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1. INTRODUCTION

The problem of deciding the satisfiability of propositional formulas (SAT) does not
only lie at the heart of the most important open problem in complexity theory (P
vs. NP), it is also at the basis of many practical applications in such areas as Elec-
tronic Design Automation, Verification, Artificial Intelligence, and Operations Re-
search. Thanks to recent advances in SAT-solving technology, propositional solvers
are becoming the tool of choice for attacking more and more practical problems.

Most state-of-the-art SAT solvers [Moskewicz et al. 2001; Goldberg and Novikov
2002; Eén and Sörensson 2003; Ryan 2004] today are based on different variations
of the Davis-Putnam-Logemann-Loveland (DPLL) procedure [Davis and Putnam
1960; Davis et al. 1962]. Starting essentially with the work on the GRASP, SATO
and Relsat systems [Marques-Silva and Sakallah 1999; Zhang 1997; Bayardo and
Schrag 1997], the spectacular improvements in the performance of DPLL-based SAT
solvers achieved in the last years are due to (i) better implementation techniques,
such as the two-watched literal approach for unit propagation, and (ii) several
conceptual enhancements on the original DPLL procedure, aimed at reducing the
amount of explored search space, such as backjumping (a form of non-chronological
backtracking), conflict-driven lemma learning, and restarts. These advances make
it now possible to decide the satisfiability of industrial SAT problems with tens of
thousands of variables and millions of clauses.

Because of their success, both the DPLL procedure and its enhancements have
been adapted to handle satisfiability problems in more expressive logics than propo-
sitional logic. In particular, they have been used to build efficient algorithms for
the Satisfiability Modulo Theories (SMT) problem: deciding the satisfiability of
ground first-order formulas with respect to background theories such as the theory
of equality, of the integer or real numbers, of arrays, and so on [Armando et al.
2000; Filliâtre et al. 2001; Barrett et al. 2002; de Moura and Rueß 2002; Flana-
gan et al. 2003; Armando et al. 2004; Ganzinger et al. 2004; Bozzano et al. 2005].
SMT problems arise in many industrial applications, especially in formal verifi-
cation (see Section 3 for examples). They may contain thousands of clauses like
p ∨ ¬q ∨ a=f(b − c) ∨ g(g(b)) 6=c ∨ a− c ≤7, with purely propositional atoms
as well as atoms over (combined) theories, such as the theory of the integers, or of
Equality with Uninterpreted Functions (EUF).

Altogether, many variants and extensions of the DPLL procedure exist today.
They are typically described in the literature informally and with the aid of pseudo-
code fragments. Therefore, it has become difficult for the newcomer to understand
the precise nature of all these procedures, and for the expert to formally reason
about their properties.

The first main contribution of this article is to address these shortcomings by pro-
viding Abstract DPLL, a uniform, declarative framework for describing DPLL-based
solvers, both for propositional satisfiability and for satisfiability modulo theories.
The framework allows one to describe the essence of various prominent approaches
and techniques in terms of simple transition rules and rule application strategies.
By abstracting away heuristics and implementation issues, it facilitates the under-
standing of DPLL at a conceptual level as well as its correctness and termination.
For DPLL-based SMT approaches, it moreover provides a clean formulation and a
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basis for comparison of the different approaches.
The second main contribution of this paper is a new modular architecture for

building SMT solvers in practice, called DPLL(T ), and a careful study of theory
propagation, a refinement of SMT methods that can have a crucial impact on their
performance.

The architecture is based on a general DPLL(X) engine, whose parameter X can
be instantiated with a specialized solver Solver

T
for a given theory T , thus produc-

ing a system DPLL(T ). Such systems can be implemented extremely efficiently and
have good scaling properties: our BarcelogicTools implementation of DPLL(T ) won
four divisions at the 2005 SMT Competition [Barrett et al. 2005] (for the other three
existing divisions it had no Solver

T
yet). The insights provided by our Abstract

DPLL framework were an important factor in the success of our DPLL(T ) architec-
ture and its BarcelogicTools implementation. For instance, the abstract framework
helped us in understanding the interactions between the DPLL(X) engine and the
solvers, especially concerning the different forms of theory propagation, as well as
in defining a good interface between both.

Section 2 of this article presents the propositional version of Abstract DPLL. It
models DPLL procedures by means of simple transition systems. While abstract
and declarative in nature, these transition systems can explicitly model the salient
conceptual features of state-of-the-art DPLL-based SAT solvers, thus bridging the
gap between logic-based calculi for DPLL and actual implementations. Within the
Abstract DPLL formalism, we discuss in a clean and uniform way properties such
as soundness, completeness, and termination. These properties immediately carry
over to modern DPLL implementations with features such as backjumping and
learning.

