use the orderings. But as for practical use of redundancy criteria,
we can only use its approximationsince> s can be undecidable and even not recursively
enumerablé

Definition 4.7 below, defining the redundancy of inferences w.r.t. a given fixedsset
and definingsaturatedness of S, is given in terms of the orderingg‘“'. In Definition 4.11
defining redundancy of clauses in stratified resolution derivations, the approxin&titn
of ~TUis used instead.

Definition 4.7. Let Sbe a set of ground clausé3a ground clause, ane any ordering on
ground clauses. Deno& € = {C’ € S| C > C’} and byt the usual logical consequence
relation on ground clauses. We will use this definition witleither equal to-™" or >g‘“'.

1. An inference (by stratified resolution or positive factoring) with the rightmost
premiseC and conclusiorD is redundant w.r.t. Sand > if S<C - D.

2. Sis saturated if for every inference (by stratified resolution or positive factoring)
with premises ir§, either (i) the rightmost premise of the inference is not larger w.r.t.
>0 than the conclusion, or (ii) the inference is redundant v8rand~T4. O

Example 4.8 (Saturated Set). Consider again theSef clauses oExample 4.6The set

Sis saturated. Indeed, the resolution inference between clauses 1 and 4 satisfies condition
(i) of the definition of a saturated set. Likewise, the resolution inference between clauses 2
and 4 is redundant because the conclusiow gz follows from clause 5, and 5 is smaller

than the rightmost premisep; v 2. O

Note that in practice one usually cannot exploit case (i) of the definition of saturatedness,
nor the actual orderingg‘“' for case (ii). Instead, one can use a sufficient condition that
a setS of clauses is saturated if inferences with premiseS are redundant w.r.S and
~mul seeTheorem 5.4elow. As usual, in practice one uses redundancy criteria which are
weaker but can be checked effectively.

Theorem 4.9. Let Sbe a saturated stratified set of ground clauses. Then 0 € Swhenever
Sisunsatisfiable.

Proof. We assumé&] ¢ Sand show tha8is satisfiable, from which the theorem trivially
follows. We show the satisfiability db by actually exhibiting a model d§, namelyl, the

3 Notice that the completeness is preserved when usify instead of>r§“' becaus&g‘“' is an extension
of =mul,
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stratified interpretation (se@efinition 4.5 of Sw.r.t. >. We will use some notation from
Definition 4.5in the proof.

We now showl E S by contradiction: assumkis not a model ofS. Then there is a
clauseC € Swhich is false inl. Let C be aminimal w.r.t. >gw' clause such that ¥ C
(such a clause exists singd! is well-founded).

Consider four cases depending on the set of selected liter@ls of

1. A positive O-literal is selected, i.e. C has the formQ v D. By our definition of
stratified selection function, for all literal € D we haveQ > L. Now we
distinguish two cases, depending on whet@es D or not.

If Q € D, then (again by our notion of selectioB)is of the formQ v Q v D’
for someD’. Then, consider the inference by positive factoring:

QvgvD/
QvD

SinceSis saturated, and the conclusi@QvD’ is smaller w.r.t>"3”“' than the premise,
the inference must be redundanSnv.r.t. >, thatis, the conclusio® v D’ follows
from clauses irS strictly smaller w.r.t>g‘“' than the premis@ v Q v D’. But then,
sinceQ v D’ is false inl, at least one of these smaller clauses is false tdanhich
contradicts the minimality oQ v Q v D’.

If Q ¢ D, and hence for all literals € D we haveQ > L, thenl (Q) = 1 by
the construction of and therefore E Q, which contradicts ¥ C.

2. Apositive P-literal isselected, i.e.C has the forrP v =Py v --- v =P, v D, where
P~ B foralli € {1,...,n} andP > L for all atomsL occurring inD. Since
| ¥ C,thenl ¥ Dandl E P, foralli € {1,...,n}. By the construction of this
implies thatl £ P, which contradictd ¥ C.

