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Abstract We consider optimization problems of the form (S, cost), where S is a clause

set over Boolean variables x1 . . . xn, with an arbitrary cost function cost : B
n → R, and

the aim is to find a model A of S such that cost(A) is minimized.

Here we study the generation of proofs of optimality in the context of branch-and-

bound procedures for such problems. For this purpose we introduce DPLLBB, an abstract

DPLL-based branch-and-bound algorithm that can model optimization concepts such

as cost-based propagation and cost-based backjumping.

Most, if not all, SAT-related optimization problems are in the scope of DPLLBB. Since

many of the existing approaches for solving these problems can be seen as instances,

DPLLBB allows one to formally reason about them in a simple way and exploit the

enhancements of DPLLBB given here, in particular its uniform method for generating

independently verifiable optimality proofs.

Keywords SAT · optimization · proofs

1 Introduction

An important issue on algorithms for Boolean satisfiability is their ability to provide

proofs of unsatisfiability, so that also negative answers can be verified with a trusted

independent proof checker. Many current SAT solvers provide this feature typically

by writing (with little overhead) a trace file from which a resolution proof can be

reconstructed and checked.

In this paper we address a related topic. We take a very general class of Boolean

optimization problems and consider the problem of computing the best model of a CNF

with respect to a cost function and, additionally, a proof of its optimality. The purpose

of the paper is to provide a general solving framework that is faithful to state-of-the-art

branch-and-bound solvers and where it is simple to reason about them and to generate

optimality proofs. We show how branch-and-bound algorithms can provide proofs with
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little overhead, as in the SAT case. To the best of our knowledge, no existing solvers

offer this feature.

The first contribution of the paper is an abstract DPLL1-like branch-and-bound

algorithm (DPLLBB) that can deal with most, if not all, Boolean optimization problems

considered in the literature. DPLLBB is based on standard abstract DPLL rules and

includes features such as propagation, backjumping, learning or restarts. The essential

difference between classical DPLL and its branch-and-bound counterpart is that the

rules are extended from the usual SAT context to the optimization context by taking

into account the cost function to obtain entailed information. Thus, DPLLBB can model

concepts such as, e.g., cost-based propagation and cost-based backjumping. To exploit

the cost function in the search with these techniques, DPLLBB assumes the existence of

a lower bounding procedure that, additionally to returning a numerical lower bound,

provides a reason for it, i.e., a (presumably short) clause whose violation is a sufficient

condition for the computed lower bound, see [19,21].

The second contribution of the paper is the connection between a DPLLBB execution

and a proof of optimality. We show that each time that DPLLBB backjumps due to a

soft conflict (i.e. the lower bound indicates that it is useless to extend the current

assignment) we can infer a cost-based lemma, which is entailed from the problem. By

recording these lemmas (among others), we can construct a very intuitive optimality

proof.

This work could have been cast into the framework of SAT Modulo Theories (SMT)

with a sequence of increasingly stronger theories [24]. There is already literature on

generating proofs in SMT. For instance, in [7] the generation of unsatisfiable cores for

SMT was analyzed; and in [23], a new formalism for encoding proofs allowing efficient

proof checking was presented. However, the generation of proofs for SMT with theory

strengthening has not been worked out so far, and would in any case obfuscate the

simple concept of proof we have here. Also, we believe that in its current form, the

way we have integrated the concepts of lower bounding and cost-based propagation

and learning is far more useful and accessible to a much wider audience.

This paper is structured as follows. In Section 2 we give some basic notions and

preliminary definitions. In Section 3 the DPLLBB procedure is presented, whereas in

Section 4 we develop the framework for the generation of proof certificates. Section 5

shows several important instances of problems that can be handled with DPLLBB. In

Section 6 we report on the results of a prototypical implementation of the techniques

presented here, which demonstrate the feasibility of the approach. In Section 7 other

optimization-related problems are introduced, together with the corresponding exten-

sions of the framework. Finally Section 8 gives conclusions of this work and points out

directions for future research. Parts of this paper were presented in a short prelimi-

nary form (with less examples and without experiments and proofs) at the SAT’2009

conference [16].

2 Preliminaries

We consider a fixed set of Boolean variables {x1, . . . , xn}. Literals, denoted by the

(subscripted, primed) letter l are elements of the set {x1, . . . , xn,¬x1, . . . ,¬xn}. The

negation of a literal l, written ¬l, denotes ¬x if l is a variable x, and x if l is ¬x.

A clause (denoted by the letters C, D, . . .) is a disjunction of literals l1 ∨ . . . ∨ lm.

1 For consistency with [25] we call it DPLL, although the presented abstract framework
models CDCL SAT Solvers [22] rather than the original DPLL algorithm.
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The empty clause (the disjunction of zero literals) will be noted 2. A (partial truth)

assignment I is a set of literals such that {x,¬x} ⊆ I for no x. An assignment I is

total if {x,¬x} ∩ I 6= ∅ for all x.

A literal l is true in I if l ∈ I , false in I if ¬l ∈ I , and undefined in I otherwise. A

clause C is true in I if at least one of its literals is true in I , false in I if all its literals

are false in I , and undefined in I otherwise. Note that the empty clause is false in every

assignment I . We write I |= l if the literal l is true in I and I |= C if a clause C is true

in I . Sometimes we will write ¬I to denote the clause that is the disjunction of the

negations of the literals in I . Similarly, we write I |= ¬C to indicate that all literals of

a clause C are false in I . A clause set S is true in I if all its clauses are true in I ; if I

is also total, then I is called a total model of S, and we write I |= S.

We consider the following class of problems, which covers a broad spectrum of

instances (see Section 5):

Definition 1 A Boolean optimization problem is a pair (S, cost), where S is a clause

set, cost is a function cost : B
n → R, and the goal is to find a model A of S such that

cost(A) is minimized.

Definition 2 A cost clause is an expression of the form C ∨ c ≥ k where C is a clause

and k ∈ R.

A cost clause C ∨ c ≥ k may be better understood with its equivalent notation

¬C −→ c ≥ k. Its intended meaning is that if C is falsified in a model A of the given

clause set S, then cost(A) is greater than or equal to k (so the lower case c is just a

placeholder meaning something like “the cost of the model”). This is indeed the case

if the cost clause is entailed by (S, cost):

Definition 3 Let (S, cost) be an optimization problem. A cost clause C ∨ c ≥ k is

entailed by (S, cost) if cost(A) ≥ k for every model A of S such that A |= ¬C.

Definition 4 Given an optimization problem (S, cost), a real number k is called a

lower bound for an assignment I if cost(A) ≥ k for every model A of S such that

I ⊆ A.

A lower bounding procedure lb is a procedure that, given an assignment I , returns

a lower bound k, denoted lb(I), and a cost clause of the form C ∨ c ≥ k, called the

lb-reason of the lower bound, such that C ∨ c ≥ k is entailed by (S, cost) and I |= ¬C.

Any procedure that can compute a lower bound k for a given I can be extended

to a lower bounding procedure: it suffices to generate ¬I ∨ c ≥ k as the lb-reason. But

generating short lb-reasons is important for efficiency reasons, and in Section 5 we will

see how this can be done for several classes of lower bounding methods.