For backjumping systems, for instance, we achieve this by modeling backjumping
by a general rule that encompasses several backtracking strategies—including basic
chronological backtracking—and explaining how different systems implement the
rule. Similarly, we model learning by general rules that show how devices such as
conflict graphs are just one possibility for computing new lemmas. We also provide
a general and simple termination argument for DPLL procedures that does not
depend on an exhaustive enumeration of truth assignments; instead, it relies on a
notion of search progress neatly expressing that search advances with the deduction
of new unit clauses—the higher up in the search tree the better—which is the very
essence of backjumping.

In Section 3 we go beyond propositional satisfiability, and extend the framework
to Abstract DPLL Modulo Theories. As in the purely propositional case, this again
allows us to express—and formally reason about—a number of current DPLL-based
techniques for SMT, such as the various variants of the so-called lazy approach
[Armando et al. 2000; Filliâtre et al. 2001; Audemard et al. 2002; Barrett et al.
2002; de Moura and Rueß 2002; Flanagan et al. 2003; Armando et al. 2004; Ball
et al. 2004].

In Section 4, based on the Abstract DPLL Modulo Theories framework, we in-
troduce our DPLL(T ) approach for building SMT systems. We first describe two
variants of DPLL(T ), depending on whether theory propagation is done exhaus-
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tively or not. Once the DPLL(X) engine has been implemented, this approach
becomes extremely flexible: a DPLL(T ) system for a theory T is obtained by sim-
ply plugging in the corresponding theory solver Solver

T
, which must only be able

to deal with conjunctions of theory literals and conform to a minimal and simple
set of additional requirements. We discuss the design of DPLL(X) and describe
how DPLL(X) and Solver

T
cooperate. We also show that practical T -solvers can

be designed to include theory propagation in an efficient way. A non-trivial issue
is how to deal with conflict analysis and clause learning adequately in the context
of theory propagation. Different options and possible problems for doing this are
analyzed and discussed in detail in Section 5.

In Section 6 we discuss some experiments with our BarcelogicTools implementa-
tion of DPLL(T ). The results show that it can significantly outperform the best
state-of-the-art tools and, in addition, scales up very well.

This article consolidates and improves upon preliminary ideas and results pre-
sented at the JELIA [Tinelli 2002], LPAR [Nieuwenhuis and Oliveras 2003; Nieuwen-
huis et al. 2005], and CAV [Ganzinger et al. 2004; Nieuwenhuis and Oliveras 2005a]
conferences.

2. ABSTRACT DPLL IN THE PROPOSITIONAL CASE

We start this section with some formal preliminaries on propositional logic and on
transition systems. Then we introduce several variants of Abstract DPLL and prove
their correctness properties, showing at the same time how the different features of
actual DPLL implementations are modeled by these variants.

2.1 Formulas, assignments, and satisfaction

Let P be a fixed finite set of propositional symbols. If p ∈ P , then p is an atom
and p and ¬p are literals of P . The negation of a literal l, written ¬l, denotes ¬p

if l is p, and p if l is ¬p. A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A unit
clause is a clause consisting of a single literal. A (CNF) formula is a conjunction
of one or more clauses C1 ∧ . . . ∧ Cn. When it leads to no ambiguities, we will
sometimes also write such a formula in set notation {C1, . . . , Cn}, or simply replace
the ∧ connectives by commas.

A (partial truth) assignment M is a set of literals such that {p,¬p} ⊆ M for
no p. A literal l is true in M if l ∈ M , is false in M if ¬l ∈ M , and is undefined
in M otherwise. A literal is defined in M if it is either true or false in M . The
assignment M is total over P if no literal of P is undefined in M . A clause C is
true in M if at least one of its literals is in M . It is false in M if all its literals
are false in M , and it is undefined in M otherwise. A formula F is true in M , or
satisfied by M , denoted M |= F , if all its clauses are true in M . In that case, M is
a model of F . If F has no models then it is unsatisfiable. If F and F ′ are formulas,
we write F |= F ′ if F ′ is true in all models of F . Then we say that F ′ is entailed
by F , or is a logical consequence of F . If F |= F ′ and F ′ |= F , we say that F and
F ′ are logically equivalent.

In what follows, (possibly subscripted or primed) lowercase l always denote lit-
erals. Similarly C and D always denote clauses, F and G denote formulas, and M
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and N denote assignments. If C is a clause l1 ∨ . . .∨ ln, we sometimes write ¬C to
denote the formula ¬l1 ∧ . . . ∧ ¬ln.

