Completeness of Cutting Planes Revisited

Marc Bezem!* and Robert Nieuwenhuis?

! Department of Informatics, University of Bergen, Norway
% Barcelogic.com and Technical University of Catalonia (UPC), Barcelona, Spain

Abstract. Most of the theoretical background behind integer linear program-
ming (ILP) and 0-1 ILP methods has historically been based on general (rational)
Linear Programming.

Motivated by recent practical interest in SAT-related techniques for ILP, here we
re-visit cutting planes in a more self-contained way.

We give short and —we think— insight-providing completeness proofs for general
bounded ILPs as well as 0-1 ones, analyzing stronger and weaker rule systems,
and giving (counter) examples.

Among the insights gained are new completeness results for less prolific and
hence more easily automatizable systems including ordered ones.

1 Introduction

The theory of Integer Linear Programming, in part based on the theory of Linear Pro-
gramming (LP) in the rationals, is well-developed and all results are rigorously proved.
It takes, however, considerable effort to understand the sometimes deep proofs. Exam-
ples include the proof of completeness of the cutting planes method in [13, Theorem
2.14] and [19, Corollary 23.2b]. This is of course not meant as criticism, but we believe
that shorter and more self-contained proofs, if they can be found, may be useful to the
community.

Indeed, there has been a considerable recent practical interest in techniques for ILP
that are not based on LP-relaxations. On the one hand, there is a large body of work on
Pseudo-Boolean (aka 0-1 ILP) solvers based on conflict-driven constraint-learning in a
similar way to CDCL clause-learning solvers for SAT (see [18] and its numerous refer-
ences). On 0-1 ILP problems, such solvers frequently outperform the best commercial
LP-relaxation-based tools such as Cplex or Gurobi. On the other hand, also new CDCL-
like techniques for full ILP over Z have recently appeared: Cutsat [12] and IntSat [14].
The latter one also appears to be competitive with these commercial solvers at least on
certain full ILP problem classes.

Our motivation for this work is to gain new insights in the cutting-plane inference
systems underlying these new CDCL solvers. Since these solvers optimize by solv-
ing a sequence of feasibility problems, we here focus on refutation completeness. We
give short and —we think— insight-providing completeness proofs for general bounded
ILPs as well as for 0-1 ones, analyzing stronger and weaker rule systems, and giving
(counter) examples. Among the insights gained are new (to the best of our knowledge)
completeness results for less prolific and hence more easily automatizable systems in-
cluding ordered ones.

We address general bounded ILPs in Section 3, and 0-1 ones in Section 4. Several
(counter) examples are given in Section 5. Sections 6 and 7 discuss related and future
work and conclude.

2 Basic definitions and notation

Let X = {x,...x;} be a set of variables over Z. Throughout this paper we will use
the following definitions. An (integer linear) monomial is an expression of the form
a;x; where a; € Z (1 < i < n) is called the coefficient of x;. A (homogeneous integer
linear) polynomial, denoted by p, g, ... is a sum a,Xx, + ... + a;x; of n monomials. We
sometimes use standard shorthands, omitting, e.g., unit coefficients, or monomials with
coefficient zero. If a; = O for all i with 1 < i < n then the polynomial is called empty
and denoted by 0. If pisa,x, +...+a;x; and g is b,x, + ...+ by x1, then p + g denotes
the polynomial ¢;x; + ... + ¢,x, where ¢; = a; + b; (1 < i < n), and if ¢ € Z then cp
denotes the polynomial (ca,)x, + ...+ (ca;)x;. Given d € N*, we write d|p to denote
that d divides all g; for 1 < i < n. If d|p then p/d denotes (a,/d)x, + ...+ (a;/d)x;.