3 Abstract Branch and Bound

3.1 DPLLBB Procedure

The DPLLBB procedure is modeled by a transition relation, defined by means of rules

over states.
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Definition 5 A DPLLBB state is a 4-tuple I || S || k || A, where:

I is a sequence of literals representing the current partial assignment,

S is a finite set of classical clauses (i.e. not cost clauses),

k ∈ R ∪ {∞} is a number representing the best-so-far cost,

A is the best-so-far model of S (i.e. cost(A) = k).

Some literals l in I are annotated as decision literals and written ld.

Note that the cost function and the variable set are not part of the states, since

they do not change over time (they are fixed by the context).

Definition 6 The DPLLBB system consists of the following rules:

Decide :

I || S || k || A =⇒ I ld || S || k || A if
˘

l is undefined in I

UnitPropagate :

I || S || k || A =⇒ I l || S || k || A if



C ∨ l ∈ S, I |= ¬C

l is undefined in I

Optimum :

I || S || k || A =⇒ OptimumFound if



C ∈ S, I |= ¬C

no decision literals in I

Backjump :

I ld I ′ || S || k || A =⇒ I l′ || S || k || A if



C∨l′ ∈ S, I |= ¬C

l′ is undefined in I

Learn :

I || S || k || A =⇒ I || S, C || k || A if
˘

(S, cost) entails C ∨ c ≥ k

Forget :

I || S, C || k || A =⇒ I || S || k || A if
˘

(S, cost) entails C ∨ c ≥ k

Restart :

I || S || k || A =⇒ ∅ || S || k || A

Improve :

I || S || k || A =⇒ I || S || k′ || I if
˘

I |= S and cost(I) = k′ < k

As we will see, one can use these rules for finding an optimal solution to a problem

(S, cost) by generating an arbitrary derivation of the form ∅ || S || ∞ || ∅ =⇒ . . .

It will always terminate with . . . =⇒ I || S′ || k || A =⇒ OptimumFound . Then

A is a minimum-cost model for S with cost(A) = k. If S has no models at all, then A

will be ∅ and k =∞.

All the rules except Improve are natural extensions of the Abstract DPLL approach

of [25]. In the following we briefly explain them.

– The Decide rule represents a case split: an undefined literal l is chosen and added

to I , annotated as a decision literal.

– UnitPropagate forces a literal l to be true if there is a clause C ∨ l in S whose part

C is false in I .

– The Optimum rule expresses that if in a state I || S || k || A in S there is a conflicting

clause C (i.e., a clause C with I |= ¬C), and there is no decision literal in I , then

the optimization procedure has terminated, which shows that the best-so-far cost

is optimal.
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– On the other hand, if there is a conflicting clause, and there is at least one decision

literal in I , then one can always find (and Learn) a backjump clause, an entailed

cost clause of the form C ∨ l′ ∨ c ≥ k, such that Backjump using C ∨ l′ applies (see

Lemma 1 below). Good backjump clauses can be found by conflict analysis of the

conflicting clause [22,31], see Example 3.2 below.

– By Learn one can add any entailed cost clause to S. Learned clauses prevent re-

peated work in similar conflicts, which frequently occur in industrial problems

having some regular structure. Notice that when such a clause is learned the c ≥ k

literal is dropped (it is only kept at a meta-level for the generation of optimality

certificates, see Section 4). Intuitively this is justified, since if a cost clause C∨c ≥ k

is entailed by (S, cost), so is C ∨ c ≥ k′ for any k′ ≤ k; but as the best-so-far cost

only decreases in a DPLLBB execution, a cost clause that was entailed at a certain

point of the execution will remain so at any later state I ′ || S′ || k′ || A′ with respect

to k′. Note also that if S |= C then (S, cost) entails C ∨ c ≥ ∞ and thus this Learn

rule extends the usual learning mechanism of modern SAT solvers.

– Since a lemma is aimed at preventing future similar conflicts, it can be removed

using Forget, when such conflicts are not very likely to be found again. In practice

this is done if its activity, that is, how many times it has participated in recent

conflicts, has become low.

– Restart is used to escape from bad search behaviors. The newly learned clauses

will lead the heuristics for Decide to behave differently, and hopefully make DPLLBB

explore the search space in a more compact way.

– Improve updates the cost of the best model found so far. Having a stronger best-

so-far cost allows one to better exploit non-trivial optimization concepts, namely

cost-based backjumping and cost-based propagation.

In a state I || S || k || A, cost-based backjumping can be applied whenever lb(I) ≥ k.

This is done as follows: the lower bounding procedure can provide a lb-reason

C ∨ c ≥ k, and, as explained above, given this conflicting clause, Backjump applies

(if there is some decision literal in I ; otherwise Optimum is applicable).

A cost-based propagation of a literal l that is undefined in I can be made if

lb(I ¬l) ≥ k. Then the corresponding lb-reason C ∨ c ≥ k can be learned and

used to UnitPropagate l (since I ¬l |= ¬C). A form of cost-based propagation was

also explained in [30]; for linear cost functions, cf. the “limit lower bound theorem”

of [9].

The potential of the previous rules will be illustrated in Section 3.2. The correctness

of DPLLBB is summarized in Lemma 1 and Theorem 1.

Lemma 1 Let (S, cost) be an optimization problem, assume

∅ || S || ∞ || ∅ =⇒ . . . =⇒ I || S′ || k || A

and that there is some decision literal in I and there exists a cost clause C ∨ c ≥ k

entailed by (S′, cost) such that I |= ¬C.

Then I is of the form I ′ ld I ′′ and there exists a backjump clause, i.e., a cost clause

of the form C′ ∨ l′ ∨ c ≥ k that is entailed by (S′, cost) and such that I ′ |= ¬C′ and l′

is undefined in I ′.

Definition 7 A derivation ∅ || S || ∞ || ∅ =⇒ . . . is called progressive if:

–it contains only finitely many consecutive Learn or Forget steps, and
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–a rule is applied to any state to which some rule is applicable, and

–Restart is applied with increasing periodicity (i.e., the number of rule steps between

two Restarts increases along the derivation).

Theorem 1 Let (S, cost) be an optimization problem, and consider a progressive deriva-

tion with initial state ∅ || S || ∞ || ∅. Then this derivation is finite and of the form

∅ || S || ∞ || ∅ =⇒ . . . =⇒ I || S′ || k || A =⇒ OptimumFound

where A is a minimum-cost model for S with cost(A) = k. In particular, S has no

models if, and only if, k =∞ and A = ∅.

Of course the previous formal result provides more freedom in the strategy for

applying the rules than needed. Practical implementations will only generate (progres-

sive) derivations of a certain kind. For instance, UnitPropagate is typically applied with

the highest priority, at each conflict the backjump clause is learned, and from time to

time a certain portion of the learned clauses is forgotten (e.g., the 50% of less active

ones). Restarts are applied with increasing periodicity by, e.g., restarting after a certain

number N of conflicts and then increasing N .

In [25] detailed proofs are given (in about five pages) of a result similar to Theo-

rem 1 for the Abstract DPLL approach that handles pure SAT, without optimization.

Since the generalization of these proofs for Lemma 1 and for Theorem 1 is rather

straightforward, but considerably longer and more tedious, here we sketch the main

ideas of [25] and refer to the article for more details.