3. A negative Q-literal is selected, i.e. C has the form—=Q v D. Thenl £ Q and by
construction ol then there is some clau§ev D’ in Ssuch thaQ is strictly greater
than all literals inD’ w.r.t. > and| ¥ D’. ThenQ is also strictly greater than all
literals inD’ w.r.t. >=s. Consider the inference by stratified resolution

QvD -QvD
D'vD
whose conclusio’ v D is false inl and smaller w.r.t>g‘“' than the rightmost
premise-Q v D. SinceSis saturated, this inference is redundant wgand -1,
so the conclusio®’ v D of this inference must follow from clauses Bistrictly
smaller w.r.t.>g‘“' than—Q v D. But then, sinceD’ v D is false inl, at least one of
these clauses is false toolirwhich contradicts the minimality ofQ v D.

4. A negative P-literal is selected, i.e. C has the form=P v D. Thenl E P. Hence by
construction ofl, P has some levdl. Again by the construction, there exists some
clausePv—=Pyv...-v=Pyv D’ in SwhereP ~ P foralli € {1,...,n}, P > L for
all atomsL occurring inD’, andPx, ..., P, have levels strictly smaller thdnThis
impliesP >~g B foralli € {1,...,n}. ThenP is strictly greater w.r.t>-s than all
literals in—=P; v - .. v =P, Vv D’. By repeating the argument of the previous case with
an inference of stratified resolution betweeR v D andP v =P v ... v=P,v D/,
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the false conclusiomP; v --- v =P, v D’ v D follows from clauses ir8 strictly
smaller w.r.t.>"§“' than=P v D, and so we obtain a contradictionJ

As said, in the following definition, where one considers derivations in which the sets
of clauses dynamically change, we define redundancy of clauses and fairness in terms of
the approximation ordering ™',

Definition 4.10. Let C be a ground clause, let be an ordering on ground clauses, and let
Shbe a set of clauses. Théhis calledredundant w.r.t. Sand > if S<¢ - C. O

Definition 4.11 (Derivation).

1. Astratified resolution derivation is a sequence of sets of clau§sS,, . . . such that
S is stratified, and eacl 1 is obtained fromS either by adding td§ a logical
consequence d that is not a definition or by removing fro some clause that is
redundant w.r.t§ and>mu!,

2. A clause ispersistent in the derivation if, for somg, it belongs to allS; with
k>j. O

Note that in the definition of derivation we do not refer to any particular inference system.
We use the inference system of stratified resolution in the following definition.

Definition 4.12 (Fair Ground Stratified Resolution Derivation). 1St S, ... be a deriva-

tion. It is called afair ground stratified resolution derivation if for every inference with
persistent premises in the ground stratified resolution inference system there exists some
Sj such that either the inference is redundant wSitand ~™! or else its conclusion
belongs toS;. O

Theorem 4.13. Let &, S, ... be a fair ground stratified resolution derivation. Then
O e Sj for some j if and only if &§ is unsatisfiable.

Proof. It is not hard to argue that each clause occurring in the derivation is a logical
consequence dip, hencel € §j implies thatS is unsatisfiable.

To prove the “if” direction, suppose th& is unsatisfiable. Denote the set of persistent
clauses byS. Using well-foundedness of™! one can prove that every clause removed
from the derivation is a logical consequence of smaller w-f¥! clauses ir. This implies
that Sis logically equivalent tdS, and hences is unsatisfiable. Sinc8 is stratified (no
new definition clauses are generated in the derivation), if we now prov&ikataturated,
then byTheorem 4.9ve obtain € Sand hencél € S for somej. To this end consider
any inference by stratified resolution with premiseSifihe case of factoring is similar):

RvC —=RvD
CvD
To prove thaSSis saturated, we have to show that either (i) the rightmost prefrfiseD
of the inference is not Iargerw.r:t—.g‘“' than the conclusio@ v D, or (ii) the inference is
redundant w.r.tS and>T!".

To this end we assume that (i) does not hold, i.e. we assuRie D >gw' CvD,and
show (ii). Since the derivation is fair, there exists sojeuch that either the inference is
redundant w.r.tS; and>"! or else its conclusio v D belongs toS;. Note that, since
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> extends-", in both cases the conclusi@v D follows from clauses ir§; smaller
w.r.t. =T than-R v D.

