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The objective of this talk is to explain:

What SAT Modulo Theories (SMT) is.

Our current aim:
bring SMT from verification applications to other more typical
CP ones: scheduling, timetabling...

Can we use SMT trying to get the best of two worlds?:

From SAT:
efficiency, robustness, no need for tuning.

From general complete methods in CP (note: CP ⊃ SAT):
expressiveness, rich modeling languages, special-purpose
algorithms for arithmetic, for global constraints....
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What is meant by CP solver in this talk?

“Typical” state-of-the-art solver with:

complete systematic search

backtracking (no backjumping)

no learning

rich modeling languages

sophisticated:

heuristics for branching variable selection (e.g., first-fail)

heuristics for branching value selection

special-purpose global contraint propagation algorithms

NB: for some problems, complete CP/SAT/SMT all inadequate!
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outperforming by far the other methods (see later why)
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single, fully automatic, push-button, var selection strategy!

Hence modeling is essentially declarative.

++ SAT in CP’10 Procs! E.g., pg 398, Petke&Jeavons’ abstract ends:
“We (...) show that, without being explicitly designed to do so,
current clause-learning SAT solvers efficiently simulate
k-consistency techniques, for all values of k [and] (...)
efficiently solve certain families of CSP instances which are
challenging for conventional CP solvers”.
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Good vs Bad in SAT Solvers

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)

Lesson: Real-world problems 6= random or artificial ones !

What’s GOOD? Complete solvers:

outperforming by far the other methods (see later why)

on real-world problems from many sources, with a

single, fully automatic, push-button, var selection strategy!

Hence modeling is essentially declarative.

What’s BAD?

very low-level language: need modeling and encoding tools

no good encodings for many aspects: arithmetic...

Answers “unsat” or model. Optimization not as well studied.
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Good vs Bad in general CP Solvers

What’s GOOD?

Expressive modeling constructs and languages

Specialized algorithms for many (global) constraints

Optimization aspects better studied

What’s BAD or, well, not so good?

Performance(?)

Not quite automatic or push-button
Heuristics tuning per problem (or even per instance)

In CP Procs, sometimes only “academic” experiments:
– on random or artificial problems (sometimes not realistic)
– no big database of real-world/industrial instances
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Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)

1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Backjump =

1. Conflict Analysis: “Find” a backjump clause C ∨ l (here, 2∨5)

that is a logical consequence of F

that reveals a unit propagation of l at earlier decision
level d (i.e., where its part C is false)

2. Return to decision level d and do the propagation.
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Conflict Analysis: find backjump clause

Example. Consider assignment: . . . 6 . . . 7 . . . 9 and let F contain:

9∨6∨7∨8, 8∨7∨5, 6∨8∨4, 4∨1, 4∨5∨2, 5∨7∨3, 1∨2∨3.

UnitPropagate gives . . . 6 . . . 7 . . . 9 8 5 4 1 2 3. Conflict w/ 1∨2∨3!

C.An. = do resolutions in reverse order backwards from conflict:

8∨7∨5

6∨8∨4

4∨1

4∨5∨2

5∨7∨3 1∨2∨3

5∨7∨1∨2

4∨5∨7∨1

5∨7∨4

6∨8∨7∨5

8∨7∨6

until reaching clause with only 1 literal of last decision level.

Can use this backjump clause 8∨7∨6 for Backjump to . . . 6 . . . 7 8.

CP 2010 Barcelogic – p. 9
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Yes, but why is DPLL really that good?

Three key ingredients that only work if used TOGETHER:

1. Learn at each conflict backjump clause as a lemma (“nogood”):

makes UnitPropagate more powerful

prevents EXP repeated work in future similar conflicts

2. Decide on variables with many occurrences in recent conflicts:

Dynamic activity-based heuristics (former VSIDS implm.)

idea: work off, one by one, clusters of tightly related vars
(try DPLL on two independent instances together...)

3. Forget from time to time low-activity lemmas:

crucial to keep UnitPropagate fast and memory affordable

idea: lemmas from worked-off clusters no longer needed!
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Not the same success doing this in CP...