First several needed invariants about the states (assignments and clause sets) in

derivations are proved by simple induction on the derivation length: assignments are

indeed assignments (no literal will appear more than once, a literal and its negation

never appear simultaneously), no new variables are introduced, the clause sets remain

logically equivalent along derivations, and for each prefix of the assignment all literals

are entailed by the decision literals and the clauses.

Using these invariants, a lemma similar to Lemma 1 is proved by showing how, for

any state in which there is a conflicting clause and at least one decision literal, one

can construct a backjump clause, i.e., an entailed clause such that Backjump using it

applies. From this, it rather easily follows that any final state different from FailState

(a tag similar to OptimumFound in SAT) has an assignment that is i) total, ii) that

satisfies all clauses of the final clause set, and iii) is also a model of the initial clause

set.

Termination of the derivations is proved using the following intuition. Consider a

state more advanced if it has more information (literals) depending on less decisions,

i.e., assignment I is more advanced than assignment I ′ if the prefix of I before its first

decision literal is longer than in I ′, or it is equally long but this holds for the second

decision literal, etc. This is the reason why an application of Backjump rule represents

progress in the search: it adds an additional literal somewhere before the last decision.

This idea leads to a well-founded lexicographic ordering on the partial assignments,

and it is not hard to see that all rules make progress in this sense, except Learn and

Forget (which do not change the assignment and hence it suffices to forbid infinite

subsequences of them), and Restart (which therefore needs the increasing periodicity

requirement).
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3.2 DPLLBB Example

Consider the clause set S defined over x1, . . . x6 (denoting ¬xi by x̄i):

1. x2 ∨ x4 5. x1 ∨ x3 ∨ x̄6

2. x2 ∨ x̄5 6. x̄1 ∨ x3 ∨ x̄6

3. x4 ∨ x̄5 7. x2 ∨ x3 ∨ x5 ∨ x̄6

4. x5 ∨ x6 8. x2 ∨ x̄3 ∨ x5 ∨ x̄6

where cost(x1, . . . x6) = 1x1 + 2x2 + . . . + 6x6. We start a DPLLBB derivation, first

deciding x6 to be false (setting high-cost variables to false can be a good heuristic):

∅ || S || ∞ || ∅

=⇒Decide x̄d
6 || S || ∞ || ∅

=⇒UnitPropagate x̄d
6x5 || S || ∞ || ∅

=⇒UnitPropagate x̄d
6x5x2 || S || ∞ || ∅

=⇒UnitPropagate x̄d
6x5x2x4 || S || ∞ || ∅

=⇒Decide x̄d
6x5x2x4x̄d

3 || S || ∞ || ∅

=⇒Decide x̄d
6x5x2x4x̄d

3x̄d
1 || S || ∞ || ∅

Now, since x̄6x5x2x4x̄3x̄1 is a model of S of cost 11 < ∞, we can apply Improve and

the corresponding lb-reason, e.g., x̄2 ∨ x̄4 ∨ x̄5 ∨ c ≥ 11, then becomes a conflicting

clause. Intuitively, it expresses that any assignment where x2, x4 and x5 are set to

true must have cost at least 11. Now, a conflict analysis procedure starting from this

conflicting clause can be used to compute a backjump clause. This is done by successive

resolution steps on the conflicting clause, resolving away the literals x̄4 and x̄2 in the

reverse order their negations were propagated, with the respective clauses that caused

the propagations:
x̄2 ∨ x̄4 ∨ x̄5 ∨ c ≥ 11 x4 ∨ x̄5

x̄2 ∨ x̄5 ∨ c ≥ 11 x2 ∨ x̄5

x̄5 ∨ c ≥ 11

until a single literal of the current decision level (called the 1UIP) is left, yielding

x̄5 ∨ c ≥ 11. Learning the clause C = x̄5 allows one to jump from decision level 3 back

to decision level 0 and assert x5. All this can be modeled as follows:

. . . =⇒Improve x̄d
6x5x2x4x̄

d
3x̄d

1 || S || 11 || x̄6x5x2x4x̄3x̄1

=⇒Learn x̄d
6x5x2x4x̄

d
3x̄d

1 || S, C || 11 || x̄6x5x2x4x̄3x̄1

=⇒Backjump x̄5 || S, C || 11 || x̄6x5x2x4x̄3x̄1

Now the derivation could continue, e.g., as follows:

. . . =⇒UnitPropagate x̄5x6 || S, C || 11 || x̄6x5x2x4x̄3x̄1

=⇒Decide x̄5x6x̄d
4 || S, C || 11 || x̄6x5x2x4x̄3x̄1

=⇒UnitPropagate x̄5x6x̄d
4x2 || S, C || 11 || x̄6x5x2x4x̄3x̄1

Now notice that x3 is not assigned, and that since x2 and x6 are true in the current

partial assignment any assignment strictly improving the best-so-far cost 11 must assign

x3 to false. As explained above, this cost-based propagation can be modeled as follows.

The lower bounding procedure expresses the fact that any solution setting x2, x3 and

x6 to true has cost no better than 11 by means of the lb-reason x̄2 ∨ x̄3 ∨ x̄6 ∨ c ≥ 11.
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This is an entailed cost clause that is learned as C′ = x̄2 ∨ x̄3 ∨ x̄6. Then literal x̄3 is

propagated.

. . . =⇒Learn x̄5x6x̄d
4x2 || S, C, C′ || 11 || x̄6x5x2x4x̄3x̄1

=⇒UnitPropagate x̄5x6x̄d
4x2x̄3 || S, C, C′ || 11 || x̄6x5x2x4x̄3x̄1

If we now UnitPropagate x1 with clause 5, clause 6 becomes conflicting. As usual, a

backjump clause is computed by doing conflict analysis from the falsified clause, using

among others the clause C′ that was learned to propagate x̄3:

x1 ∨ x3 ∨ x̄6 x̄1 ∨ x3 ∨ x̄6

x3 ∨ x̄6 x̄2 ∨ x̄3 ∨ x̄6 ∨ c ≥ 11

x̄2 ∨ x̄6 ∨ c ≥ 11

Learning C′′ = x̄2 ∨ x̄6 allows one to jump back to decision level 0 asserting x̄2.

. . . =⇒UnitPropagate x̄5x6x̄
d
4x2x̄3x1 || S, C, C′ || 11 || x̄6x5x2x4x̄3x̄1

=⇒Learn x̄5x6x̄
d
4x2x̄3x1 || S, C, C′, C′′ || 11 || x̄6x5x2x4x̄3x̄1

=⇒Backjump x̄5x6x̄2 || S, C, C′, C′′ || 11 || x̄6x5x2x4x̄3x̄1

Finally after unit propagating with clause 7 one gets a conflict with clause 8, and as

no decision literals are left, the optimization procedure terminates:

. . . =⇒UnitPropagate x̄5x6x̄2x3 || S, C, C′, C′′ || 11 || x̄6x5x2x4x̄3x̄1

=⇒Optimum OptimumFound 2

4 Certificates of Optimality

In the following, we show how from a certain trace of a DPLLBB execution one can extract

a formal proof of optimality in a proof system asserting “A is an optimal model of S

with respect to cost”. Our proof system relies on the following type of resolution over

cost clauses,

Definition 8 The Cost Resolution rule is the following inference rule with two cost

clauses as premises and another cost clause as conclusion:

x ∨ C ∨ c ≥ k ¬x ∨ D ∨ c ≥ k′

C ∨D ∨ c ≥ min(k, k′)
Cost Resolution

Cost Resolution behaves like classical resolution, except in that it further exploits

the fact that c ≥ k ∨ c ≥ k′ is equivalent to c ≥ min(k, k′). In what follows, when

needed a clause C from S will be seen as the trivially entailed cost clause C ∨ c ≥ ∞.