An (integer linear) constraint, denoted by C, D, ... is an inequality p > ¢ with
¢ € Z. A contradiction is a constraint of the form 0 > ¢ with ¢ > 0. We denote sets of
constraints by the letter S. An integer assignment is a function M : {x,,..., x|} = Z. If
p is a polynomial a,x, + ... + a;x; then M(p) is the integer a,M(x,) + ... + a;M(x)).
M satisfies a constraint p > c if M(p) >z c, denoted M E C. We write M E § if
M satisfies all constraints in S. Then M is a solution or a model of S and S is called
feasible.

A lower bound for x is a constraint of the form x > / and an upper bound for x is
a constraint of the form —x > —u. Then the integers [and u are also called lower (resp.
upper) bounds for x. We say that a set S of constraints is bounded if for each variable
there is both a lower and an upper bound in S.

We will use the ordering on variables induced by their subindices, as follows. We
always write polynomials with variables in descending order. When we write a con-
straint ax; + p > c this means that a # 0 and moreover that all monomials bx; in p with
b # 0 have j < i, and we call x; maximal in this constraint. Note that any constraint
with non-empty polynomial has a unique maximal variable.

If S is a set of constraints, we denote by S; the subset of § of constraints having
no variable larger than x;, i.e., in §; all variables of {x;;; ... Xx,} have zero coefficients.
Formally, given an S, for eachi = 0,...,n we define S; = { (apx, + ... +ajx; > c¢) €
S | aj=0forall j>i}. We clearly have that §,, = §, that §; C S;1; (0 <7 < n) and
that S includes all contradictions in S (if any).

The following inference rules for constraints are well-known ([.] denotes the stan-
dard rounding-up ceiling function and gcd the greatest common divisor).

. > >d
Combine : P=c 9 where a,b €N
ap +bq > ac + bd
... >
Divide : Gndn ¥ ... ¥ O1%1 2 C where d = ged(ap, ..., a1)

(a,/d)x, + ...+ (a1/d)x, = [c/d]

These rules are also well-known to be correct, that is, any set of constraints S has
the same solutions in Z as § U {C} if C is a conclusion obtained by Combine-ing or
Divide-ing with premise(s) in S.

3 Completeness for ILP

The following result is not new, see, e.g., [13, Cor. 2.14]. In fact, it is known to be
true even if S is not bounded [19, Corollary 23.2b]. But the proof we provide is new,
concise and self-contained. Moreover, the proof allows us to analyse which instances
of Combine and Divide are actually used. This will allow us to obtain stronger results.

Theorem 1. Ifa bounded set of constraints is infeasible then its closure under Combine
and Divide yields a contradiction.

Proof. Consider any bounded set of constraints, let S be its closure under Combine
and Divide, and assume there is no contradiction in S. We prove that S is feasible, by
actually building a solution M of S. Recall that S, is the subset of all constraints in S
where the variables in x,,, . .., x;;; have coefficient 0. We build a solution M; for each S;
by induction on i. The base case i = 0 is trivial: the empty M, is a solution of S since
S has no contradictions. For the induction step i > 0, assume M,_; is a solution for §;_;
(I.LH.). We extend M;_; to M; by defining M;(x;) = max{ c—M,_1(p) | x;+p=cin§; }.
This is well-defined: we take the maximum of a non-empty set (since there is a lower
bound x; > /in §) that is upper bounded by u, the upper bound for x; in S. The latter is
true since S is closed under Combine and each x; + p > ¢ in §; can be combined with
—x; > —u to give the constraint p > ¢ —u in §;_; and, by LH., c — M;_1(p) < u.
We now prove M; | S;. Constraints C in §; \ S;-; can have the following form:

A) C is of the form x; + p > c. Then by construction of M; we have M; = C.

B) C is of the form —ax; + p > ¢ with a > 0. By construction, M;(x;) = d — M;(q)
for some x; + g > d in §;. By a Combine of a times x; + ¢ > d with C we get
ag + p > ¢ + ad, which is in S;_;, hence by LH. aM;(q) + M;(p) > ¢ + ad, so
M; E —ax;+p >c.

C) Cis of the form ax; + p > ¢ witha > 1.

