SAT Modulo Theories:

Can we get the best of two worlds?

Invited talk, CP 2010 - St Andrews

Robert Nieuwenhuis

(+ Albert Oliveras, Enric Rodríguez, Roberto Asín, Javier Larrosa, ...)

Barcelogic Research Group, Tech. Univ. Catalonia, Barcelona

rcelogic - Tech. Univ. Catalonia (UPC)

CP 2010 Barcelogic – p. 1

The objective of this talk is to explain:

- What SAT Modulo Theories (SMT) is.
- Our current aim: bring SMT from verification applications to other more typical CP ones: scheduling, timetabling...
- Can we use SMT trying to get the best of two worlds?:
 - From SAT: efficiency, robustness, no need for tuning.
 - From general complete methods in CP (note: CP ⊃ SAT): expressiveness, rich modeling languages, special-purpose algorithms for arithmetic, for global constraints....

Outline of this talk

Good vs Bad

Good vs Bad in SAT and other complete CP search methods.

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is SAT Modulo Theories (SMT)?

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is SAT Modulo Theories (SMT)?
- Lazy approach, improved Lazy approach.

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is SAT Modulo Theories (SMT)?
- Lazy approach, improved Lazy approach.
- Our DPLL(T) approach: DPLL(T) = DPLL(X) + T-Solver.

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is SAT Modulo Theories (SMT)?
- Lazy approach, improved Lazy approach.
- Our DPLL(T) approach: DPLL(T) = DPLL(X) + T-Solver.
- The Barcelogic SMT solver. Theories and T-Solvers

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is SAT Modulo Theories (SMT)?
- Lazy approach, improved Lazy approach.
- Our DPLL(T) approach: DPLL(T) = DPLL(X) + T-Solver.
- The *Barcelogic* SMT solver. Theories and *T*-Solvers
- CP-like theories and *T*-solvers. Examples.

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is SAT Modulo Theories (SMT)?
- Lazy approach, improved Lazy approach.
- Our DPLL(T) approach: DPLL(T) = DPLL(X) + T-Solver.
- The *Barcelogic* SMT solver. Theories and *T*-Solvers
- CP-like theories and *T*-solvers. Examples.
- Proof complexity and other insights

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is SAT Modulo Theories (SMT)?
- Lazy approach, improved Lazy approach.
- Our DPLL(T) approach: DPLL(T) = DPLL(X) + T-Solver.
- The *Barcelogic* SMT solver. Theories and *T*-Solvers
- CP-like theories and *T*-solvers. Examples.
- Proof complexity and other insights
- Concluding remarks

What is meant by CP solver in this talk?

"Typical" state-of-the-art solver with:

- complete systematic search
- backtracking (no backjumping)
- no learning
- rich modeling languages
- *sophisticated*:
 - heuristics for branching variable selection (e.g., first-fail)
 - heuristics for branching value selection
 - special-purpose global contraint propagation algorithms

NB: for some problems, complete CP/SAT/SMT all inadequate!

Decades of academic and industrial efforts in SAT Lots of **\$\$\$** from, e.g., EDA (Electronic Design Automation)

Decades of academic and industrial efforts in SAT Lots of **\$\$\$** from, e.g., EDA (Electronic Design Automation)

Lesson: Real-world problems \neq random or artificial ones !

- Decades of academic and industrial efforts in SAT Lots of \$\$\$ from, e.g., EDA (Electronic Design Automation)
- Lesson: Real-world problems \neq random or artificial ones !

What's GOOD? Complete solvers:

- outperforming by far the other methods (see later why)
- on real-world problems from many sources, with a
- single, fully automatic, push-button, var selection strategy!
- Hence modeling is essentially declarative.

- Decades of academic and industrial efforts in SAT Lots of <mark>\$\$\$</mark> from, e.g., EDA (Electronic Design Automation)
- Lesson: Real-world problems \neq random or artificial ones !

What's GOOD? Complete solvers:

- outperforming by far the other methods (see later why)
- on real-world problems from many sources, with a
- single, fully automatic, push-button, var selection strategy!
- Hence modeling is essentially declarative.