Theorem 2 Cost Resolution is correct, that is, if x ∨ C ∨ c ≥ k and ¬x ∨ D ∨ c ≥ k′

are cost clauses entailed by an optimization problem (S, cost), then C ∨ D ∨ c ≥
min(k, k′) is also entailed by (S, cost).

Proof Let x ∨ C ∨ c ≥ k and ¬x ∨ D ∨ c ≥ k′ be cost clauses entailed by an

optimization problem (S, cost). In order to prove that C ∨ D ∨ c ≥ min(k, k′)

is also entailed by (S, cost), let A be a model of S such that A |= ¬(C ∨ D), i.e.,

A |= ¬C ∧ ¬D. Thus A |= ¬C and A |= ¬D. Now let us distinguish two cases. If

A |= ¬x, then A |= ¬x ∧ ¬C, i.e., A |= ¬(x ∨ C). Since x ∨ C ∨ c ≥ k is entailed

by (S, cost), we have that cost(A) ≥ k. Similarly, if A |= x, then A |= x ∧ ¬D, i.e.,

A |= ¬(¬x∨D). As ¬x ∨ D ∨ c ≥ k′ is entailed by (S, cost), finally cost(A) ≥ k′. In

any case cost(A) ≥ min(k, k′).
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Definition 9 Let S be a set of cost clauses and let C be a cost clause. A Cost Reso-

lution proof of C from S is a binary tree where:

– each node is (labeled by) a cost clause

– the root is C

– the leaves are clauses from S

– every non-leaf node has two parents from which it can be obtained in one Cost

Resolution step.

Together with a model A such that cost(A) = k, a k-lower-bound certificate as we

define now gives a precise k-optimality certificate for (S, cost):

Definition 10 A k-lower-bound certificate for an optimization problem (S, cost) con-

sists of the following three components:

1. a set of cost clauses S′

2. a Cost-Resolution Proof of the clause c ≥ k from S ∪ S′

3. for each cost clause in S′, a proof of entailment of it from (S, cost)

As we will see, the set of cost clauses S′ of component 1. of this definition cor-

responds to the different lb-reasons generated by the lower bounding procedure that

may have been used along the DPLLBB derivation. If the lower bounding procedure is

trusted, i.e., it is assumed that all cost clauses of S′ are entailed, a simple independent

k-lower-bound certificate checker would only need to check the cost resolution proof.

Then, since by correctness of Cost Resolution the root c ≥ k of a Cost Resolution proof

is entailed if the leaves are entailed, a k-lower-bound certificate guarantees that c ≥ k

is indeed entailed by (S ∪ S′, cost), and the entailment of c ≥ k by definition means

that “cost(A) ≥ k for every model A of S”.

If one cannot trust the lower bounding procedure, then also component 3. is needed.

The notion of a “proof of entailment” from (S, cost) for each cost clause in S′ of course

necessarily depends on the particular lower bounding procedure used, and an inde-

pendent optimality proof checker should hence have some knowledge of the deductive

process used by the lower bounding procedure. This aspect is addressed in detail in

Section 5.

4.1 Generation of k-lower-bound certificates

Each time an lb-reason is generated and used in a DPLLBB execution, it is written to

a file which we will call S′ as in component 1. of the k-lower-bound certificate. Now

observe that any execution of DPLLBB terminates with a step of Optimum, i.e., with a

conflict at decision level 0. From a standard SAT solver point of view, this means that

S∪S′ forms an unsatisfiable SAT instance and a refutation proof for this contradiction

can be reconstructed as follows (cf. [32] for details). All clauses in S and in S′ get a

unique identifier (ID). Each time a backjump step takes place, the backjump clause

also gets a (unique) ID and a line ID ID1 ... IDm is written to a trace file, where ID1

... IDm are the ID’s of all parent clauses in the conflict analysis process generating

this backjump clause. A last line is written when the conflict at decision level 0 is

detected for the parents of this last conflict analysis which produces the empty clause.

By processing backwards this trace file, composing all the component resolution proofs
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from each conflict analysis, a resolution proof from S ∪ S′ of the last derived clause,

i.e., the empty clause, can be constructed.

If we recover the cost literals of cost clauses (recall that the Learn rule of DPLLBB
drops the cost literal) in the refutation proof, it turns out that it becomes a k-lower-

bound certificate where k is the optimum of the problem. The reason is that in a Cost

Resolution proof the cost literal of the root clause is the minimum among the cost

literals of the leaf clauses. The following example illustrates the whole process.

Example 1 For the DPLLBB derivation of Section 3.2, the initial clauses have ID’s 1-8,

the set S′ will contain the lb-reasons x̄2∨ x̄4∨ x̄5∨c ≥ 11 and x̄2∨ x̄3∨ x̄6∨c ≥ 11 with

ID’s 9 and 10 respectively. The two backjump clauses x̄5 ∨ c ≥ 11 and x̄2 ∨ x̄6 ∨ c ≥ 11

and the final “empty” clause c ≥ 11 get ID’s 11,12,13 respectively, and the trace file

will be:
11 ← 2, 3, 9

12 ← 5, 6, 10

13 ← 4, 7, 8, 11, 12

By processing this file backwards it is straightforward to produce a Cost Resolution

proof of c ≥ 11. This is done below, where for lack of space the proof has been split

in two at the clause marked with (∗), and clauses have been labeled with their ID’s

for the sake of clarity. This proof, together with each lb-reason and its entailment

certificate, will constitute an 11-lower-bound certificate. The optimality certificate is

finally obtained with the addition of the model x̄6x5x2x4x̄3x̄1, which has cost 11.

7:x2 ∨ x3 ∨ x5 ∨ x̄6 8:x2 ∨ x̄3 ∨ x5 ∨ x̄6

x2 ∨ x5 ∨ x̄6

5: x1 ∨ x3 ∨ x̄6 6: x̄1 ∨ x3 ∨ x̄6

x3 ∨ x̄6 10: x̄2 ∨ x̄3 ∨ x̄6 ∨ c ≥ 11

12: x̄2 ∨ x̄6 ∨ c ≥ 11

x5 ∨ x̄6 ∨ c ≥ 11 (∗)

4:x5 ∨ x6 x5 ∨ x̄6 ∨ c ≥ 11 (∗)

x5 ∨ c ≥ 11

9: x̄2 ∨ x̄4 ∨ x̄5 ∨ c ≥ 11 3:x4 ∨ x̄5

x̄2 ∨ x̄5 ∨ c ≥ 11 2:x2 ∨ x̄5

11: x̄5 ∨ c ≥ 11

13: c ≥ 11 ⊓⊔

5 Instances of Lower Bounding Procedures

In this section we show, for different classes of cost functions of increasing generality,

several lower bounding procedures together with ways for proving the entailment from

(S, cost) for any lb-reason C ∨ c ≥ k they generate.