But each one of these smaller clausesSjnfollows from persistent clauses that are
again smaller or equal w.r+™! (and hence W.r.1>g‘“') than—R v D. ThereforeC v D
follows from persistent clauses that are smaller W?@EJI than-R Vv D, i.e. the inference
is redundant w.r.tSand>T4. O

4.2. Deletion of unfolded clauses

There are standard ways for computing fair derivations in practice. For example, the
clauses can be stored in some (priority) queue ensuring that for every inference with such
clauses, either it is eventually proved redundant or else its conclusion is added. A simpler
possibility used in most provers is to only remove clauses redundant w.r.t. the c8rrent
instead of using redundancy w.r.t. &|.

However, with stratified resolution one can also remove some clauses that do not follow
from smaller ones. This is based on the observation that no new definition clauses are
generated during derivations, so no clagge v C resolved against all definition clauses
of the formP v D can participate in any new inference. Thus, we can dei®e/ C at
the point of the derivation when it has already been resolved with all definitions available
at this point.

This can be formalized as follows. Let us change the notion of derivation by adding a
new deletion rule, calledeletion of unfolded clauses. Suppose tha§ contains a clause
=P v C, and for every definition clause v D in §, either the resolverd v C of these
two clauses belongs to sorgfor j <, or else the corresponding inference is redundant
w.r.t. =M and somes; for j <i. Then=P v C can be deleted fror§.

Let us call the resulting inference systatratified resolution with deletion of unfolded
clauses. The notion of fair derivation in this system remains as before.

Theorem 4.14. Sratified resolution with deletion of unfolded clauses is complete, i.e.
every fair derivation from an unsatisfiable set S of clauses contains the empty clause.

Proof. LetS, S, ... be such a derivation. Consider the derivat®nS|, S,, . . . obtained
from &, S, ... by keeping all deleted unfolded clauses. It is not hard to argue that
9. S, S.. ... is fair, and hence son§ contains the empty clause. Since the empty clause
cannot be deleted, it is also contained in sdipe O

In a practical theorem prover an unfolded clausEe v D can be either deleted or
blocked for further inferences, although it can still be used in redundancy proofs of other
clauses or inferences. Blocking the clause would result in space consumption and slower
simplification tests, but it can also result in deleting some clauses which would not be
deleted otherwise. The issue of deletion versus blocking requires experiments.

5. Non-ground clauses

In this section we extend the results of the previous section to the case of non-ground
clauses.
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No ordering on non-ground items is used. We keep the ordefingy and, on the
set of ground atoms, the total fixed quasi-orderigespecting>pred (rememberz- is
determined by-preq except forQ-atoms headed with the same symbol, which can be
ordered in any way by- as long as- is well-founded). In a practical prover usually
general-purpose orderings like the Knuth—Bendix ordering (KBO) or the lexicographic or
recursive path ordering (LPO or RPO) can be used for ordering &4atoms (see, e.g.
Nieuwenhuis and Rubj@001) for precise definitions.

In practice, for selection functions on non-ground clauses (and, as we will see, for
restricting more the non-ground inference rules), it will be useful to be able to approximate
> at the non-ground level, that is, to check for non-grogirdtomsQ and Q’, whether
there exists some grounding substitutiorsuch thatQo > Q’c, or, more generally,
whether for a Boolean formulk over relationsQ > Q' or Q > Q/, there exists some
groundingo such that~o evaluates to true. This kind ofdering constraint satisfiability
problem can indeed be decided for LPOs and RPOsn{on 1990 Jouannaud and
Okada 1991 Nieuwenhuis 1993 Nieuwenhuis and Riverdl999 and KBOs Korovin
and Voronkoy2000.

Definition 5.1. The inference system dfratified resolution consists of two inference
rules:

1. Stratified resolution rule:

wheres = mgu R, R') and if Ris a Q-atom,
, then there exists a grounding substitution
such thatRoy > Loy for all literalsL in C.

RvC =R vD
(Cv D)o

2. Positive factoring rule:

QvQ vC whereo = mguQ, Q') and there exists a
%, grounding substitutiofr such that
(QvCo Qoy > Loy forall literalsL inC. O

Now again remember that is determined by-preq, except forQ-atoms headed with
the same symbol (which can be ordered in any way-lgs long as- is well-founded).
Therefore, the only ordering restrictions of these inference rules that have to be checked
“on the fly”, i.e. at each attempt of applying an inference rule, are the ones involving
comparisons of-atoms headed with the same predicate symbol (the ones that depend on
>pred Can already be imposed by the selection function). Some of these inferences can be
ruled out a priori, i.e. because a litefalcannot be maximal w.r.t= independently of the
concrete mgu, others can be ruled out only a posteriori, i.e. oadeas been computed.