++ SAT in CP'10 Procs! E.g., pg 398, Petke&Jeavons' abstract ends:

"We (...) show that, without being explicitly designed to do so, current clause-learning SAT solvers efficiently simulate *k*-consistency techniques, for all values of *k* [and] (...) efficiently solve certain families of CSP instances which are challenging for conventional CP solvers".

- Decades of academic and industrial efforts in SAT Lots of \$\$\$ from, e.g., EDA (Electronic Design Automation)
- Lesson: Real-world problems \neq random or artificial ones !

What's GOOD? Complete solvers:

- outperforming by far the other methods (see later why)
- on real-world problems from many sources, with a
- single, fully automatic, push-button, var selection strategy!
- Hence modeling is essentially declarative.

What's BAD?

- very low-level language: need modeling and encoding tools
- no good encodings for many aspects: arithmetic...
- Answers "unsat" or model. Optimization not as well studied.

Good vs Bad in general CP Solvers

Good vs Bad in general CP Solvers

What's GOOD?

- Expressive modeling constructs and languages
- Specialized algorithms for many (global) constraints
- Optimization aspects better studied

Good vs Bad in general CP Solvers

What's GOOD?

- Expressive modeling constructs and languages
- Specialized algorithms for many (global) constraints
- Optimization aspects better studied

What's BAD or, well, not so good?

- Performance(?)
- Not quite automatic or push-button Heuristics tuning per problem (or even per instance)
- In CP Procs, sometimes only "academic" experiments:
 on random or artificial problems (sometimes not realistic)
 no big database of real-world/industrial instances

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM'06):

Assignment A :Clause set F : \emptyset $\|$ $\|$ $\overline{1}\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM'06):

Assignment A :Clause set F : \emptyset $\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor \overline{5} \lor \overline{2} \Rightarrow$ (Decide)1 $\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor \overline{5} \lor \overline{2} \Rightarrow$ (UnitPropagate)

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM'06):

Assignment A :Clause set F : \emptyset $\overline{1}\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ \Rightarrow (Decide)1 $\|$ $\overline{1}\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ \Rightarrow (UnitPropagate)12 $\|$ $\overline{1}\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ \Rightarrow (Decide)

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM'06):

Assignment A :Clause set F : \emptyset $\|$ $\overline{1}\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ \Rightarrow (Decide)1 $\|$ $1\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ \Rightarrow (UnitPropagate)12 $\|$ $1\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ \Rightarrow (Decide)123 $\|$ $1\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ \Rightarrow (UnitPropagate)

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM'06):

Assignment A :Clause set F : \emptyset $\|$ $\overline{1}\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ \Rightarrow (Decide)1 $\|$ $1\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ \Rightarrow (UnitPropagate)12 $\|$ $1\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ \Rightarrow (Decide)12.3 $\|$ $1\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ \Rightarrow (UnitPropagate)12.3.4 $\|$ $1\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ \Rightarrow (Decide)

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM'06):

Assignment A : **Clause set** *F* : $\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \Rightarrow (\text{Decide})$ \oslash $\overline{1}\vee 2$, $\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$, $6\vee \overline{5}\vee \overline{2} \Rightarrow$ (UnitPropagate) 1 $\| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \implies (\text{Decide})$ 12 $\| \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \Rightarrow (\text{UnitPropagate})$ 123 $\| \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \implies (\text{Decide})$ 1234 $\overline{1}\vee 2$, $\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$, $6\vee \overline{5}\vee \overline{2} \Rightarrow$ (UnitPropagate) 12345

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM'06):

Assignment A : **Clause set** *F* : $\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \Rightarrow (\text{Decide})$ \emptyset $\overline{1}\vee 2$, $\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$, $6\vee \overline{5}\vee \overline{2} \Rightarrow$ (UnitPropagate) 1 $\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \Rightarrow$ (Decide) 12 $\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \Rightarrow (UnitPropagate)$ 123 $\| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \implies (\text{Decide})$ 1234 $\| \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \Rightarrow$ (UnitPropagate) 12345 $\| \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$ $12345\overline{6}$

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM'06):

Assignment A : Clause set F :