Of course a general approach for this is to provide a list of all the models A1, . . . , Am

of S∧¬C, checking that each one of them has cost at least k, together with a resolution

refutation of S∧¬C∧¬A1∧· · · ¬Am, which shows that these A1, . . . , Am are indeed all

the models of S∧¬C. But this will usually not be feasible in practice. Therefore, we now

describe some lower bounding procedures producing simple and compact certificates

that can be understood by ad-hoc proof checkers.

It is known [5] that every function cost : B
n → R has a unique multilinear polyno-

mial representation of the form,

f(x1, . . . , xn) =
X

Y ⊆X

cY

Y

xj∈Y

xj
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where X = {x1, . . . , xn} and cY are real coefficients. Multilinear polynomials can

also be represented as posiforms, i.e. multilinear polynomial expressions with positive

coefficients depending on the set of literals,

φ(x1, . . . , xn) =
X

T⊆L

aT

Y

u∈T

u

where L is the set of literals (¬x =def (1 − x)) and aT ≥ 0 are nonnegative real

coefficients. Note that if {u,¬u} ⊆ T for some u ∈ L, then they cancel away the term
Q

u∈T u and it can be omitted. The size of the largest T ⊆ L for which aT 6= 0 is called

the degree of the posiform.

5.1 Linear Cost Functions

A very important class of optimization problems is that with linear cost functions, i.e.,

of the form cost(x1, . . . , xn) = a0 +
Pn

i=1
aixi for certain ai ∈ R. Linear cost functions

can be translated into linear posiforms φ(x1, . . . , xn) = c0 +
Pn

i=1
cixi where for i > 0

the coefficient ci, called the cost of variable xi, is now non-negative.

Linear Boolean optimization has many applications, amongst others Automatic

Test Pattern Generation [10], FPGA Routing, Electronic Design Automation, Graph

Coloring, Artificial Intelligence Planning [13] and Electronic Commerce [27]. In partic-

ular the case where ci = 1 for all 1 ≤ i ≤ n, called the Min-Ones problem, appears

naturally in the optimization versions of important well-known NP-complete problems

such as the maximum clique or the minimum hitting set problems.

The problem of computing lower bounds for linear optimization problems in a

branch-and-bound setting has been widely studied in the literature. Here we consider

the two main techniques for that purpose: independent sets and linear programming.

5.1.1 Independent Sets

Given a partial assignment I and a clause C, let undefI(C) denote the set of literals

in C which are undefined in I , i.e., undefI(C) = {l ∈ C | l 6∈ I and ¬l 6∈ I}. A set of

clauses M is an independent set for I if:

– for all C ∈M , neither I |= C nor I |= ¬C (note that this implies undefI(C) 6= ∅);
– for all C ∈M , undefI(C) only contains positive literals;

– for all C, C′ ∈M such that C 6= C′, undefI(C) ∩ undefI (C′) = ∅.

If M is an independent set for I , any total assignment extending I and satisfying M

has cost at least

K = c0 +
X

xi∈I

ci +
X

C∈M

min{cj | xj ∈ C and ¬xj 6∈ I}

since satisfying each clause C of M will require to add the minimum cost of the positive

non-false (in I) literals in C. Independent sets have been used in e.g., [8,20]. In [11]

they are precomputed in order to speed up the actual branch-and-bound procedure.

In this case the lower bounding procedure generates the lb-reason ¬I ′ ∨ c ≥ K,

where I ′ ⊆ I contains:

– the positive literals in I with non-null cost;
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– the positive literals whose negations appear in M (which belong to I); and

– the negative literals ¬xi ∈ I such that xi ∈ C for some C ∈ M and ci <

min{cj | xj ∈ C and ¬xj 6∈ I}.

– the negative literals ¬xi ∈ I such that there exist C, C′ ∈ M satisfying C 6= C′

and xi ∈ C ∩ C′.

For this lower bounding procedure a proof of entailment of the lb-reason must of course

contain the independent set M itself. Then the proof checker can check that M ⊆ S,

that M is indeed independent for I and that K ≥ k.

Example 2 Consider the clause set S = {x1∨x3∨x5, x2∨x4∨x5∨¬x6, ¬x1∨¬x2 },

and the function cost(x1, . . . , x6) =
P6

i=1
i ·xi. We have M = {x1 ∨x3∨x5, x2 ∨x4 ∨

x5 ∨ ¬x6 } is independent for the partial assignment I = {¬x5, x6}. The lower bound

is 6 + min(1, 3) + min(2, 4) = 9, and the lb-reason x5 ∨ ¬x6 ∨ c ≥ 9 is obtained. ⊓⊔

5.1.2 Linear Programming

This approach for computing lower bounds [18,17] relies on the fact that linear Boolean

optimization is a particular case of 0-1 Integer Linear Programming. Indeed, taking

into account that ¬x = 1− x for any Boolean variable x, such a Boolean optimization

problem can be transformed into an integer program by transforming each clause C

into the linear constraint
P

l∈C l ≥ 1. The current partial assignment I is encoded by

imposing additional constraints x = 1 if x ∈ I , x = 0 if ¬x ∈ I . Then a lower bound can

be computed by dropping the integrality condition and solving the resulting relaxation

in the rationals with an LP solver.

If K is the lower bound obtained after solving the relaxation, an lb-reason of the

form ¬I ′ ∨ c ≥ K where I ′ ⊆ I can be computed using an exact optimal dual solution

of multipliers [28]. Namely, for each positive literal x ∈ I , if the constraint x ≥ 1 has

a non-null multiplier in the dual solution, then x is included in I ′. Similarly, for each

negative literal ¬x ∈ I , if the constraint x ≤ 0 has a non-null multiplier in the dual

solution, then ¬x is included in I ′.

Notice that in the simplex method, which is the most common algorithm for solving

linear programs, an optimal dual solution is produced as a byproduct if the optimum

is found. Thus an exact optimal dual solution can be obtained by means of an exact

simplex-based LP solver [1], or also by recomputing the optimal dual solution in exact

arithmetic using the optimal configuration of basic and non-basic variables produced

by an inexact solver [14].

As for a proof of entailment of the computed lb-reason, the dual solution itself can

be used for that purpose, as it proves the optimality of K.