This is one of the applications of the aforementioned procedures for checking ordering
constraint satisfiability; another one is finding a minimal subset of pos@hs&oms for
selection. Other applications arise in the context of proving the redundancy of clauses and
inferences.

As in the previous section for the ground case, the following theorem is a consequence
of more general results that are given below, in this case of its version with redundancy,
Theorem 5.5combined withTheorem 5.4
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Theorem 5.2. Sratified resolution is refutationally complete for stratified sets of
clauses. [

5.1. Redundancy

We now adapt to general clauses the machinery developietition 4. for redundancy
in the ground case.

Definition 5.3. Let Sbe a set of clauses and letbe any ordering on ground clauses.
1. A ground instance of a stratified resolution inference
RvC =R vD
(Cv D)o
is any ground stratified resolution inference of the form
(RVC)sh (=R v D)ob

, wheres = mguR, R),

(Cv D)oo
2. Aground instance of a positive factoring inference
QvQvcC
== herec = m , / ,
Qv Co whereo guQ, Q)

is any ground positive factoring inference of the form

(Qv Q' vCoh
(Qv C)ob

3. A non-ground inference (by stratified resolution or positive factoringddsndant
w.r.t. Sand > if all its ground instances are redundant w.r.t. ¢®dand>.

4. Sis saturated if there exists some stratified selection function for which @ ds
saturated. O

As in the ground case, in practice one can usually only use sufficient conditions showing
saturatedness of a sBtIn particular, we have the following.

Theorem 5.4. A set of clauses Sissaturated if, for all inferenceswith premisesin S, either
theinferenceisredundant w.r.t. Sand =™, or elseits conclusion belongsto S.

Proof. Consider a selection function for g(f) that is compatible with the one f@& in
the following sense: if. v C is in gnd'S), then there is some claugév C’ in Ssuch that
L'6 = L andC’6 = C for somed. It is not difficult to argue by Zorn’s lemma that such a
selection function always exists.

We prove that gn(b) is saturated for any such a selection function. To this end, we take
any inferencer with premises in gn@S) such that the rightmost premise ofis larger
W.I.t. >g]nuc|(5) than the conclusion, and prove that theris redundant w.r.t. gn) and

>mn“' - We consider only resolution inferences; the case of factoring is analogous. Let
be the following inference by ground stratified resolution:
RIVCH —R6Ov DI
Co v D6

3)
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By compatibility of the selection function, then indeed there exist claiesC and
=R’ v D (not sharing any variables) i8. SinceR9 = R'9, the atomsR and R’ are
unifiable withc = mguR, R'). The following
RvC =R vD
Co v Do “)

is a valid inference by stratified resolution, because, siBgés(an inference by ground
stratified resolution, ifR is a Q-atom we haveRd > L6 for every literalL in C and
therefore alsdRoy = Loy for every literalL in C, wherey is the substitution such that
oy =6.

Since @) is an inference with both premises$either it is redundant w.r.6 and>"mu,
or else its conclusion belongs ® In the former case3d) is redundant w.r.t. gné®) and
~Mul ‘because it is a ground instance 4f,(and hence3) is also redundant w.r.t. gii8)

and >;“nuc'(s), becaus&;"n“&s) extends~MY!. In the latter case, i.e. wheDo v Do is in
S, we have thaC# v D@ is in gnd'S). Then—R'6 v D@ >g]nuc||(3) C6 v D6 implies that

Co v D9 follows from a smaller W.r.t>g‘nuc'(s) clause in gn@S) than the maximal premise,

namely from itself, and hencéis redundant w.r.t. gnc) and>g‘n“0'ts). O

We call a set of non-ground claussisfiable if their universal closures are satisfiable.
By the Herbrand theorem, a s8tof non-ground clauses is satisfiable if and only if the
set gndS) of all ground instances of clauses $is also. The following theorem is an
immediate consequenceDfieorem 4.%ince, by definition, a s&is saturated if and only
if gnd(S) is also.