It’s not easy to get everything together right. But also (I think):

Static (e.g., first-fail) heuristics used
– effect: work simultaneously on too unrelated variables
– would require storing too many nogoods at the same time

No simple uniform underlying language (as SAT’s clauses):
– hard to express nogoods (in SAT, 1st-class citizens: clauses)
– hard to understand conflict analysis
– hard to implement things really efficiently

Learning nogoods not found very useful...
– mislead by random/academic pbs?
– Indeed, it is useless isolatedly, and also on random pbs!

Learning requires explaining filtering algs.! [KB’03,05, ...]

Towards a solution... see the next slide...
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What is SAT Modulo Theories (SMT)?

Origin: Reasoning about equality, arithmetic, data structures such
as arrays, etc., in Software/Hardware verification.

What is SMT? Deciding satisfiability of an (existential) SAT
formula with atoms over a background theory T

Example 1: T is Equality with Uninterpreted Functions (EUF):

3 clauses: f (g(a)) 6= f (c) ∨ g(a)=d, g(a)= c, c 6=d

Example 2: several (how many?) combined theories:

2 clauses: A=write(B, i+1, x), read(A, j+3)=y ∨ f (i−1) 6= f (j+1)

Typical verification examples, where SMT is method of choice.

CP 2010 Barcelogic – p. 12
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The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)
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Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, do conflict analysis of the explanation
and Backjump
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DPLL(T) approach (’04) ([NOT], JACM Nov06)

DPLL(T) = DPLL(X) engine + T-Solvers

Modular and flexible: can plug in any T-Solvers into the
DPLL(X) engine.

T-Solvers specialized and fast in Theory Propagation:

Propagate input literals that are theory consequences

more pruning in improved lazy SMT

T-Solver also guides search, instead of only validating it

fully exploited in conflict analysis (non-trivial)

DPLL(T) approach is being quite widely adopted (cf. Google).
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DPLL(T) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

f (g(a)) 6= f (c)
︸ ︷︷ ︸
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∨ g(a)=d
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, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
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4

∅ || 1∨2, 3, 4 ⇒ (UnitPropagate)
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Notation used: Abstract DPLL Modulo Theories:

f (g(a)) 6= f (c)
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3 1 2 || 1∨2, 3, 4 ⇒ (T-Propagate)

3 1 2 4 || 1∨2, 3, 4 ⇒ unsat

Conflict at decision level zero. No search in this example.

Explanation for last T-Propagate:

2 ∧ 3 → 4 or, equivalently, 2 ∨ 3 ∨ 4
Explanations are T-lemmas, i.e., tautologies (valid clauses) in T
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Conflict analysis in DPLL(T)

Need to do backward resolution with two kinds of clauses:

UnitPropagate with clause C: resolve with C (as in SAT)

T-Propagate of lit : resolve with (small) explanation
l1 ∧ . . . ∧ ln → lit provided by T-Solver

Too new T-explanations are forbidden!

How should it be implemented? (see again [NOT], JACM’06)

UnitPropagate: store a pointer to clause C, as in SAT solvers

T-Propagate: (pre-)compute explanations at each T-Propagate?
– Better only on demand, during conflict analysis
– typically only one Explain per approx. 250 T-Propagates.
– depends on T, etc.

CP 2010 Barcelogic – p. 17
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What does DPLL(T) need from T-Solver?

T-consistency check of a set of literals M, with:

Explain of T-inconsistency: find small T-inconsistent
subset of M

Incrementality: if l is added to M, check for M l faster than
reprocessing M l from scratch.

Theory propagation: find input T-consequences of M, with:

Explain T-Propagate of l: find (small) subset of M that
T-entails l (needed in conflict analysis).

Backtrack n: undo last n literals added
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The Barcelogic SMT solver

DPLL(X) is a state-of-the-art DPLL-based SAT engine: the
Barcelogic SAT solver.

T-Solvers for:

Congruences (EUF)

Integer/Real Difference Logic

Linear Integer/Real Arithmetic

Arrays

...

New: typical CP filtering algorithms (next)
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A DPLL(alldifferent) example

Example:
Quasi-Group Completion (QGC)
Each row and column must contain 1 . . . n.