Example 3 Consider again the clause set, the cost function and the partial assignment

as in Example 2. In this case the linear program is

min x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6

x1 + x3 + x5 ≥ 1

x2 + x4 + x5 − x6 ≥ 0

−x1 − x2 ≥ −1

x5 = 0

x6 = 1

0 ≤ x1, x2, x3, x4 ≤ 1



13

whose optimum is 11. An optimal dual solution is (3, 4, 2,−2, 10), and a proof of opti-

mality of the lower bound is:

x1 +2 x2 +3 x3 +4 x4 +5 x5 +6 x6 −11 =

+ 3 ( x1 + x3 + x5 −1 )

+ 4 ( x2 + x4 + x5 − x6 )

+ 2 ( − x1 − x2 +1 )

− 2 x5

+ 10 ( x6 −1 )

This proves that x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≥ 11 for all x1, x2, x3, x4, x5, x6

such that x1 + x3 +x5 ≥ 1, x2 + x4 +x5− x6 ≥ 0, −x1−x2 ≥ −1, x5 ≤ 0 and x6 ≥ 1,

and so can be used as a proof of entailment of the lb-reason x5 ∨ ¬x6 ∨ c ≥ 11 (notice

that none of the literals of the assignment is dropped in the lb-reason since both x5 ≤ 0

and x6 ≥ 1 are used). ⊓⊔

Example 4 Consider the clause set S = { ¬x1 ∨ x2 ∨ x3, ¬x1 ∨ ¬x2 ∨ ¬x3 }, the cost

function cost(x1, x2, x3) = x2 + x3 and the partial assignment I = {x1, x2,¬x3}. The

corresponding relaxation is

min x2 + x3

−x1 + x2 + x3 ≥ 0

−x1 − x2 − x3 ≥ −2

x1 = 1

x2 = 1

x3 = 0

In this case the minimum is 1, as proved by the optimal dual solution (1, 0, 1, 0, 0):

x2 + x3 −1 =

+ 1 ( − x1 + x2 + x3 )

+ 1 ( x1 −1 )

This shows that x2 + x3 ≥ 1 for all x1, x2, x3 such that −x1 + x2 + x3 ≥ 0 and

x1 ≥ 1. Thus an lb-reason for the lower bound 1 is ¬x1 ∨ c ≥ 1, and the above proof

is a certificate. Note that this lb-reason is shorter than ¬x1 ∨ ¬x2 ∨ x3 ∨ c ≥ 1, which

is the clause obtained by taking the literals of the partial assignment that evaluate to

0 in the active constraints of the optimal solution [21]. ⊓⊔

5.2 Quadratic Cost Functions

Another important class of optimization problems is that of quadratic cost functions,

i.e., of the form cost(x1, . . . , xn) =
Pn

i=1
cixi +

P

1≤i<j≤n cijxixj . Quadratic cost

functions can be translated into quadratic posiform such as,

φ(x1, . . . , xn) = a0 +
X

u∈L

auu +
X

u,v∈L

auvuv
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where, as before, a0, au and auv are positive coefficients2. The problem of computing

lower bounds for quadratic posiforms has also attracted a lot of attention, especially

in the Operations Research field. Here we consider the most widely used technique,

roof-duality bound [12], and its efficient flow-based computation [5].

Let us first introduce an additional dummy variable x0 for which we will always

assume value 1. Using this new variable, we can rewrite the previous posiform in its

homogeneous representation (i.e., without linear terms),

φ(x0, x1, . . . , xn)− a0 =
X

u,v∈L′

auvuv

The set L′ = L ∪ {x0,¬x0} is the new set of literals. The new coefficients are defined

as follows: ax0v = av and ax̄0v = 0.

From the previous posiform, we obtain a capacitated network Gφ as follows. For

each literal in L′ there is a node in Gφ. For each non-zero coefficient auv there are

two arcs (u,¬v) and (v,¬u). The capacity of arc (u, v) is 1

2
auv̄. Observe that this

network is reminiscent of the so-called implication graph defined for 2-SAT formulas

[4]. The connection becomes clear if we think of the binary terms auvuv as binary

clauses ¬u ∨ ¬v.

Let ϕ be a maximum feasible flow of Gφ from source x0 to sink ¬x0. The value of

ϕ (i.e., the amount of flow departing from the source or, equivalently, arriving to the

sink) is the so-called roof-dual lower bound of the posiform optimum. The intuition

behind this lower bound is that each path from the source to the sink reflects a set of

terms in the posiform that cannot be simultaneously assigned without incurring in a

positive cost.

Consider now a branch and bound execution. Let I be a partial assignment and

let φI denote the posiform obtained when the variables defined by I are accordingly

instantiated in φ. We say that a literal l ∈ I is relevant with respect to φ if it appears

in φ.

Let GφI
be the corresponding capacitated network and let K be the value of a

maximum flow of GφI
, which is a lower bound of φI . In this case, the lower bounding

procedure generates the lb-reason ¬I ′ ∨ c ≥ K, where I ′ ⊆ I contains those literals in

I that are relevant with respect to φ.

For this lower bounding procedure a proof of entailment of the lb-reason is the

maximal flow itself. The proof checker can check that the maximal flow is indeed a

flow of Gφ′

I
and that its value is K.

Example 5 Consider the cost function cost(x1, . . . , x5) = x1 +x2 +x4−x1x2 +x1x3−

x1x4 − x2x3 + x2x5. Its equivalent posiform is φ(x1, . . . , x5) = x1x̄2 + x1x3 + x̄1x4 +

x2x̄3 + x2x5. Let I = {x4, x̄5}. Note that x̄5 is irrelevant with respect to the posiform.

Then φI(x1, x2, x3) = x̄1 + x1x̄2 + x1x3 + x2x̄3. Its homogeneous representation is

φI(x0, x1, x2, x3) = x0x̄1 +x1x̄2 +x1x3 +x2x̄3 and the associated capacitated network

GφI
,

2 The transformation is achieved by replacing each negative quadratic term cijxixj by
cijxi − cijxix̄j and subsequently each negative linear term cixi by ci − cix̄i.
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x1

x2

x3

¬x2

¬x3

¬x1

¬x0x0

All capacities are 0.5 and are omitted in the previous drawing. It is easy to check

that there are only two paths from x0 to ¬x0. Then the possible maximum flows

can only go along these two paths and have cost 0.5. Consequently, the roof-dual

bound is 0.5. In this particular case we can do slightly better and give the bound

⌈0.5⌉ = 1 because all the coefficients of the cost function are integers and therefore it

always returns integer values. The lower bounding procedure generates the lb-reason

¬x4 ∨ c ≥ 1. ⊓⊔

5.3 Cost Functions of Arbitrary Degree

In this subsection we consider the most general case of cost functions being multilinear

polynomials of arbitrary degree which, in turn, can always be represented as posiforms

of arbitrary degree.

Our first observation is that this problem is equivalent to (partial weighted) Max-

SAT, where the cost function is defined by a set of so-called soft clauses C ∈ S′ with a

weight function ωC : S′ → R. Then the cost of a total assignment A is the sum of the

weights of the clauses in S′ that are false in A. It is easy to realize that similar costs

can be obtained with the following posiform,

φ(x1, . . . , xn) =
X

C∈S′

(wC

Y

l∈C

¬l)

Note that S′ is disjoint from the (possibly empty) set of clauses S, which are called

hard clauses in this context. Thus, the corresponding optimization problem is (S, φ).

Max-SAT has many applications, among others Probabilistic Reasoning [26], Fre-

quency Assignment [6], Computer Vision, Machine Learning and Pattern Recognition

(see the introduction of [29]).

Note that Max-SAT can be expressed as a linear optimization problem by adding slack

variables to soft clauses and taking the weighted sum of these variables as the cost

function [2]. However, this translation is normally impractical, making the SAT solver

extremely slow, since, e.g., it hinders the application of unit propagation [3].

Most of the research in recent years in the Max-SAT community has been devoted

to the computation of good quality lower bounds to be used within a branch-and-

bound setting. As shown in [15], most of these lower bounding procedures can be
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seen as limited forms of Max-resolution (see below). Since Max-resolution is sound,

theoretically one can in fact use it to certify optimality in any Max-SAT problem. But

the growth in the number of clauses makes this impractical except for small problems.

