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Abstract

In [Butkovi¢ and Zimmermann(2006)] an ingenious algorithm for solving systems of two-
sided linear equations in max-algebra was given and claimed to be strongly polynomial.
However, in this note we give a sequence of examples showing exponential behaviour of
the algorithm. We conclude that the problem of finding a strongly polynomial algorithm is
still open.
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1 The problem under consideration

Max-algebras naturally arise in many contexts, such as decision theory, discrete
event dynamic systems, and operations reséar¢tere we consider the same
problem as in [Butko\vd and Zimmermann(2006)], namely solving systems of two-
sided linear equations in max-algebra. More precisely, we consider systems of
equations over a given set of n variables, denoted here Ry, ..., X,}, where

each equation has the form:

max X;+ai, ..., Xp+ay ) = maxX Xg+by, ..., Xa+by)

with ay,...,an,by,...,by € Q. Theg andb; are calledoffsetsand thex +a and
X;+b; are callederms
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The aim here is to find a solution, i.e., rational values for the variableg§ sfich
that all equations hold under the usual interpretationsi@akand+, or to decide
that no such a solution exists.

In [Butkovi¢ and Zimmermann(2006)], a very elegant and ingenious algorithm for
doing this is given and claimed to be strongly polynomial. This would solve a prob-
lem with important practical applications which has been open for more than 30
years. Unfortunately, in this note we give a sequence of counterexamples showing
exponential behaviour of that algorithm. We conclude that the problem of finding a
polynomial algorithm is still open.

[Butkovi¢ and Zimmermann(2006)] initially considers rational variables affid o
sets, but their algorithm can also handle other algebraic structures, including the
integers. The construction of the counterexample we give in this note applies to the
other structures as well.

2 The algorithm of [Butkovi ¢ and Zimmermann(2006)]

Here we only give a short intuitive description of the algorithm; for all details, see
[Butkovi¢ and Zimmermann(2006)]. LdE denote the given system of equations
and let the (possibly subscripted or primed) sym8alenotestatesof the algo-
rithm, i.e., functionsS : X — Q.

It is easy to see that if a stafeis a solution fork, then, for any rational constant

C, SO is the stat&’ defined ass’(x) = S(x) — ¢ for all x. Therefore, the algorithm

can start in an arbitrary initial state and from then on only search solutions among
states obtained by decreasing values of variables. This is done in such a way that
currently false equations may become true, while true equations remain true.

Fixpoint construction of MD (S, E), the set of variables that Must Decrease.
Let the current stat8 be theall-zero stateSy whereSy(x) = 0 for all x € X, and
consider a sefE with variablesx, y, zandu:

max X, y, z+1, u) = max X+5, y+5, z u) (eqw)
max X, y-3, z-4, u—1) = max x-2, y-2, z, u-5) (eq)
max X, y—2, z-2, u-2) =max x, y-2, z-2, u-1) (et)

Every currently false equation (here, orlg;) forces to decrease one or more vari-
ables. In this casecandy must decrease, i.ex,y € MD(S, E), due to the maximal
termsx+5 andy+5 at the right-hand side @&q,. Decreasing a variable may force
other variables to decrease as well in order to avoid that true equations become
false. For examplegq, is true inS, but if x € MD(S, E), thenz € MD(S,E) is

forced to keeq, true. Due to other true equations (not shown heare)MD(S, E)



may forceu € MD(S, E), etc. This is iterated until no more variables are added to
MD(S, E), giving a polynomial-time fixpoint construction ®fiD(S, E), since at
most|X| variables are added.

Determining the decrementr.

OnceMD(S, E) has been identified, all variablesMD(S, E) are decreased by the
same amount, that is, we obtain a new current st&ewith S'(x) = S(x) — 7 if

x € MD(S, E) andS’(y) = S(y) otherwise. The value afis essentially the minimal
amount such tha¥ID(S, E) # MD(S’, E). This can be due to three reasons:

(i) Because some false equation becomes tri&;ifor example, ifSo the equation
eq becomes true I8’ if 7 = 4.

(i) Because a certain true equation is no longer a reason for decreasing a variable.
For instance, consida&t, in Sy. After decreasing andz with = = 1, the variable

X can continue decreasing withaytbecause of the termn—1 at the left-hand side

of eg.

(i) Because inS’ some true equation causes an additional variable to be added to
the set. For example, iy, after decreasing by 1, the true equatioag; causesi
to belong toMD(S, E).

It is not hard to prove thadE has no solution if for som& such ar does not exist.
This includes the case whek&D(S, E) = X.

The algorithm.

The algorithm of [Butkowi and Zimmermann(2006)] iterates these two steps: com-
puting MD(S, E) for the currentS, determiningr, thus obtaining a nev8, and so

on, until either all equations become true (i.e., the curgista solution), orr does

not exist, and henckE has no solution.

3 Exponential behaviour of the algorithm

An algorithm is (strongly) polynomial if there exists a polynomial funct®such
that for every input its runtime is belowP(siz€1)) (wheresizerefers to the number
of bits). Below we give a sequenég, E;, E,, ... of input systems where for eaéh

its size is polynomial in (essentially cubic) but where the runtime of the algorithm
of [Butkovit and Zimmermann(2006)] is exponentialijmamely at least'2This
implies that the algorithm is not polynomial: for every polynoniahere exists a
large enougl such that 2> P(i®). In the following, we will write states as tuples
of values of the form\(s, . .., v,) for the variablesX,, ..., X,).