Ø	$\overline{1}$ \lor 2,	3∨4,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	<u>1</u> ∨2,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
12	$\overline{1}$ \lor 2,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
123	$\overline{1}$ \lor 2,	3∨4,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1234	$\overline{1}$ \lor 2,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
12345	<u>1</u> ∨2,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1 2 <mark>3</mark> 4 5 6	$\overline{1}$ \lor 2,	3∨4,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Backtrack)

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM'06):

Assignment A : Clause set F :

Ø	$\overline{1}$ \lor 2,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	<u>1</u> ∨2,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
12	$\overline{1}$ \lor 2,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
123	$\overline{1}$ \lor 2,	<u></u> 3∨4,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1234	$\overline{1}$ \lor 2,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
12345	<u>1</u> ∨2,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1 2 <mark>3</mark> 4 5 6	<u>1</u> ∨2,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Backtrack)
1 2 3 4 5	$\overline{1}$ \lor 2,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$		

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM'06):

Assignment A : Clause set F :

Ø	$\ \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \Rightarrow$	(Decide)
1	$\ \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Rightarrow$	(UnitPropagate)
12	$\ \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \Rightarrow$	(Decide)
123	$\ \overline{1} \vee 2, \ \overline{3} \vee 4, \ \overline{5} \vee \overline{6}, \ 6 \vee \overline{5} \vee \overline{2} \Rightarrow$	(UnitPropagate)
1234	$\ \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \Rightarrow$	(Decide)
12345	$\ \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \Rightarrow$	(UnitPropagate)
123456	$\ \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2} \Rightarrow$	(Backtrack)
1 2 3 4 5	$\ \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$	model found!

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM'06):

Assignment A : **Clause set** *F* : $\overline{1}\vee 2$, $\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$, $6\vee \overline{5}\vee \overline{2} \Rightarrow$ (Decide) \emptyset $\overline{1}\vee 2$, $\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$, $6\vee \overline{5}\vee \overline{2}$ \Rightarrow 1 (UnitPropagate) $\overline{1}\vee 2$, $\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$, $6\vee \overline{5}\vee \overline{2}$ \Rightarrow 12 (Decide) $\overline{1}\vee 2$, $\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$, $6\vee \overline{5}\vee \overline{2}$ \Rightarrow 123 (UnitPropagate) $\overline{1}\vee 2$, $\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$, $6\vee \overline{5}\vee \overline{2} \Rightarrow$ (Decide) 1234 $\overline{1}\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2} \Rightarrow$ (UnitPropagate) 12345 $\| \overline{1} \vee 2, \ \overline{3} \vee 4, \ \overline{5} \vee \overline{6}, \ 6 \vee \overline{5} \vee \overline{2} \quad \Rightarrow$ $12345\overline{6}$ (Backtrack) $\overline{1}\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$ $1234\overline{5}$ model found!

More rules: Backjump, Learn, Forget, Restart [M-S,S,M,...]!

Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave $1 \ 2 \ 3 \ 4 \ \overline{5}$. But: decision level $3 \ 4$ is irrelevant for the conflict $6 \lor \overline{5} \lor \overline{2}$: $\oslash \qquad \parallel \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (Decide)$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$ $1 \ 2 \ 3 \ 4 \ 5 \ \overline{6} \qquad \parallel \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (Backjump)$
Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave $1 \ 2 \ 3 \ 4 \ \overline{5}$. But: decision level $3 \ 4$ is irrelevant for the conflict $6 \lor \overline{5} \lor \overline{2}$: $\oslash \qquad \parallel \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \Rightarrow$ (Decide) $\vdots \qquad \vdots \qquad \vdots$ $1 \ 2 \ 3 \ 4 \ 5 \ \overline{6} \qquad \parallel \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \Rightarrow$ (Backjump) $1 \ 2 \ \overline{5} \qquad \parallel \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \Rightarrow \dots$

Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave $1\ 2\ 3\ 4\ \overline{5}$.

But: decision level 3 4 is irrelevant for the conflict $6\sqrt{5}\sqrt{2}$:

Ø		$\overline{1}\lor 2$,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
• •	• •		• •				
$1 2 3 4 5 \overline{6}$		$\overline{1}$ \lor 2,	3∨4,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Backjump
125		$\overline{1}$ \lor 2,	$\overline{3}\vee4$,	$\overline{5}\vee\overline{6}$,	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	• • •

Backjump =

- 1. Conflict Analysis: "Find" a backjump clause $C \vee l$ (here, $\overline{2} \vee \overline{5}$)
 - that is a logical consequence of F
 - that reveals a unit propagation of *l* at earlier decision level *d* (i.e., where its part C is false)
- 2. Return to decision level *d* and do the propagation.