However, one can use it for the proof of entailment for individual lb-reasons.

For simplicity, we show here Max-resolution for soft clauses of the form (l1∨ l2, w),

where w denotes the weight:

(x ∨ a, u) (¬x ∨ b, v)

(a ∨ b, m)(x ∨ a, u −m)(¬x ∨ b, v −m)(x ∨ a ∨ ¬b, m)(¬x ∨ b ∨ ¬a, m)

where m = min(u, v) and the conclusions replace the premises instead of being added

to the clause set.

Example 6 Consider a Max-SAT problem without hard clauses and where soft clauses

are S′ = { (x1∨x2∨x3, 1), (x1∨¬x2∨x3, 2), (¬x1∨x2∨x3, 3), (¬x1∨¬x2∨x3, 4) }.
Given the partial assignment I = {¬x3, x4}, by means of the following steps of Max-

resolution

(x1 ∨ x2 ∨ x3, 1) (x1 ∨ ¬x2 ∨ x3, 2)
....

(x1 ∨ x3, 1)

(¬x1 ∨ x2 ∨ x3, 3) (¬x1 ∨ ¬x2 ∨ x3, 4)
....

(¬x1 ∨ x3, 3)

(x3, 1)

one gets clause x3 with weight 1. Taking into account the partial assignment I =

{¬x3, x4}, this clause implies that 1 is a lower bound and an lb-reason is ¬x3 ∨ c ≥ 1.

Moreover, the proof of Max-resolution above proves the entailment of the lb-reason. ⊓⊔

6 Experimental Evaluation

The goal of this section is to provide empirical evidence of the feasibility of the ap-

proach for certifying Boolean optimization presented in this paper. More specifically,

our results below indicate that the overhead of proof producing is only a small fraction

of the solving time, and that at worst proof checking can be carried out in an amount

of time comparable to the solving time.

In this experimental assessment we have focused on a particular kind of cost func-

tions and a concrete method for obtaining lower bounds. Namely, we have addressed

linear optimization problems by using LP-based lower bounding; see Section 5.1.2. We

have implemented a proof-producing Boolean optimizer by equipping a proof-producing

SAT solver with optimization capabilities by means of the LP solver CPLEX [14]. We

have also developed the infrastructure for checking the certificates generated by the

Boolean optimizer:

1. the tool TraceCheck3, which reproduces the Cost Resolution proof from the trace

file, see Section 4.1;

2. a program that, given the trace file, identifies which clauses appear in the Cost

Resolution proof and checks that (i) only original clauses and lb-reasons appear,

and (ii) the lb-reason with the best cost appears;

3 Available at http://fmv.jku.at/tracecheck
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3. a lower bound certificate checker, which ensures that lb-reasons are entailed.

All items in the above list have been implemented on our own except for the

first. In particular, the lower bound certificate checker was needed because we decided

not to trust CPLEX: as explained in Section 5.1.2, optimal dual solutions are used for

generating lb-reasons, and since CPLEX is implemented with floating-point arithmetic,

these dual solutions might be subject to inaccuracies. The lower bound certificate

checker recomputes the exact optimal dual solution from the optimal configuration of

basic and non-basic variables produced by CPLEX, and using those multipliers checks

that the lb-reasons are entailed; see Examples 4 and 5.

The benchmarks for the experiments reported here come from the family “logic-

synthesis” of the INDUSTRIAL, OPT-SMALLINT category of the Pseudo-Boolean

Evaluation 2006 4. These instances were chosen as it was known that LP-based lower

bounding was effective on them [18,17].

Figure 1 shows the results of our experiments. The measurements were performed

on a PC with an Intel Pentium 4 CPU clocked at 3.4 GHz, equipped with 1.5 GB

of RAM and running Ubuntu Linux. The timeout was set to 1800 seconds, the same

as in the Pseudo Boolean Evaluations. The description of the columns is as follows.

The first column (Name) shows the name of each instance. The second column (S)

reports on solving time with proof production disabled, while the third column (P)

shows the difference between solving time with and without proof production, that is,

the overhead of proof production. The fourth column (%P/S) shows the percentage of

this overhead over solving time. The rest of the columns measure the cost of checking

the certificates. The fifth (R) and sixth (LB) columns are the time spent on the Cost

Resolution proof (items 1 and 2 in the list above) and checking lower bound certificates

(item 3), respectively. The seventh column (C) is the total time spent on checking, i.e.,

the addition of the previous two columns. Finally the last column (%C/S) shows the

percentage of time spent on checking over time spent on solving. Timings are measured

in seconds.

Interestingly enough, for all those instances that were solved (without proof pro-

duction) within the time limit the solutions could be checked to be optimal, and this

was done within the same time limit too (instances that timed out at solving stage

have not been shown in Figure 1). Moreover, except for easy problems that were solved

in less than 1 second, the overhead of proof producing was at most 25% of the solv-

ing time. As regards proof checking, on average the percentage of checking time over

solving time is about 50%, and on most cases it is smaller. On the other hand, for

some particular cases this ratio is higher. One of the reasons for this is that our lower

bound certificate checker uses infinite-precision arithmetic, which is less efficient than

computing in floating-point arithmetic, as done in CPLEX. Furthermore, note that our

implementation is a preliminary prototype, since our aim was to show the feasibility

of our approach for certifying Boolean optimization, and not to develop a finely-tuned

system. In particular, the procedures in our prototype for factorizing matrices, which

are called when recomputing dual solutions, have not been as carefully implemented

as those in CPLEX, which has a significant effect on some instances.