C1) If a|p then, by Divide, x; + p/a > [c/a] is in §; and by construction M;(x;) >
[c/al — M;(p/a) and hence M;(ax; + p) > ¢, so M; E C.
C2) Otherwise, let x; be the maximal variable in p with coeflicient b not divisible
by a. Let x; + g > d in § ; be the constraint causing M;(x;) to be d — Mi(g).
C2a) If b < 0, do a Combine of —b times x; + g > d and C (eliminating x;).
C2b) If b > 0, let r be the smallest natural number such that b + r is divisible by
a and do a Combine of r times x; + g > d and C.
In both cases we get a constraint D in §;, where x;’s coefficient is divisible by a,
and such that M; = D iff M; | C. By repeating this at most n — 1 times (where
each time the maximal variable with coefficient not divisible by a becomes
smaller), finally we get a constraint as in case C1), proving M; = C. O

One inconvenient aspect of the previous result is that Combine is difficult to control
(and hence of little practical value): in fact any pair of constraints p > ¢ and g > d can
be combined with any pair of factors a,b € N to obtain ap + bq > ac + bd. Also, while
Divide is fully deterministic, it is not clear when it is useful to apply this rule.

However, a closer look at our proof reveals that in fact only very particular cases
of Combine and Divide are used. The Divide rule is applied only in case C1), where

the premise is of the form ax; + p > c (i.e., by our notation, x; is its maximal variable)
where a > 1, and where all coeflicients in p are divisible by a, and where indeed the
divisor d of Divide is a; this is achieved by the Ordered Exact Divide rule given below.
The Combine rule has three kinds of uses in the proof:

— In case B) and before A), Combine is used to eliminate x;, the maximal variable in
both premises, and moreover in one of the premises x; has coefficient 1. Hence in
the other premise x;’s coefficient —a is negative and the factors are fully determined:
they must be @ and 1, respectively. This is done by the Ordered VE Combine rule
given below (where VE stands for Variable-Eliminating).

— In cases C2a) and C2b) premise C must be of the form ax; + p + bx; + p’ > ¢ where
a>1, alp and afb (note that by our notation, x; is its maximal variable and x; is
its largest variable whose coefficient b is not divisible by a). The other premise C’
is of the form x; + ¢ > d.

e In case C2a), we have b < 0 and Combine is again used only to eliminate
x;j, by adding —b times C’ to C, i.e., the factors must be —b and 1. This is
the Ordered VE Preparing Combine rule given below (called like this as it
prepares for the Ordered Exact Divide step of case C1).

e In case C2b), we have b > 0 and Combine must be used to add r times C’ to C
(i.e., factors r and 1), where r is the smallest natural number such that a divides
b + r. This is the Ordered Preparing Combine rule given below.

Altogether, this proves that the following strongly restricted versions of Combine
and Divide suffice.

Ordered VE Combine :
—ax;+p=c Xi+q=>d
p+aq>c+ad

where a>0

Ordered VE Preparing Combine :
axi+p+bxj+p >c xXj+qg>d
axi+p+p —bg>c—bd

where a>1, b<0, alp and atb

Ordered Preparing Combine :
axi+p+bxj+p >c xXj+g>d
axi+p+OG+nrxj+p +rg=>c+rd

where b>0, al|p, al(b+r), O<r<a

Ordered Exact Divide :
axi+p=c
X+ pla s [e/d] where a>1 and a|p
Theorem 2. If a bounded set of constraints is infeasible then its closure under
Ordered VE Combine, Ordered VE Preparing Combine, Ordered Preparing Combine,
and Ordered Exact Divide yields a contradiction.

Some remarks related to the proof:

1. Bounds are crucial to make the definition of the model correct, ensuring that we take
the maximum of a non-empty, bounded set of integers. Without bounds, finiteness
of the initial constraint set is needed: the closure of { x > ¢ | ¢ € N } under Combine
and Divide has no contradiction but is not feasible. When the set of constraints is
finite, bounds are not needed (see, e.g., [19, Corollary 23.2b]; [19, Corollary 17.1c]
ensures that bounds of size polynomial in the size of the input data always exist).