Conflict Analysis: find backjump clause

Example. Consider assignment: $\ldots 6 \ldots \overline{7} \ldots 9$ and let *F* contain: $\overline{9}\sqrt{6}\sqrt{7}\sqrt{8}$, $8\sqrt{7}\sqrt{5}$, $\overline{6}\sqrt{8}\sqrt{4}$, $\overline{4}\sqrt{1}$, $\overline{4}\sqrt{5}\sqrt{2}$, $5\sqrt{7}\sqrt{3}$, $1\sqrt{2}\sqrt{3}$. UnitPropagate gives $\ldots 6 \ldots \overline{7} \ldots 9 \overline{8} \overline{5} 4 \overline{1} 2 \overline{3}$. Conflict w/ $1 \lor \overline{2} \lor 3!$

C.An. = do resolutions in reverse order backwards from conflict:

until reaching clause with only 1 literal of last decision level.

Can use this backjump clause $8 \vee 7 \vee \overline{6}$ for Backjump to $\ldots 6 \ldots \overline{7} 8$.

Three key ingredients that only work if used TOGETHER:

Three key ingredients that only work if used TOGETHER:

- 1. Learn at each conflict backjump clause as a lemma ("nogood"):
 - makes UnitPropagate more powerful
 - prevents EXP repeated work in future similar conflicts

Three key ingredients that only work if used TOGETHER:

- 1. Learn at each conflict backjump clause as a lemma ("nogood"):
 - makes UnitPropagate more powerful
 - prevents EXP repeated work in future similar conflicts
- 2. Decide on variables with many occurrences in recent conflicts:
 - Dynamic activity-based heuristics (former VSIDS implm.)
 - idea: work off, one by one, clusters of tightly related vars (try DPLL on two independent instances together...)

Three key ingredients that only work if used TOGETHER:

- 1. Learn at each conflict backjump clause as a lemma ("nogood"):
 - makes UnitPropagate more powerful
 - prevents EXP repeated work in future similar conflicts
- 2. Decide on variables with many occurrences in recent conflicts:
 - Dynamic activity-based heuristics (former VSIDS implm.)
 - idea: work off, one by one, clusters of tightly related vars (try DPLL on two independent instances together...)
- 3. Forget from time to time low-activity lemmas:
 - crucial to keep UnitPropagate fast and memory affordable
 - idea: lemmas from worked-off clusters no longer needed!

It's not easy to get everything together right. But also (I think):

It's not easy to get everything together right. But also (I think):

- Static (e.g., first-fail) heuristics used
 - effect: work simultaneously on too unrelated variables
 - would require storing too many nogoods at the same time

It's not easy to get everything together right. But also (I think):

- Static (e.g., first-fail) heuristics used
 - effect: work simultaneously on too unrelated variables
 - would require storing too many nogoods at the same time
- No simple uniform underlying language (as SAT's clauses):
 - hard to express nogoods (in SAT, 1st-class citizens: clauses)
 - hard to understand conflict analysis
 - hard to implement things really efficiently

It's not easy to get everything together right. But also (I think):

Static (e.g., first-fail) heuristics used

- effect: work simultaneously on too unrelated variables
- would require storing too many nogoods at the same time
- No simple uniform underlying language (as SAT's clauses):
 - hard to express nogoods (in SAT, 1st-class citizens: clauses)
 - hard to understand conflict analysis
 - hard to implement things really efficiently
- Learning nogoods not found very useful...
 - mislead by random/academic pbs?
 - Indeed, it is useless isolatedly, and also on random pbs!

It's not easy to get everything together right. But also (I think):

Static (e.g., first-fail) heuristics used

- effect: work simultaneously on too unrelated variables
- would require storing too many nogoods at the same time
- No simple uniform underlying language (as SAT's clauses):
 - hard to express nogoods (in SAT, 1st-class citizens: clauses)
 - hard to understand conflict analysis
 - hard to implement things really efficiently
- Learning nogoods not found very useful...
 - mislead by random/academic pbs?
 - Indeed, it is useless isolatedly, and also on random pbs!
- Learning requires explaining filtering algs.! [KB'03,05, ...]