4 These benchmarks are available at http://www.cril.univ-artois.fr/PB07
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Name S P %P/S R LB C %C/S
bbara.r 0.03 0.02 66 0.02 0.01 0.03 100
ex5inp.r 0.04 0.04 100 0.02 0.02 0.04 100
m50 100 10 10.r 0.33 0.13 39 0.06 0.13 0.19 58
m50 100 10 15.r 1.69 0.37 22 0.01 0.55 0.56 33
m100 50 10 10.r 5.80 0.7 12 0.08 4.03 4.11 71
m100 100 10 10.r 30.79 7.77 25 0.51 18.88 19.39 63
opus.r 0.02 0.03 150 0 0.01 0.01 50
ex6inp.r 0.85 0.21 25 0 0.10 0.1 12
m100 100 10 15.r 39.58 4.97 13 0.82 25.23 26.05 66
m100 300 10 10.r 88.71 19.19 22 1.16 42.17 43.33 49
m50 100 30 30.r 11.69 2.51 21 0.40 3.22 3.62 31
m100 300 10 14.r 48.73 11.25 23 0.62 25.27 25.89 53
m100 300 10 15.r 241.63 53.73 22 4.47 137.52 141.99 59
m100 300 10 20.r 176.60 36.01 20 2.11 104.20 106.31 60
m100 50 20 20.r 9.23 1.22 13 0.45 3.75 4.2 46
m100 100 10 30.r 11.01 1.54 14 0.17 6.25 6.42 58
dk512x.r 0.18 0.04 22 0 0.03 0.03 17
maincont.r 0.12 0.05 42 0 0.02 0.02 17
m50 100 50 50.r 4.06 0.46 11 0.04 0.69 0.73 18
fout.r 4.00 0.57 14 0 0.31 0.31 8
m100 50 30 30.r 2.10 0.04 2 0 0.45 0.45 21
m100 100 30 30.r 66.79 7.17 11 1.49 39.39 40.88 61
m50 100 70 70.r 0.78 0.09 12 0 0.08 0.08 10
C880.a 0.70 0.37 53 0 0.35 0.35 50
m100 50 40 40.r 0.32 0.03 9 0 0.04 0.04 12
m50 100 90 90.r 1.35 0.03 2 0 0.02 0.02 1
mlp4.r 29.97 2.04 7 0.03 1.37 1.4 5
m100 100 50 50.r 162.49 20.99 13 25.85 38.33 64.18 39
max512.r 20.42 1.28 6 0.01 0.64 0.65 3
m100 100 70 70.r 25.79 1.15 4 0.12 1.44 1.56 6
exps.r 17.67 0.61 3 0 0.37 0.37 2
addm4.r 80.62 2.3 3 0.02 1.78 1.8 2
test1.r 276.25 32.6 12 0.19 19.25 19.44 7
m100 100 90 90.r 3.58 0.11 3 0 0.02 0.02 1
max1024.pi 579.86 67.75 12 0.75 716.92 717.67 120
max1024.r 677.52 150.7 22 0.86 728.58 729.44 110
ex4inp.r 4.07 0.51 13 0 0.19 0.19 5
m4.r 38.38 1.98 5 0.01 1.25 1.26 3
lin.rom.r 200.80 13.55 7 0.13 30.69 30.82 15
rd73.b 1.99 0.12 6 0 1.33 1.33 67
ricks.r 45.90 2.85 6 0.04 1.52 1.56 3
sao2.b 31.43 5.6 18 0.10 17.67 17.77 57
f51m.b 28.56 5.63 20 0.21 9.62 9.83 34
clip.b 2.75 0.4 15 0 0.44 0.44 16
count.b 231.52 24.55 11 1.02 223.42 224.44 97
C880.b 322.45 38.48 12 0.77 1230.38 1231.15 380
9sym.b 1.78 0.16 9 0 2.69 2.69 150
jac3 51.75 2.96 6 0.04 7.43 7.47 14
5xp1.b 108.84 7.49 7 0.14 45.31 45.45 42
ex5.r 1280.80 143.3 11 6.35 543.11 549.46 43

Fig. 1 Table comparing solving time with proof production overhead and proof checking time.
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7 Extensions

To show the flexibility of our framework, in this section we briefly outline two interesting

extensions of it: for computing the m best (i.e., lowest-cost) models for some m, and

for computing all models with cost lower than a certain threshold k. We show that also

the certificates for these can be derived without much effort.

7.1 Finding the m best models

For handling this extension, we consider a slight modification in DPLLBB where the

fourth component of states becomes an ordered sequence of m models (A1, . . . , Am),

such that cost(Ai−1) ≤ cost(Ai) for all i in 2...m. Furthermore, the semantics of the

third component k is defined by the invariant that cost(Am) = k, that is, k is the cost

of the worst (i.e., the one with highest cost) of the best m models found so far.

The only rule that changes is Improve, which now amounts to replacing the worst

of the best so far models by a better one, becoming:

ImproveTop-m :

I || S || k || (A1, . . . , Am) =⇒ I || S ∪ {¬I} || k′ || (B1, . . . , Bm)

if

8

<

:

I |= S and cost(I) < k and

(B1, . . . , Bm) = sort(A1, . . . , Am−1, I)

and cost(Bm) = k′

where sort indicates the sorting function from lowest (first) to highest (last) cost.

Let us briefly comment on All-SAT, that is, enumerating all models of a set of

clauses. In a sense here we are doing a hybrid between branch and bound and All-SAT:

instead of keeping all models, we only keep the m best ones found so far. Indeed, as

in All-SAT, each time the ImproveTop-m rule is triggered, keeping a new model I , a

blocking clause ¬I is added in order to preclude repeating that same model again. Note

that ¬I is conflicting at that point, and hence a backjump clause can be learned and

Backjump can be applied.

Similarly to what we did before, we use ∅ to denote an empty assignment, where

cost(∅) =∞, and we get:

Theorem 3 Let (S, cost) be an optimization problem, and consider a progressive deriva-

tion with ImproveTop-m instead of Improve, with initial state ∅ || S || ∞ || (∅, . . . , ∅).

Then this derivation is finite and of the form

∅ || S || ∞ || ∅ =⇒ . . . =⇒ I || S′ || k || (A1, . . . , Am) =⇒ OptimumFound

where (A1, . . . , Am) are minimal-cost models of S, that is, there is no model A of S

with A /∈ {A1, . . . , Am} such that cost(A) < cost(Am).

As before, from the trace of the DPLLBB execution one can extract a formal proof of

optimality in a proof system. In this case it asserts that “(A1, . . . , Am) are minimum-

cost models of S”. The intuition for this is the following: if the derivation ends with

I || S′ || k || (A1, . . . , Am) =⇒ OptimumFound , since at each ImproveTop-m step we

have added ¬I as a new clause, all the Ai in (A1, . . . , Am) are now blocked, so now

the certificate means the same as in the previous section: that there is no other model

A of S (that is, A /∈ {A1, . . . , Am}), with cost(A) < k = cost(Am).



20

7.2 Finding all models better than a given k

This extension is very similar to the previous one. What changes is that the third

component k is fixed, i.e., it does not change, and now the fourth component of states

is a set of models M .

Again the only rule that changes is Improve, which is replaced by the following new

rule that amounts to adding another model to M if its cost is below k:

AddModel :

I || S || k ||M =⇒ I || S ∪ {¬I} || k ||M ∪ {I} if
˘

I |= S and cost(I) < k

and we get:

Theorem 4 Let (S, cost) be an optimization problem, and consider a progressive deriva-

tion with AddModel instead of Improve, with initial state ∅ || S || k || ∅. Then this

derivation is finite and of the form

∅ || S || k || ∅ =⇒ . . . =⇒ I || S′ || k ||M =⇒ OptimumFound

where M is the set of all models A of S with cost(A) < k.

As before, from the trace of the DPLLBB execution one can extract a formal proof

of optimality in a proof system asserting “M is the set of all models A of S with

cost(A) < k”, and again the certificate means that there is no other model A of S with

cost(A) < k.

8 Conclusions

Our abstract DPLL-based branch-and-bound algorithm, although being very similar

to abstract DPLL, can model optimization concepts such as cost-based propagation

and cost-based learning. Thus, DPLLBB is natural to SAT practitioners, but still faithful

to most state-of-the-art branch-and-bound solvers. Interestingly, several branch-and-

bound solvers, even state-of-the-art ones, still do not use cost-based backjumping and

propagation, which appear naturally in DPLLBB. Our formal definition of optimality

certificates and the description of how a DPLLBB trace can be used to generate them turns

out to be elegant and analogous to the generation of refutation proofs by resolution in

SAT. We think that DPLLBB will help understanding and reasoning about new branch-

and-bound implementations and further extensions.
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