2. The ordering of the variables is arbitrary.

3. The model in the above proof is built by taking for each x; its smallest possible
value, given the model built so far for x;_; ... x;. There is a dual model based on
largest possible values. One can even choose per variable which of the two. The
duality should not come as a surprise: if / < x <u,then!/ <[+ u—x < u.

4. The constraints x; + p > c used in the model construction are called tight in [12].

5. Finiteness of the set of variables is not essential. The proof above can easily be
generalized to a well-ordered set of variables.

6. Theorem 2 is a stronger completeness result than Theorem 1 since the rules are
restricted. These weaker rules are easier to automate. On the other hand, weaker
rules could make some proofs longer, for example, proofs of pigeon hole principles.
This is a delicate balance: a stronger proof system is only useful for automated
theorem proving if shorter proofs can indeed be found. So far this is not the case.

4 0-1 Solutions

This section is on Pseudo-Boolean constraint solving, also known as 0-1 integer linear
programming. We consider 0-1 bounded sets of constraints, i.e., containing Boolean
bounds x > 0 and —x > —1 for every variable. We define the following two new rules
that are special cases of Combine in which one of the premises is such a Boolean bound,
and that replace the two Preparing rules of the previous section:

Upper 1 Combine :
axi+p+bxj+p >c —Xxj> -
axi+p+b-nxj+p >c—r

1
where alp, al(b-r), O<r<a

Lower 0 Combine :
axi+p+bx;j+p >2c x;20

axi+p+b+nrxj+p >c

where a|p, a|(b+r), O<r<a

Note that these rules do not include inferences with the stronger bounds x > 1 and
—x > 0 stating that x is 1 or O (initial ones nor derived ones). These are used only by
Ordered VE Combine.

Theorem 3. If a 0-1 bounded set of constraints is infeasible then its closure under
Ordered VE Combine, Upper 1 Combine, Lower 0 Combine and
Ordered Exact Divide yields a contradiction.

Proof. Consider any 0-1 bounded set of constraints, let S be its closure under the four
rules and assume there is no contradiction in S. We prove that S is feasible, by actually

building a solution M; for each S; by induction on i. The base case i = 0 is trivial: the
empty My is a solution of S since S has no contradictions. For the induction step i > 0,
assume M,_; is a solution for §;_; (I.LH.). We extend M;_; to M; by defining

— M;(x;) = 1 if there is a constraint of the form x; + p > cin S; with 1 + M;_;(p) = ¢;
— M;(x;) = 0 otherwise.

Note that in both cases M;(x;) = ¢ — M;_1(p) for some constraint of the form x; + p > ¢
in §; (in the second case the lower bound x; > 0 is of this form). We now prove that
M; = C for all constraints C in S; \ §;—;. There are three cases, depending on C:

A) C is of the form x; + p > ¢. Then by Ordered VE Combine with the upper bound
—x; > —1,we get p > ¢c—11in S, and hence, since M;_; | S;_|, we have
1+ M;_i(p) = c.If 1 + M;_;(p) = c then by construction we have M;(x;) = 1 and
M; E C.If 1 + Mi_1(p) > c then M;_1(p) > c and even if M;(x;) = 0 we have
M; EC.

B) C is of the form —ax; + p > ¢ with a > 0. By construction M;(x;) = d — M;(q)
for some x; + ¢ > d in §;, so we need to prove —ad + aM;(q) + M;(p) > c. By a
Ordered VE Combine of a times x; + ¢ > d and C we get thatag + p > ad + c is
in §,_1, hence by LH. aM;(q) + M;(p) > c + ad.

C) C s of the form ax; + p > ¢ witha > 1.

C1) If a|p then by Ordered Exact Divide x; + p/a > [c/a] is in S;. By case A)

M;i(x;))+M;(p/a) > [c/a] and hence aM;(x;)+aM;(p/a) > c and hence M; = C.