It's not easy to get everything together right. But also (I think):

Static (e.g., first-fail) heuristics used

- effect: work simultaneously on too unrelated variables
- would require storing too many nogoods at the same time
- No simple uniform underlying language (as SAT's clauses):
 - hard to express nogoods (in SAT, 1st-class citizens: clauses)
 - hard to understand conflict analysis
 - hard to implement things really efficiently
- Learning nogoods not found very useful...
 - mislead by random/academic pbs?
 - Indeed, it is useless isolatedly, and also on random pbs!
- Learning requires explaining filtering algs.! [KB'03,05, ...]

Towards a solution... see the next slide...

What is SAT Modulo Theories (SMT)?

Origin: Reasoning about equality, arithmetic, data structures such as arrays, etc., in Software/Hardware verification.

What is SMT?Deciding satisfiability of an (existential) SAT
formula with atoms over a background theory T

Example 1:T is Equality with Uninterpreted Functions (EUF):3 clauses: $f(g(a)) \neq f(c) \lor g(a) = d,$ g(a) = c, $c \neq d$

Example 2: several (how many?) combined theories: 2 clauses: A = write(B, i+1, x), $read(A, j+3) = y \lor f(i-1) \neq f(j+1)$

Typical verification examples, where SMT is method of choice.

Aka Lemmas on demand [dMR,2002]. Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

1. Send $\{\overline{1}\lor 2, 3, \overline{4}\}$ to SAT solver

Aka Lemmas on demand [dMR,2002]. Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq a}_{\overline{4}}$$

1. Send $\{\overline{1}\lor 2, 3, \overline{4}\}$ to SAT solver SAT solver returns model $[\overline{1}, 3, \overline{4}]$

Aka Lemmas on demand [dMR,2002]. Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

1. Send $\{\overline{1}\lor 2, 3, \overline{4}\}$ to SAT solver SAT solver returns model $[\overline{1}, 3, \overline{4}]$ Theory solver says $[\overline{1}, 3, \overline{4}]$ is *T*-inconsistent

Aka Lemmas on demand [dMR,2002]. Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

1. Send $\{\overline{1}\lor 2, 3, \overline{4}\}$ to SAT solver SAT solver returns model $[\overline{1}, 3, \overline{4}]$ Theory solver says $[\overline{1}, 3, \overline{4}]$ is *T*-inconsistent

2. Send { $\overline{1} \lor 2$, 3, $\overline{4}$, $1 \lor \overline{3} \lor 4$ } to SAT solver

Aka Lemmas on demand [dMR,2002]. Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

1. Send $\{\overline{1}\lor 2, 3, \overline{4}\}$ to SAT solver SAT solver returns model $[\overline{1}, 3, \overline{4}]$ Theory solver says $[\overline{1}, 3, \overline{4}]$ is *T*-inconsistent

2. Send { $\overline{1} \lor 2$, 3, $\overline{4}$, $1 \lor \overline{3} \lor 4$ } to SAT solver SAT solver returns model $[1, 2, 3, \overline{4}]$

Aka Lemmas on demand [dMR,2002]. Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

1. Send $\{\overline{1}\lor 2, 3, \overline{4}\}$ to SAT solver SAT solver returns model $[\overline{1}, 3, \overline{4}]$ Theory solver says $[\overline{1}, 3, \overline{4}]$ is *T*-inconsistent

Aka Lemmas on demand [dMR,2002]. Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

1. Send $\{\overline{1}\lor 2, 3, \overline{4}\}$ to SAT solver SAT solver returns model $[\overline{1}, 3, \overline{4}]$ Theory solver says $[\overline{1}, 3, \overline{4}]$ is *T*-inconsistent 2. Send { $\overline{1} \lor 2$, 3, $\overline{4}$, $1 \lor \overline{3} \lor 4$ } to SAT solver