Theorem 5.5. Let S be a saturated stratified set of clauses. Then 0 € S whenever Sis
unsatisfiable. [

We now consider stratified resolution derivations as defined in the previous section, but
applied to non-ground clause sets and the non-ground inference system. The only new
notion that is needed is a notion of redundant clause in the non-ground case:

Definition 5.6. LetC be a clause, let be an ordering on ground clauses, and3bt a set
of clauses. Theg is redundant w.r.t. Sand > if all ground instances of are redundant
w.rt.gndS) and>. 0O

We definefair stratified resolution derivationsin the same way as fair ground stratified
resolution derivations, by using stratified resolution inferences instead of ground stratified
resolution inferences.

Theorem5.7. Let &, S, ... be a fair stratified resolution derivation. Then O e §; for
some j if and only if & isunsatisfiable.

Proof. The proof proceeds like the one ©heorem 4.13with an additional lifting argu-
ment similar to the one used in the proofidieorem 5.4Again each clause occurring in
the derivation is a logical consequenceSsf henceld € §j implies thatS is unsatisfi-
able, and again as ifheorem 4.13for the “if” direction, it suffices to prove that the set
S of persistent clauses is saturated. To prove thatgnid saturated, we consider again a
selection function for gnb) that is compatible with the one f@as inTheorem 5.4
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Consider any inference with premises in gn@). We have to show that either (i)
the rightmost premise of is not larger W.r.t>g‘nuc'(s) than the conclusion af or (ii) the

inference is redundant w.r.t. gé®) and >g‘n“&s). We assume that (i) does not hold, and
show (ii). As inTheorem 5.4 is an instance of some non-ground inferen¢eSince the
derivation is fair, there exists son® such that eitherr’ is redundant w.r.tS; and>",

or else the conclusion of’ belongs toS;. But in both cases the conclusionoffollows
from clauses in gn@®;) smaller w.r.t.>"”n”c§S than the rightmost premise af. Each one of
these smaller clauses in gi8j) follows from clauses in gn@) that are again smaller or

equal w.r.t>"" (and hence w.r.t=-"{ .. Therefore, the conclusion af follows from

gndS)
clauses in gnb) that are smaller w.r.&gnn“&s) than the maximal premise af, i.e.x is
redundant w.r.t. gncs) and>mu! O

gnd’S)’

All the observations about deletion of unfolded clauseS@ftion 4.2 of course, also
apply to the non-ground case handled in this section.

5.2. Redundancy and more refined orderings

The previous framework of redundancy is well known to cover most, if not all, practical
notions for the elimination of redundant inferences and clauses. As a simple example,
considerproper subsumption, where a claus€ is properly subsumed by a claugeif
there exists some substitutiersuch thaDo C C. Itis clear thaC is redundant w.r.t. any
clause set containin® and can hence be removed.

But, up to now, for reasons of simplicity, we have considered only an ordering
ground atoms and a version of it for clauses. However, in some redundancy proofs it
is convenient to consider more refined orderings. For instance, subsumption, where one
requires onlyDo C C, cannot be handled by the redundancy notions defined up to now;
for example, the unit claugga) is not redundant by these definitions in the presence of
the unit clause (x).

This can again be solved by well-known techniques (see, for exaBatdymair and
Ganzingey2001 Nieuwenhuis and Rubj@001), which we do not want to treat in detail
here. Let us only mention one possibility: compare ground instaAeesnd B6 of atoms
(or clauses)A and B by an ordering-pajr 0on pairs defined by(A, o) >pair (B, 0) if
either Ac > B or else Ao coincides withB6 and A is an instance oB but not vice
versa. Then adapt the definitions of redundancy accordingly.

6. A calculusfor stratified resolution with redundancies

In this section we formulate a concrete derivation system of stratified resolution with
redundancies in the non-ground case. We will formulate rules on sets of clauses, using the
symbol— to denote derivation steps.

Definition 6.1 (CalculusSRR). The calculus ostratified resolution with redundancies,
denotedSRR consists of the following inference rules.
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1. Positive factoring is the following inference rule:
S— SuU{C}

such thaCC is obtained from a clause &by the positive factoring rule for clauses.
2. Sratified resolution is the following inference rule:

S— SuU{C)

such thatC is obtained from two clauses i by the stratified resolution rule for
clauses upon @-literal.