C2) Otherwise, let x; be the maximal variable in p whose coefficient b is not a
multiple of a. Then C is of the form ax; + g + bx; + ¢’ > ¢, where alg.

C2a) If M;_1(x;) = 1, do a Upper 1 Combine getting ax;+g+(b—r)x;+q" > c—r.

C2b) If M;_i(x;) = 0, do a Lower 0 Combine getting ax; + g+ (b+r)xj+q > c.

In both cases a constraint D is obtained that is in §;, and such that M E D iff

M E C. By doing this for every variable in p whose coefficient is not a multiple

of a, we obtain a constraint as in case C1), proving M; = C. O

S Examples and counterexamples

In the previous sections we have given completeness proofs attempting to minimize
the applicability of Combine, by limiting it to the cases where one of the premises
has coefficient 1, where moreover the factors n, m of Combine are fully determined,
and where a specific variable is either eliminated or increased by a precise amount.
Moreover Divide is applied only to divide by a, the coefficient of the maximal variable,
and only if the polynomial is exactly divisible by a.

A natural question arises: can non-variable eliminating applications of Combine be
avoided altogether? The answer is negative even in the 0-1 case and even with the more
general Combine and Divide:

Example 1. Let S consistof 3x+2y > 1, —-3x+2y > -2, 2x—3y > -2 and -2x -3y >
—4 and the four bounds for 0 < x,y < 1, inspired by (and equivalent to) the well-
known unsatisfiable example of four clauses that cannot be refuted by resolution without
factoring: x V' y, x Vy, x Vy and X V y. Their standard representation as constraints

x+y>1, =x+y>0, x—y >0, and —x —y > —1 is easily refuted, but all
refutations are effectively blocked by representing the clauses in a non-standard way
with a clever choice of coefficients +2, +3 (adjusting the rhs accordingly). For example,
from 3x + 2y > 1 and —3x + 2y > -2 a variable-eliminating Combine infers 4y > —1,
which can only be Divided into the completely uninformative y > 0. One easily verifies
that no contradiction can be derived by variable-eliminating Combine and Divide. O

Example 2. Let S be as in Example 1. It is instructive to see how the inference rules of
Theorem 3 refute S without doing much redundant work. Define the ordering by x > y,
so x, = x and x; = y. Ordered VE Combine can only be used to infer the tautology 0 >
1 from the bounds for x of y, or with x > 0 and either —3x + 2y > -2 or —2x -3y > —4,
yielding the uninformative 2y > -2 and —3y > —4, respectively. Lower 0 Combine and
Upper 1 Combine can only be applied with 3x + 2y > 1 and a bound for y in S, and
with 2x — 3y > -2 and a bound for y in S'. With —y > —1 this yields the uninformative
3x > —1 and the informative 2x — 4y > -3, or x — 2y > —1 after an application of
Ordered Exact Divide. With y > 0 this yields the informative 3x + 3y > l,orx+y > 1
after an application of Ordered Exact Divide, and the uninformative 2x > —2. We have
now inferred two new constraints, x—2y > —1 and x+y > 1 in which the variable x has
coefficient 1, which opens up for new applications of Ordered VE Combine. Indeed,
an Ordered VE Combine of —3x +2y > -2 and x +y > 1 yields 5y > 1,ory > 1
after an application of Ordered Exact Divide. Moreover, an Ordered VE Combine of
—2x -3y > —4and x — 2y > —1 yields =7y > —6, which contradicts y > 1, formally by
another application of Ordered VE Combine. O

The next question that arises is whether our rules for the 0-1 case are sufficient for
the integer case, when suitably generalized, i.e., the right premises in Upper 1 Combine
and Lower 0 Combine are the initial bounds for x; in S, say —x; > —u; and x; > [}, and
the right-hand sides of the conclusion of Upper 1 Combine and Lower 0 Combine are
¢ — ruj and ¢ + rlj, respectively. The answer is no, as we will see in the next example.