SAT solver returns model $[1, 2, 3, \overline{4}]$

Theory solver says $[1, 2, 3, \overline{4}]$ is *T*-inconsistent

3. Send $\{\overline{1}\lor 2, 3, \overline{4}, 1\lor \overline{3}\lor 4, \overline{1}\lor \overline{2}\lor \overline{3}\lor 4\}$ to SAT solver

Aka Lemmas on demand [dMR,2002]. Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

1. Send $\{\overline{1}\lor 2, 3, \overline{4}\}$ to SAT solver SAT solver returns model $[\overline{1}, 3, \overline{4}]$ Theory solver says $[\overline{1}, 3, \overline{4}]$ is *T*-inconsistent

2. Send { $\overline{1} \lor 2$, 3, $\overline{4}$, $1 \lor \overline{3} \lor 4$ } to SAT solver SAT solver returns model $[1, 2, 3, \overline{4}]$ Theory solver says $[1, 2, 3, \overline{4}]$ is *T*-inconsistent 3. Send $\{\overline{1}\lor 2, 3, \overline{4}, 1\lor \overline{3}\lor 4, \overline{1}\lor \overline{2}\lor \overline{3}\lor 4\}$ to SAT solver SAT solver says UNSAT

Since state-of-the-art SAT solvers are all DPLL-based...

Check *T*-consistency only of full propositional models

Since state-of-the-art SAT solvers are all DPLL-based...

- Check T consistency only of full propositional models
- Check *T*-consistency of partial assignment while being built

Since state-of-the-art SAT solvers are all DPLL-based...

- Check T consistency only of full propositional models
- Check *T*-consistency of partial assignment while being built
- Given a *T*-inconsistent assignment *M*, add \neg *M* as a clause

Since state-of-the-art SAT solvers are all DPLL-based...

- Check T-consistency only of full propositional models
- Check *T*-consistency of partial assignment while being built
- Given a *T*-inconsistent assignment *M*, add \neg *M* as a clause-
- Given a *T*-inconsistent assignment *M*, find an explanation (a small *T*-inconsistent subset of *M*) and add it as a clause

Since state-of-the-art SAT solvers are all DPLL-based...

- Check T-consistency only of full propositional models
- Check *T*-consistency of partial assignment while being built
- Given a *T*-inconsistent assignment *M*, add \neg *M* as a clause
- Given a *T*-inconsistent assignment *M*, find an explanation (a small *T*-inconsistent subset of *M*) and add it as a clause
- Upon a *T*-inconsistency, add clause and restart

Since state-of-the-art SAT solvers are all DPLL-based...

- Check T-consistency only of full propositional models
- Check *T*-consistency of partial assignment while being built
- Given a *T*-inconsistent assignment *M*, add ¬*M* as a clause
- Given a *T*-inconsistent assignment *M*, find an explanation (a small *T*-inconsistent subset of *M*) and add it as a clause
- Upon a T-inconsistency, add clause and restart
- Upon a *T*-inconsistency, do conflict analysis of the explanation and Backjump

DPLL(T) approach ('04) ([NOT], JACM Nov06)

DPLL(T) = **DPLL(X)** engine + *T*-Solvers

- Modular and flexible: can plug in any *T*-Solvers into the DPLL(X) engine.
- *T***-Solvers** specialized and fast in Theory Propagation:
 - Propagate input literals that are theory consequences
 - more pruning in improved lazy SMT
 - *T*-Solver also guides search, instead of only validating it
 - fully exploited in conflict analysis (non-trivial)
- **DPLL(T)** approach is being quite widely adopted (cf. Google).

Notation used: Abstract DPLL Modulo Theories:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$
$$\varnothing \qquad \| \quad \overline{1} \lor 2, \ 3, \ \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

Notation used: Abstract DPLL Modulo Theories:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$
$$\bigotimes \\ \begin{pmatrix} \emptyset \\ 3 \end{pmatrix} \parallel \overline{1} \lor 2, \ 3, \ \overline{4} \\ \Rightarrow \qquad (\text{UnitPropagate}) \\ (\text{T-Propagate}) \end{cases}$$

Notation used: Abstract DPLL Modulo Theories:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

$$\bigotimes \qquad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

$$3 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

$$3 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

Notation used: Abstract DPLL Modulo Theories:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

$$\bigotimes \qquad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \qquad (\text{UnitPropagate})$$

$$3 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \qquad (\text{UnitPropagate})$$

$$3 \quad 1 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \qquad (\text{UnitPropagate})$$

$$3 \quad 1 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \qquad (\text{UnitPropagate})$$

$$3 \quad 1 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \qquad (\text{UnitPropagate})$$

