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Abstract

In [Butkovič and Zimmermann(2006)] an ingenious algorithm for solving systems of two-
sided linear equations in max-algebra was given and claimed to be strongly polynomial.
However, in this note we give a sequence of examples showing exponential behaviour of
the algorithm. We conclude that the problem of finding a strongly polynomial algorithm is
still open.
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1 The problem under consideration

Max-algebras naturally arise in many contexts, such as decision theory, discrete
event dynamic systems, and operations research3 . Here we consider the same
problem as in [Butkovǐc and Zimmermann(2006)], namely solving systems of two-
sided linear equations in max-algebra. More precisely, we consider systems of
equations over a given setX of n variables, denoted here by{x1, . . . , xn}, where
each equation has the form:

max( x1+a1, . . . , xn+an ) = max( x1+b1, . . . , xn+bn )

with a1, . . . ,an,b1, . . . ,bn ∈ �. Theai andbi are calledoffsetsand thexi+ai and
xi+bi are calledterms.

1 Department of Informatics, University of Bergen, Bergen, Norway,
www.ii.uib.no/˜bezem.
2 Technical Univ. of Catalonia, Barcelona,www.lsi.upc.es/˜roberto|˜erodri. Par-
tially supported by Spanish Min. of Educ. and Science through the LogicTools project
(TIN2004-03382)
3 See, e.g.,ralyx.inria.fr/2006/Fiches/maxplus/maxplus.html.

Preprint submitted to Elsevier 20 February 2008



The aim here is to find a solution, i.e., rational values for the variables ofX, such
that all equations hold under the usual interpretations ofmaxand+, or to decide
that no such a solution exists.

In [Butkovič and Zimmermann(2006)], a very elegant and ingenious algorithm for
doing this is given and claimed to be strongly polynomial. This would solve a prob-
lem with important practical applications which has been open for more than 30
years. Unfortunately, in this note we give a sequence of counterexamples showing
exponential behaviour of that algorithm. We conclude that the problem of finding a
polynomial algorithm is still open.

[Butkovič and Zimmermann(2006)] initially considers rational variables and off-
sets, but their algorithm can also handle other algebraic structures, including the
integers. The construction of the counterexample we give in this note applies to the
other structures as well.

2 The algorithm of [Butkovi č and Zimmermann(2006)]

Here we only give a short intuitive description of the algorithm; for all details, see
[Butkovič and Zimmermann(2006)]. LetE denote the given system of equations
and let the (possibly subscripted or primed) symbolS denotestatesof the algo-
rithm, i.e., functionsS : X→ �.

It is easy to see that if a stateS is a solution forE, then, for any rational constant
c, so is the stateS′ defined asS′(x) = S(x) − c for all x. Therefore, the algorithm
can start in an arbitrary initial state and from then on only search solutions among
states obtained by decreasing values of variables. This is done in such a way that
currently false equations may become true, while true equations remain true.

Fixpoint construction of MD (S,E), the set of variables that Must Decrease.
Let the current stateS be theall-zerostateS0 whereS0(x) = 0 for all x ∈ X, and
consider a setE with variablesx, y, z andu:

max( x, y, z+1, u ) = max( x+5, y+5, z, u ) (eq1)
max( x, y−3, z−4, u−1 ) = max( x−2, y−2, z, u−5 ) (eq2)
max( x, y−2, z−2, u−2 ) = max( x, y−2, z−2, u−1 ) (eq3)

Every currently false equation (here, onlyeq1) forces to decrease one or more vari-
ables. In this case,x andy must decrease, i.e.,x, y ∈ MD(S,E), due to the maximal
termsx+5 andy+5 at the right-hand side ofeq1. Decreasing a variable may force
other variables to decrease as well in order to avoid that true equations become
false. For example,eq2 is true inS, but if x ∈ MD(S,E), thenz ∈ MD(S,E) is
forced to keepeq2 true. Due to other true equations (not shown here),z ∈ MD(S,E)
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may forceu ∈ MD(S,E), etc. This is iterated until no more variables are added to
MD(S,E), giving a polynomial-time fixpoint construction ofMD(S,E), since at
most|X| variables are added.

Determining the decrementτ.
OnceMD(S,E) has been identified, all variables inMD(S,E) are decreased by the
same amountτ, that is, we obtain a new current stateS′ with S′(x) = S(x) − τ if
x ∈ MD(S,E) andS′(y) = S(y) otherwise. The value ofτ is essentially the minimal
amount such thatMD(S,E) , MD(S′,E). This can be due to three reasons:

(i) Because some false equation becomes true inS′; for example, inS0 the equation
eq1 becomes true inS′ if τ = 4.

(ii) Because a certain true equation is no longer a reason for decreasing a variable.
For instance, considereq2 in S0. After decreasingx andz with τ = 1, the variable
x can continue decreasing withoutz, because of the termu−1 at the left-hand side
of eq2.

(iii) Because inS′ some true equation causes an additional variable to be added to
the set. For example, inS0, after decreasingx by 1, the true equationeq3 causesu
to belong toMD(S′,E).

It is not hard to prove thatE has no solution if for someS such aτ does not exist.
This includes the case whereMD(S,E) = X.

The algorithm.
The algorithm of [Butkovǐc and Zimmermann(2006)] iterates these two steps: com-
puting MD(S,E) for the currentS, determiningτ, thus obtaining a newS, and so
on, until either all equations become true (i.e., the currentS is a solution), orτ does
not exist, and henceE has no solution.