Example 3. Let S be as in Example 1 with the only difference that the upper bound
—y > —lisreplaced by —y > —2. Therefore, the analysis of the previous example largely
applies here. Hence we focus on the differences. The upper bound —y > —2 can only be
applied by Upper 1 Combine. With 3x + 2y > 1 this gives the uninformative 3x > —3.
With 2x — 3y > -2 it gives 2x — 4y > —4, and after Ordered Exact Divide, x — 2y > —2.
From the latter we can infer —2y > —3 by an application of Ordered VE Combine with
—x > —1. By applying Ordered Exact Divide, we can indeed infer a new derived upper
bound —y > —1. However, as remarked after the definition of Upper 1 Combine and
Lower 0 Combine, derived bounds cannot be used in these two rules, thus blocking the
refutation of the previous example. Indeed, with some effort, doing an exhaustive case
analysis the reader can now verify that no contradiction can be derived. O

6 Related Work

It is well-known that from any run of a CDCL-based SAT solver on an unsatisfiable
instance one can in fact extract a resolution refutation: at each conflict, by resolution a

new clause is derived that enables a backjump, which finally leads to a conflict at de-
cision level zero, giving the empty clause. Proving this formally requires a termination
argument based on a well-founded ordering on CDCL states (see e.g., [15]).

We start by the observation that, in a similar way, it is possible to extract a complete-
ness proof of Combine and Divide for bounded ILP from Jovanovic and De Moura’s
Cutsat procedure [12] (whose termination is based on [15]). But it gives a far longer
and more complicated proof than ours, less insight-providing, and it does not lead to
our restrictive rules nor to ordered rules. Note however that the Cutsat procedure was
not devised with the purpose of providing a completeness proof; it is an elegant and
highly non-trivial procedure, the first complete practical CDCL cutting-planes-based
solver for ILP.

A similar situation exists for several procedures for Pseudo-Boolean constraint solv-
ing [2,7,8,6,4,20,3], see also the handbook chapter [18]. These procedures perform
variable-eliminating Combine steps, and in order to always be able to backjump, they
sometimes need to weaken a constraint, e.g., into a cardinality constraint (i.e., a con-
straint having only unit coefficients) or into a clause, known to be a logical consequence
for semantic reasons. These various versions of semantic weakening can be rephrased as
sequences of Combine steps and Divide steps. Some papers make these steps explicit;
it also follows from the consequence-finding completeness results [13, Theorem 2.14]
and [19, Corollary 23.2b]. An independent syntactic proof of this semantic weakening
and a formal termination argument together constitute a completeness proof obtained
from these procedures.

Hooker has done pioneering work, first proving consequence-finding completeness
of a form of cutting planes for cardinality constraints [9]. Later he extended it to arbi-
trary O-1 linear constraints, although assuming a subprocedure for finding certain en-
tailed constraints (in particular this is possible for cardinality constraints) [10, 11].

Work on proof complexity of cutting planes, such as [17], hardly relates to ours,
since it essentially concentrates on showing that (no) short (in various senses) proofs
exist for certain problem families, rather than on completeness of cutting planes. E.g.,
Cook et al. [5] rely on Schrijver [19] for completeness.

Last but not least, let us again mention the immense body of work on the theory of
(DLP in e.g., Schrijver [19], already described in Section 1.

7 Conclusions and further work

We have given short and —we think— insight-providing completeness proofs for general
bounded ILPs as well as 0-1 ones, including new (to the best of our knowledge) results
for less prolific and hence more easily automatizable systems including ordered ones.
Given the kind of induction used in our proofs it would not be difficult to extend
these results to include abstract redundancy notions as in, e.g., [1, 16] for (first-order)
resolution and paramodulation. This would allow one to remove constraints that follow
from (finitely many) smaller constraints w.r.t. a given well-founded ordering > on con-
straints. The proof is then by contradiction from the existence of a >-minimal constraint
that is false in the constructed model. Such an abstract redundancy notion covers many

concrete criteria. To give just one simple example, a constraint 2x + 4y + z > 3 can be
removed (or needs not be generated) if, say, x + 2y > 2 and z > 0 are already present.