Notation used: Abstract DPLL Modulo Theories:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

$$\bigotimes \qquad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

$$3 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

$$3 \quad 1 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

$$3 \quad 1 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

$$3 \quad 1 \quad 2 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

$$3 \quad 1 \quad 2 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

Notation used: Abstract DPLL Modulo Theories:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

$$\bigotimes \qquad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

$$3 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

$$31 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

$$312 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

$$312 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

$$312 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

$$312 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

$$312 \quad \| \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

Conflict at decision level zero. No search in this example.

Notation used: Abstract DPLL Modulo Theories:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

$$\bigotimes \qquad \parallel \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

$$3 \qquad \parallel \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

$$3 \qquad 1 \qquad \parallel \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

$$3 \qquad 1 \qquad \parallel \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})$$

$$3 \qquad 1 \qquad 2 \qquad \parallel \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

$$3 \qquad 1 \qquad 2 \qquad \parallel \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

$$3 \qquad 1 \qquad 2 \qquad \parallel \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

$$3 \qquad 1 \qquad 2 \qquad \parallel \quad \overline{1} \lor 2, \quad 3, \quad \overline{4} \quad \Rightarrow \quad (\text{T-Propagate})$$

Conflict at decision level zero. No search in this example.

Explanation for last T-Propagate:

 $2 \land 3 \rightarrow 4$ or, equivalently, $\overline{2} \lor \overline{3} \lor 4$ Explanations are *T*-lemmas, i.e., tautologies (valid clauses) in *T*
Conflict analysis in DPLL(*T***)**

Need to do backward resolution with two kinds of clauses:

- UnitPropagate with clause C: resolve with C (as in SAT)
- **T-Propagate** of *lit* : resolve with (small) explanation $l_1 \land ... \land l_n \rightarrow lit$ provided by *T*-Solver Too new *T*-explanations are forbidden!

How should it be implemented? (see again [NOT], JACM'06)

- UnitPropagate: store a pointer to clause C, as in SAT solvers
- T-Propagate: (pre-)compute explanations at each T-Propagate?
 Better only on demand, during conflict analysis
 - Better only on demand, during conflict analysis
 - typically only one Explain per approx. 250 T-Propagates.
 - depends on T, etc.

What does DPLL(*T*) need from *T*-Solver?

- *T*-consistency check of a set of literals *M*, with:
 - Explain of *T*-inconsistency: find small *T*-inconsistent subset of *M*
 - Incrementality: if *l* is added to *M*, check for *M l* faster than reprocessing *M l* from scratch.
- Theory propagation: find input *T*-consequences of *M*, with:
 - Explain T-Propagate of *l*: find (small) subset of *M* that
 T-entails *l* (needed in conflict analysis).
- Backtrack *n*: undo last *n* literals added

The Barcelogic SMT solver

DPLL(X) is a state-of-the-art DPLL-based SAT engine: the Barcelogic SAT solver.

- *T*-Solvers for:
 - Congruences (EUF)
 - Integer/Real Difference Logic
 - Linear Integer/Real Arithmetic
 - Arrays
 - **_** ...
 - New: typical CP filtering algorithms (next)

A DPLL(alldifferent) example

- Example: Quasi-Group Completion (QGC) Each row and column must contain 1 . . . *n*.
- Good method: 3-D encoding in SAT where p_{ijk} means "row *i* col *j* has value *k*":
 - at least one k per [i, j]: clauses like
 at most one k per [i, j]: 2-lit clauses like
 - **same for exactly one** j per [i,k] and i per [j,k]
 - I unit clause per filled-in value, e.g., p_{313}
- In our 5x5 example, DPLL's UnitPropagate infers no value but **alldifferent** does. Which one?

 $\frac{p_{ij1} \vee \ldots \vee p_{ijn}}{\overline{p_{ij1}} \vee \overline{p_{ij2}}}$

SMT for the theory of alldifferent

QGC Example continued:

alldifferent infers that x, y will consume 1, 2 and hence z = 3.