2.2 States and transition systems in Abstract DPLL

DPLL can be fully described by simply considering that a state of the procedure
is either the distinguished state FailState or a pair of the form M || F , where F

is a CNF formula, i.e., a finite set of clauses, and M is, essentially, a (partial)
assignment.

More precisely, M is a sequence of literals, never containing both a literal and
its negation, where each literal has an annotation, a bit that marks it as a decision
literal (see below) or not. Frequently we will consider M just as a partial assign-
ment, or as a set or conjunction of literals (and hence as a formula), ignoring both
the annotations and the order between its elements.

The concatenation of two such sequences will be denoted by simple juxtaposition.
When we want to emphasize that a literal l is annotated as a decision literal we
will write it as ld. We will denote the empty sequence of literals (or the empty
assignment) by ∅. We say that a clause C is conflicting in a state M || F, C if
M |= ¬C.

We will model each DPLL procedure by means of a set of states together with a
binary relation =⇒ over these states, called the transition relation. As usual, we use
infix notation, writing S =⇒ S′ instead of (S, S′) ∈ =⇒. If S =⇒ S′ we say that
there is a transition from S to S′. We denote by =⇒∗ the reflexive-transitive closure
of =⇒. We call any sequence of transitions of the form S0 =⇒ S1, S1 =⇒ S2, . . .

a derivation, and denote it by S0 =⇒ S1 =⇒ S2 =⇒ . . . . We call any subsequence
of a derivation a subderivation.

In what follows, transition relations will be defined by means of conditional tran-
sition rules. For a given state S, a transition rule precisely defines whether there
is a transition from S by this rule and, if so, to which state S′. Such a transition
is called an application step of the rule.

A transition system is a set of transition rules defined over some given set of
states. Given a transition system R, the transition relation defined by R will be
denoted by =⇒R. If there is no transition from S by =⇒R, we will say that S

is final with respect to R (examples of a transition system and a final state with
respect to it can be found in Definition 2.1 and Example 2.2).

2.3 The Classical DPLL Procedure

A very simple DPLL system, faithful to the classical DPLL algorithm, consists of
the following five transition rules. We give this system here mainly for explanatory
and historical reasons. The informally stated results for it are easily obtained by
adapting the more general ones given in Section 2.5.

Definition 2.1. The Classical DPLL system is the transition system Cl consist-
ing of the following five transition rules. In this system, the literals added to M by
all rules except Decide are annotated as non-decision literals.
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UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if

{

M |= ¬C

l is undefined in M

PureLiteral :

M || F =⇒ M l || F if







l occurs in some clause of F

¬l occurs in no clause of F

l is undefined in M

Decide :

M || F =⇒ M ld || F if

{

l or ¬l occurs in a clause of F

l is undefined in M

Fail :

M || F, C =⇒ FailState if

{

M |= ¬C

M contains no decision literals

Backtrack :

M ld N || F, C =⇒ M ¬l || F, C if

{

M ld N |= ¬C

N contains no decision literals

One can use the transition system Cl for deciding the satisfiability of an input
formula F simply by generating an arbitrary derivation ∅ || F =⇒Cl . . . =⇒Cl Sn,
where Sn is a final state with respect to Cl. The applicability of each of the five
rules is easy to check and, as we will see, their application always leads to finite
derivations. Moreover, for every derivation like the above ending in a final state
Sn, (i) F is unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the
form M || F then M is a model of F . Note that in this Classical DPLL system the
second component of a state remains unchanged, a property that does not hold for
the other transition systems we introduce later.

We now briefly comment on what the different rules do. In the following, if M is
a sequence of the form M0 l1 M1 . . . lk Mk, where the li are all the decision literals
in M , we say that the state M || F is at decision level k, and that all the literals of
each li Mi belong to decision level i.

—UnitPropagate: To satisfy a CNF formula, all its clauses have to be true. Hence,
if a clause of F contains a literal l whose truth value is not defined by the current
assignment M while all the remaining literals of the clause are false, then M

must be extended to make l true.

—PureLiteral: If a literal l is pure in F , i.e., it occurs in F while its negation does
not, then F is satisfiable only if it has a model that makes l true. Thus, if M

does not define l it can be extended to make l true.

—Decide: This rule represents a case split. An undefined literal l is chosen from
F , and added to M . The literal is annotated as a decision literal, to denote that
if M l cannot be extended to a model of F then the alternative extension M ¬l

must still be considered. This is done by means of the Backtrack rule.
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—Fail: This rule detects a conflicting clause C and produces the FailState state
whenever M contains no decision literals.