3. Définition rewriting. Suppos¢—=P Vv C) € S. Suppose also th# v Dy, ..., Pcv Dk
are all definition clauses i8 such thatP; is unifiable withP. Then o

S— (S—{=PVvCHU{(C vV D1)bs,...,(CV Dn)éhn},

where eacly; is a most general unifier d® and P is an inference bylefinition
rewriting.
4. Subsumption andtautology deletion defined as usual. (]

Note that a derivation of definition rewriting combirdsfinition unfolding of Degtyarev
and Voronkov (2000 with deletion of unfolded clauses. The completeness of this
derivation system w.r.t. fair derivations follows from our results.

7. How to select a stratification

Example 3.4hows that a set of clauses may admit several different stratifications. How
can we choose a “good” stratification? When we select a stratification for a given set of
clausesS, we should first find a set of predicatBssuch thatSis Horn w.r.t.?, and then
select a quasi-ordering.

Suppose thap is already chosen so th&tis Horn w.r.t.P. Then we can always use the
stratification in which allP-literals are strictly greater than a@-literals. Unfortunately,
this stratification may not be good enough, since it gives us too little choice for selecting
positive Q-literals. Let us illustrate this for clauses Bkample 1.2 Assume thatP is
{split}. We can use the precedence relation

split >pred deduction >preq conference.list.
This stratification does not allow us to select the liteaiference.list(x) in
—split(x, y, z) v conference_list(x),

while intuitively it should be the right selection.

This observation shows that for a givéhit can be better to use precedence relations
in which Q-literals are as large as possible. Then we will have more options for selecting
positive Q-literals in clauses. lfExample 1.2such a more flexible stratification is based
on the precedence relation

conference_list >pred Split >pred deduction.



A. Degtyarev et al. / Journal of Symbolic Computation 36 (2003) 79-99 97

In general, there is a tradeoff between the siz@&fnd the flexibility of literal selection.
The largerP is, the less choice we have for selecting positBHiterals.

We are planning experiments with the choice of stratification using the theorem prover
Vampire Riazanov and Voronkqw20032).

8. Conclusion

We believe that the SLD-resolution-like definition unfolding approach of stratified
resolution will allow theorem provers to make the search process more goal-oriented for
large classes of problems with the typical admissible kind of (recursive) definitions that can
be stratified. Moreover, we believe that it will be possible to find adequate stratifications
automatically and inexpensively in practice. An implementation of all results exposed in
this paper is currently being developed inside Vampire, and we hope to be able soon to give
statistical evidence of this belief.

Finally, we now briefly mention some open problems associated with stratified
resolution.

1. The standard semantics of stratified logic programs is based on non-monotonic
reasoning. Stratified resolution makes one think of a logic that combines non-
monotonic reasoning with monotonic resolution-based reasoning. Such a logic, its
semantics and ways of reasoning automatically in it, could be investigated. Hence
it might be interesting to investigate a combination of stratified resolution with non-
monotonic logics.

2. Is there any powerful generalization of stratified resolution for logic with eqdality

3. Stratified resolution is different from ordered resolution with selection in that it
allows one to select heads of clauses, even when they are not strictly maximal in
their clauses. Therefore, it may be interesting to see if stratified resolution can lead
to new decision procedures for decidable fragments of predicate calculus.

Another method of proving completeness of stratified resolution was recently proposed
by Harald Ganzinger (personal communications). The idea is to trangfsliterals by
adding an additional argument to them so that the selected literal of every transformed
definition clause becomes strictly greater than any other literal in this clause. For
example, adding additional arguments to the clause v —p(f (x)) results in the clause
p(g(y), X) v =p(y, f(x)). If we use an ordering- on transformedP-literals which first
compares the additional arguments then we hptg(y), x) > —p(y, f(x)). One can
prove that this transformation on clauses preserves satisfiability. Then every inference
in the standard resolution system on the transformed clauses can be simulated by a
stratified resolution inference on the original clauses, thus giving us completeness of
stratified resolution. However, this transformation does not preserve redundancies, such as
subsumption, so we cannot prove completeness of the calculus with redundancies using this
method. Harald Ganzinger also pointed out that his transformation can be used for a simple

4 s pointed out by Harald Ganzinger, the completeness proof should work if equality does not belong to the
setP of defined symbols and all equality literals (as usual) are smaller than non-equality literals.
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implementation of stratified resolution in existing theorem provers since it will only require
modification of the clause form transformation but not of the inference mechnism
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