SystemE, consists of the single equatiommaxX,—1,Yo) = maxx—1,Y¥o—4)



over two variables, with the initial statey yo) = (-1, 0). HereMD(S, Ep) = {Yo},
with 7 = 2 and the algorithm terminates after one step in state 2). Since

no variable becomes lower that2 and in all equation sides there is at least one
offset—1 or higher, the terms withftset—4 will never become maximal and are
hence irrelevant in the algorithm. This kind of irrelevaffiisets will be called the
irrelevancy gfsetof the system. In what follows, we will omit in equations all terms
with the irrelevancy fiset.Eq then becomemaxXo—1, yo) = maxxy—1).

Fori > 0, the systent; is always obtained fror;_; by:

(1) Taking systent;_;, but doubling all éfsets (including the irrelevancy one) and
the initial values, and adding two more variableandy; with the (doubled)
irrelevancy dfset. The initial values forg, y;) are always+1, 0).

(2) Makingx; behave in the algorithm amin(x_;, yi_1) + 1 and makingy;, behave
asmaxX_1, ¥i_1), by adding the following three equations:

maxx-1+1) = maxx_1+1, %)
maxyi_1+1) = maxy,_1+1, X)
maxy;) = max(Xi_1, Yi-1)

Hence systemE; is: (0) maxXo—2,Yo) = maxXXy—2)

(1a) maxXp+1) maxXp+1, X1)

(1b) maxyo+1) maxyo+1, X;)

(Ic)  maxy.) = maxXo, Yo)
with irrelevancy dfset—8 and with initial valuesxo, Yo, X1, V1) = (-2,0,-1,0). The
algorithm runs in 2 iterations, whetas always 2. In the table below we summarize
its behaviour, writing between parentheses the number of the relevant equation:

iteration |MD T | X Yo X1 V1
initial state -2 0-1 O
1 Yo (0) vyi(10)|(1)]-2-2-1-2

2 Yo (0) X (1b)|{(0)|-2 -4 -3 -2

The following figure shows the evolution in the course of the algorithniepof
the variables; andy; as functions of-yy:
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In this figure we see tha, andy,; cross(change order) twice. The key idea behind
our sequence of counterexamples is that for dgadhe number of such crossings
betweenx; andy; is doubled with respect to the number of crossings between



andy;_; in Ej_;. The reason for this is precisely that each tigiés min(x_1,Yi_1)
plus a small amount and thgtis maxx;_1, Yi_1).

SystemE; is : 0) maxXo—4, Yo) = maxxo—4)
(1a) maxXy+2) = maxXg+2, X;)
(1b) maxyo+2) = maxyo+2, X1)

(Ic)  maxy.) = maxXo, Yo)
(2a) maxXx;+1) = maxX;+1,X)
(2b)  maxyi+l) = maxyi+l, %)
(2¢) maxy-) = maxXy, Y1)

with irrelevancy dfset—16 and where the initial values fox, Yo, X1, Y1, X2, y2) are

(-4,0,-2,0,-1,0). The algorithm runs in 4 iterations, wheras always 2. The
table and graphic below summarize its behaviour, and we seg;thaty, indeed

cross four times:

iteration |MD T [Xo Yo X1 Y1 X Yo
initial state -4 0-2 0-1 O
1 Yo (0) vi(lo) vy»(20) |(2¢)|-4 -2-2-2-1-2

2 Yo (0) vy1(lc) X (2b)|(lc)|-4 -4 -2 -4 -3 -2

3 Yo (0) x. (1b) vy, (2¢)|(2c)|-4 -6 -4 -4 -3 -4

4 Yo (0) X1 (1b) x;(2a)| (0)|-4 -8 -6 -4 -5 -4
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Consider a pair of variables in the algorithm, sagndy. Each timex andy cross

(at some point that is not the initial state) this is because one of them is decreas-
ing and the other one is not. The following time they cross, this is the other way
around. Hence, between any two of these crossings, at least one new iteration must
have started. Since the first iteration starts in the initial state, i.e., before the first
crossing of the givex andy we consider, we may conclude that there are at least
as many iterations as crossings betwrandy. Since eacli; has 3+ 1 equations,

2i + 2 variables, and allfésets have size linear inwe can therefore conclude the
following.

Theorem 1. For every natural number> 0, there exists a two-sided linear sys-
tem in max-algebra whose size in bits is cubiciion which the algorithm of
[Butkovit and Zimmermann(2006)] needs at ledstetations.



We remark that the observed exponential behaviour is independent of the chosen
initial state, which in our example for eadh is (Xo, Yo, X1, Y1, ... X,Yi) =

(-2,0, =210, ... -1,0).Indeed, if given another initial state, the systEm

can be replaced by another syst&mon which the algorithm with the new initial
state behaves exactly & did with our initial state. This is easy to verify: if the
initial state valuek for a variablex is replaced b + K, then it sufices to decrease

in all equations theftset ofx by k'.

4 Final remarks

The algorithm of [Butkowt and Zimmermann(2006)] is correct, and we believe it
is alsoweakly polynomiali.e., polynomial not in the size of the input, but in the
numerical value of the input, which may be exponentially larger. However, given
the simplicity of our example and the intuition acquired by it, we think that finding
a polynomial algorithm will require a ratherfterent approach.

References

[Butkovit and Zimmermann(2006)] Butkayi P., Zimmermann, K., 2006. A strongly
polynomial algorithm for solving two-sided linear systems in max-algebra. Discrete
Applied Mathematics 154 (3), 437—-446.