Good method: 3-D encoding in SAT
where pijk means “row i col j has value k”:

3 4

3 4 5

4 5

5

at least one k per [i, j]: clauses like pij1 ∨ . . . ∨ pijn

at most one k per [i, j]: 2-lit clauses like pij1 ∨ pij2

same for exactly one j per [i, k] and i per [j, k]

1 unit clause per filled-in value, e.g., p313

In our 5x5 example, DPLL’s UnitPropagate infers no value

but alldifferent does. Which one?
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SMT for the theory of alldifferent

QGC Example continued:

alldifferent infers that x, y will
consume 1, 2 and hence z = 3.

Idea:

x y z

3 4

3 4 5

4 5

5

Use 3-D encoding + SMT where T is alldifferent.
As usual in SMT, T-solver knows what pijk’s mean.

From time to time invoke T-solver before Decide, but
do always cheap SAT stuff first: UnitPropagate, Backjump, etc.

T-solver e.g., incremental filtering [Regin’94] but with Explain:
in our example, the literal p133 (meaning z = 3) is entailed by

{ p113 p114 . . . p135 } (meaning x 6= 3, x 6= 4, . . . , z 6= 5).
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SMT for the theory of alldifferent

Get CP with special-purpose global filtering algorithms, learning,
backjumping, automatic variable selection heuristics...

Application to real-world professional round-robin sports
scheduling

Sometimes better results with weaker alldiff propagation
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Another example: DPLL(cumulative)

N tasks. Each one has a duration and uses certain finite resources.

Pure SMT approach, modeling with variables st,h:

st,h means start(t) ≤ h ( so st,h−1 ∧ st,h means start(t) = h ).

T-solver propagates resource capacities (using filtering algs.)

Better “hybrid” approach, adding variables at,h:

at,h means task t is active at hour h

Time-resource decomposition (AgounBel93, Schutt+09):
quadratic no. of clauses like st,h−duration(t) ∧ st,h −→ at,h

T-solver handles, for each hour h and each resource r, one
Pseudo-Boolean constr. like 3at,h + 4at′ ,h + . . . ≤ capacity(r)

Very good results.
Why can SAT sometimes beat SMT? See below.

CP 2010 Barcelogic – p. 23



Barcelogic - Tech. Univ. Catalonia (UPC)

Proof complexity and other insights

SMT solvers can generate unsat proofs, which come in two parts:

A resolution refutation from:

the clauses of the input CNF

the generated explanations (clauses)

For each explanation clause, an independent proof in (its) T.

So, after all, SMT generates a SAT encoding, but lazily.

SMT solver runtime ≥ size of smallest resolution proof.
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How could SAT beat SMT?

In “artificial-like” problems:

SMT’s lazy SAT encoding could end up being a full one

And... this full encoding could be a rather naive one.

Example: T = cardinality constraints. T-solver is just a counter.

Unsat instance: x1 + . . . + xn ≥ k and x1 + . . . + xn < k

Refutation requires all ( n
k+1) explanations like, e.g.,

x1 ∧ . . . ∧ xk → xk+1

Here a good SAT encoding with auxiliary vars works better.

Splitting on aux vars can give expon. speedup: Extended Resol.

But... some constraints admit no P-size domain-consistent SAT
encoding, e.g., alldiff [BessiereEtal’09].
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Comparison with Lazy Clause Generation

LCG [OhrimenkoStuckeyCodish07] was the instance of SMT where:

each time the T-solver detects that lit can be propagated, it
generates and adds (forever) the explanation clause, so the
SAT-solver can UnitPropagate lit with it.

But as we have seen in this talk, it is usually better to:

Generate explanations only when needed: at conflict an. time.

Never add explanations as clauses. Otherwise: die keeping
too many explanations (or the whole SAT encoding).

Remember: Forget of the usual lemmas is already Crucial to
keep UnitPropagate fast and memory affordable!

Since recently, with these improvements, LCG = SMT.
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Concluding remarks

Need more work on further filtering algorithms with explain.

Progress (but need more) in optimization problems:
– Branch and bound is just another SMT theory (SAT’06)
– Framework for branch and bound w/ lower bounding and

optimality proof certificates (SAT’09).
– MAX-SMT.
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Concluding remarks

Need more work on further filtering algorithms with explain.

Progress (but need more) in optimization problems:
– Branch and bound is just another SMT theory (SAT’06)
– Framework for branch and bound w/ lower bounding and

optimality proof certificates (SAT’09).
– MAX-SMT.

Barcelogic is looking for industrial problems, partners,
projects (e.g., EU)...

Thank You!
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