Idea:

- Use 3-D encoding + SMT where T is alldifferent.
 As usual in SMT, T-solver knows what p_{ijk} 's mean.
- From time to time invoke *T*-solver before Decide, but do always cheap SAT stuff first: UnitPropagate, Backjump, etc.
- *T*-solver e.g., incremental filtering [Regin'94] but with Explain: in our example, the literal p_{133} (meaning z = 3) is entailed by $\{ \overline{p_{113}} \ \overline{p_{114}} \ \dots \ \overline{p_{135}} \}$ (meaning $x \neq 3, x \neq 4, \dots, z \neq 5$).

SMT for the theory of alldifferent

Get CP with special-purpose global filtering algorithms, learning, backjumping, automatic variable selection heuristics...

Application to real-world professional round-robin sports scheduling

Sometimes better results with weaker alldiff propagation

Another example: DPLL(cumulative)

N tasks. Each one has a duration and uses certain finite resources. Pure SMT approach, modeling with variables $s_{t,h}$:

- $s_{t,h}$ means $start(t) \le h$ (so $\overline{s_{t,h-1}} \land s_{t,h}$ means start(t) = h).
- **J T-solver** propagates resource capacities (using filtering algs.)

Better "hybrid" approach, adding variables *a*_{*t*,*h*}:

- $a_{t,h} \text{ means task } t \text{ is active at hour } h$
- Time-resource decomposition (AgounBel93, Schutt+09): quadratic no. of clauses like $\overline{s_{t,h-duration(t)}} \wedge s_{t,h} \longrightarrow a_{t,h}$
- **T-solver** handles, for each hour *h* and each resource *r*, one Pseudo-Boolean constr. like $3a_{t,h} + 4a_{t',h} + ... \le capacity(r)$

Very good results.

Why can SAT sometimes beat SMT? See below.

Proof complexity and other insights

SMT solvers can generate unsat proofs, which come in two parts:

- A resolution refutation from:
 - the clauses of the input CNF
 - the generated explanations (clauses)
- For each explanation clause, an independent proof in (its) T.

So, after all, SMT generates a SAT encoding, but lazily.

SMT solver runtime \geq size of smallest resolution proof.

In "artificial-like" problems:

- SMT's lazy SAT encoding could end up being a full one
- And... this full encoding could be a rather naive one.

Example: T = cardinality constraints. T-solver is just a counter.

Unsat instance: $x_1 + \ldots + x_n \ge k$ and $x_1 + \ldots + x_n < k$

Refutation requires all $\binom{n}{k+1}$ explanations like, e.g.,

$$x_1 \wedge \ldots \wedge x_k \to \overline{x_{k+1}}$$

Here a good SAT encoding with auxiliary vars works better. Splitting on aux vars can give expon. speedup: Extended Resol.

But... some constraints admit no P-size domain-consistent SAT encoding, e.g., alldiff [BessiereEtal'09].

Comparison with Lazy Clause Generation

LCG [OhrimenkoStuckeyCodish07] was the instance of SMT where:

each time the T-solver detects that *lit* can be propagated, it generates and adds (forever) the explanation clause, so the SAT-solver can UnitPropagate *lit* with it.

But as we have seen in this talk, it is usually better to:

- Generate explanations only when needed: at conflict an. time.
- Never add explanations as clauses. Otherwise: die keeping too many explanations (or the whole SAT encoding).
 Remember: Forget of the usual lemmas is already Crucial to keep UnitPropagate fast and memory affordable!

Since recently, with these improvements, LCG = SMT.

Concluding remarks

Need more work on further filtering algorithms with explain.

- Progress (but need more) in optimization problems:
 - Branch and bound is just another SMT theory (SAT'06)
 - Framework for branch and bound w/ lower bounding and optimality proof certificates (SAT'09).
 - MAX-SMT.

Need more work on further filtering algorithms with explain.

- Progress (but need more) in optimization problems:
 - Branch and bound is just another SMT theory (SAT'06)
 - Framework for branch and bound w/ lower bounding and optimality proof certificates (SAT'09).
 - MAX-SMT.
- Barcelogic is looking for industrial problems, partners, projects (e.g., EU)...

Thank You!