3 Exponential behaviour of the algorithm

An algorithm is (strongly) polynomial if there exists a polynomial functionP such
that for every inputI its runtime is belowP(size(I )) (wheresizerefers to the number
of bits). Below we give a sequenceE0,E1,E2, . . . of input systems where for eachEi

its size is polynomial ini (essentially cubic) but where the runtime of the algorithm
of [Butkovič and Zimmermann(2006)] is exponential ini, namely at least 2i. This
implies that the algorithm is not polynomial: for every polynomialP there exists a
large enoughi such that 2i > P(i3). In the following, we will write states as tuples
of values of the form (v1, . . . , vn) for the variables (x1, . . . , xn).

SystemE0 consists of the single equationmax(x0−1, y0) = max(x0−1, y0−4)
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over two variables, with the initial state (x0, y0) = (−1,0). HereMD(S,E0) = {y0},
with τ = 2 and the algorithm terminates after one step in state (−1,−2). Since
no variable becomes lower than−2 and in all equation sides there is at least one
offset−1 or higher, the terms with offset−4 will never become maximal and are
hence irrelevant in the algorithm. This kind of irrelevant offsets will be called the
irrelevancy offsetof the system. In what follows, we will omit in equations all terms
with the irrelevancy offset.E0 then becomesmax(x0−1, y0) = max(x0−1).

For i > 0, the systemEi is always obtained fromEi−1 by:
(1) Taking systemEi−1, but doubling all offsets (including the irrelevancy one) and

the initial values, and adding two more variablesxi andyi with the (doubled)
irrelevancy offset. The initial values for (xi , yi) are always (−1,0).

(2) Makingxi behave in the algorithm asmin(xi−1, yi−1) + 1 and makingyi behave
asmax(xi−1, yi−1), by adding the following three equations:

max(xi−1+1) = max(xi−1+1, xi)
max(yi−1+1) = max(yi−1+1, xi)
max(yi) = max(xi−1, yi−1)

Hence, systemE1 is : (0) max(x0−2, y0) = max(x0−2)
(1a) max(x0+1) = max(x0+1, x1)
(1b) max(y0+1) = max(y0+1, x1)
(1c) max(y1) = max(x0, y0)

with irrelevancy offset−8 and with initial values (x0, y0, x1, y1) = (−2,0,−1,0). The
algorithm runs in 2 iterations, whereτ is always 2. In the table below we summarize
its behaviour, writing between parentheses the number of the relevant equation:

iteration MD τ x0 y0 x1 y1

initial state : −2 0 −1 0
1 y0 (0) y1 (1c) (1) −2 −2 −1 −2
2 y0 (0) x1 (1b) (0) −2 −4 −3 −2

The following figure shows the evolution in the course of the algorithm onE1 of
the variablesx1 andy1 as functions of−y0:
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In this figure we see thatx1 andy1 cross(change order) twice. The key idea behind
our sequence of counterexamples is that for eachEi the number of such crossings
betweenxi andyi is doubled with respect to the number of crossings betweenxi−1
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andyi−1 in Ei−1. The reason for this is precisely that each timexi is min(xi−1, yi−1)
plus a small amount and thatyi is max(xi−1, yi−1).

SystemE2 is : (0) max(x0−4, y0) = max(x0−4)
(1a) max(x0+2) = max(x0+2, x1)
(1b) max(y0+2) = max(y0+2, x1)
(1c) max(y1) = max(x0, y0)
(2a) max(x1+1) = max(x1+1, x2)
(2b) max(y1+1) = max(y1+1, x2)
(2c) max(y2) = max(x1, y1)

with irrelevancy offset−16 and where the initial values for (x0, y0, x1, y1, x2, y2) are
(−4,0,−2,0,−1,0). The algorithm runs in 4 iterations, whereτ is always 2. The
table and graphic below summarize its behaviour, and we see thatx2 andy2 indeed
cross four times:

iteration MD τ x0 y0 x1 y1 x2 y2

initial state : −4 0 −2 0 −1 0
1 y0 (0) y1 (1c) y2 (2c) (2c) −4 −2 −2 −2 −1 −2
2 y0 (0) y1 (1c) x2 (2b) (1c) −4 −4 −2 −4 −3 −2
3 y0 (0) x1 (1b) y2 (2c) (2c) −4 −6 −4 −4 −3 −4
4 y0 (0) x1 (1b) x2 (2a) (0) −4 −8 −6 −4 −5 −4
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Consider a pair of variables in the algorithm, sayx andy. Each timex andy cross
(at some point that is not the initial state) this is because one of them is decreas-
ing and the other one is not. The following time they cross, this is the other way
around. Hence, between any two of these crossings, at least one new iteration must
have started. Since the first iteration starts in the initial state, i.e., before the first
crossing of the givenx andy we consider, we may conclude that there are at least
as many iterations as crossings betweenx andy. Since eachEi has 3i +1 equations,
2i + 2 variables, and all offsets have size linear ini, we can therefore conclude the
following.

Theorem 1.For every natural numberi ≥ 0, there exists a two-sided linear sys-
tem in max-algebra whose size in bits is cubic ini on which the algorithm of
[Butkovič and Zimmermann(2006)] needs at least 2i iterations.
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We remark that the observed exponential behaviour is independent of the chosen
initial state, which in our example for eachEi is (x0, y0, x1, y1, . . . xi , yi) =
(−2i ,0, −2i−1,0, . . . −1,0). Indeed, if given another initial state, the systemEi

can be replaced by another systemE′i on which the algorithm with the new initial
state behaves exactly asEi did with our initial state. This is easy to verify: if the
initial state valuek for a variablex is replaced byk+ k′, then it suffices to decrease
in all equations the offset ofx by k′.

4 Final remarks

The algorithm of [Butkovǐc and Zimmermann(2006)] is correct, and we believe it
is alsoweakly polynomial, i.e., polynomial not in the size of the input, but in the
numerical value of the input, which may be exponentially larger. However, given
the simplicity of our example and the intuition acquired by it, we think that finding
a polynomial algorithm will require a rather different approach.
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