Some questions arise from the proof complexity point of view. We have proved com-
pleteness for inference systems that are particular cases of Combine and Divide but that
are far more “restrictive” than these. But there is usually a trade-off: such restrictive sys-
tems tend to become less “efficient” in terms of minimal proof length. Which problem
families (if any) do have short (polynomial) proofs by Combine and Divide but not by
our rules? Does this have any practical consequences for CDCL-based ILP provers? If
so, are there any more “controllable” appropriate intermediate systems?

8 Acknowledgments

Both authors have been supported by the Spanish MEC/MICINN project SweetLogics
under the grant TIN2010-21062-C02-01 and by the project DAMAS, Spanish MINECO
under the grant TIN2013-45732-C4-3-P.

References

1. Leo Bachmair and Harald Ganzinger. Resolution. In J.A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning. Elsevier Science Publishers and MIT Press, 2001.

2. Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean opti-
mization. Technical report, Max-Plank-Institut fur Informatik, Saarbrucken, 1995. Technical
Report MPI1952003.

. Daniel Le Berre and Anne Parrain. The sat4;j library, release 2.2. JSAT, 7(2-3):59-6, 2010.

4. Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver. /[EEE Trans.
on CAD of Integrated Circuits and Systems, 24(3):305-317, 2005.
5. W. Cook, C. Coullard, and Gy. Turan. On the complexity of cutting-plane proofs. Discrete
Applied Mathematics, 18:25-38, 1987.
6. Heidi E. Dixon. Automating Psuedo-Boolean Inference within a DPLL Framework. PhD
thesis, University of Oregon, 2004.
7. Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a pseudo-boolean satisfia-
bility solver. In Procs 18th National Conf on Artificial Intelligence, pages 635-640, 2002.
8. Heidi E. Dixon, Matthew L. Ginsberg, David K. Hofer, Eugene M. Luks, and Andrew J.
Parkes. Implementing a generalized version of resolution. In Procs 19th National Conf on
Artificial Intelligence, pages 55-60, 2004.
9. John N Hooker. Generalized resolution and cutting planes. Annals of Operations Research,
12:217-239, 1988.
10. John N Hooker. Generalized resolution for 0-1 linear inequalities. Annals of Mathematics
and Artificial Intelligence, 6:271-286, 1992.
11. John N Hooker. Logic-Based Methods for Optimization: Combining Optimization and Con-
straint Satisfaction. John Wiley & Sons, 2000.
12. Dejan Jovanovic and Leonardo Mendon¢a de Moura. Cutting to the chase - solving linear
integer arithmetic. J. Autom. Reasoning, 51(1):79-108, 2013.
13. G. Nembhauser and L. Wolsey. Integer and Combinatorial Optimization. John Wiley and
Sons, 1999.
14. Robert Nieuwenhuis. The IntSat method for integer linear programming. In Principles and
Practice of Constraint Programming, 20th International Conference, CP 2014, LNCS 8656,
pages 574-589.

W

10

15.

16.

17.

18.

19.
20.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Mod-
ulo Theories: From an abstract Davis—Putnam—Logemann—Loveland procedure to DPLL(T).
Journal of the ACM, JACM, 53(6):937-977, 2006.

Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In J.A.
Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, pages 371-444.
Elsevier Science and MIT Press, 2001.

P. Pudldk. Lower bounds for resolution and cutting planes proofs and monotone computa-
tions. Journal of Symbolic Logic, 62(3):981-998, 1997.

Olivier Roussel and Vasco M. Manquinho. Pseudo-boolean and cardinality constraints. In
A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume
185 of Frontiers in Al and Applications, pages 695-733. 10S Press, 2009.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, 1998.
Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-boolean SAT solver.
JSAT, 2(1-4):165-189, 2006.