—Backtrack: If a conflicting clause C is detected and Fail does not apply, then the
rule backtracks one decision level, by replacing the most recent decision literal ld

by ¬l and removing any subsequent literals in the current assignment. Note that
¬l is annotated as a non-decision literal, since the other possibility l has already
been explored.

Example 2.2. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
we denote atoms by natural numbers, and negation by overlining.

∅ || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1d || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1d 2 3 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1d 2 3 4 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)

1 4 3
d
|| 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 3
d

2 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4

The last state of this derivation is final. The (total) assignment in it is a model of
the formula.

The Davis-Putnam procedure [Davis and Putnam 1960] was originally presented
as a two-phase proof-procedure for first-order logic. The unsatisfiability of a formula
was to be proved by first generating a suitable set of ground instances which then,
in the second phase, were shown to be propositionally unsatisfiable.

Subsequent improvements, such as the Davis-Logemann-Loveland procedure of
[Davis et al. 1962], mostly focused on the propositional phase. What most authors
now call the DPLL Procedure is a satisfiability procedure for propositional logic
based on this propositional phase. Originally, this procedure amounted to the
depth-first search algorithm with backtracking modeled by our Classical DPLL
system.

2.4 Modern DPLL Procedures

The major modern DPLL-based SAT solvers do not implement the Classical DPLL
system. For example, due to efficiency reasons the pure literal rule is normally only
used as a preprocessing step—hence we will not consider this rule in the following.
Moreover, backjumping, a more general and more powerful backtracking mechanism,
is now commonly used in place of chronological backtracking.

The usefulness of a more sophisticated backtracking mechanism for DPLL solvers
is perhaps best illustrated with another example of derivation in the Classical DPLL
system.
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Example 2.3.

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)
1d || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1d 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)
1d 2 3d || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1d 2 3d 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)
1d 2 3d 4 5d || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1d 2 3d 4 5d 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Backtrack)
1d 2 3d 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2

Before the Backtrack step, the clause 6∨5∨2 is conflicting: it is false in the assignment
1d 2 3d 4 5d 6. This is a consequence of the unit propagation 2 of the decision 1d,
together with the decision 5d and its unit propagation 6.

Therefore, one can infer that the decision 1d is incompatible with the decision
5d, i.e., that the given clause set entails 1∨5. Similarly, it also entails 2∨5.

Such entailed clauses are called backjump clauses if their presence would have
allowed a unit propagation at an earlier decision level. This is precisely what
backjumping does: given a backjump clause, it goes back to that level and adds
the unit propagated literal. For example, using 2∨5 as a backjump clause, the last
Backtrack step could be replaced by a backjump to a state with first component
1d 2 5.

We model all this in the next system with the Backjump rule, of which Backtrack
is a particular case. In this rule, the clause C′ ∨ l′ is the backjump clause, where l′

is the literal that can be unit propagated (5 in our example). Below we show that
the rule is effective: a backjump clause can always be found.

Definition 2.4. The Basic DPLL system is the four-rule transition system B

consisting of the rules UnitPropagate, Decide, Fail from Classical DPLL, and the
following Backjump rule:

Backjump :

M ld N || F, C =⇒ M l′ || F, C if























M ld N |= ¬C, and there is
some clause C′ ∨ l′ such that:

F, C |= C′ ∨ l′ and M |= ¬C′,

l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

We call clause C in Backjump the conflicting clause and clause C′ ∨ l′ the backjump
clause.

Chronological backtracking, modeled by Backtrack, always undoes the last de-
cision l, going back to the previous level and adding ¬l to it. Conflict-driven
backjumping, as modeled by Backjump, is generally able to backtrack further than
chronological backtracking by analyzing the reasons that produced the conflicting
clause. Backjump can frequently undo several decisions at once, going back to a
lower decision level than the previous level and adding some new literal to that
lower level. It jumps over levels that are irrelevant to the conflict. In the previous
example, it jumps over the decision 3d and its consequence 4, which are totally
unrelated with the reasons for the falsity of the conflicting clause 6∨5∨2. Moreover,
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intuitively, the search state 1d 2 5 reached after Backjump is more advanced than
the state 1d 2 3d 4 5 reached after Backtrack. This notion of “being more advanced”
is formalized in Theorem 2.10 below.

We show in the proof of Lemma 2.8 below that the literals of the backjump clause
can always be chosen among the negations of the decision literals—although better
choices usually exist. When the negations of all the decision literals are included
in the backjump clause, the Backjump rule simulates the Backtrack rule of Classical
DPLL. We remark that, in fact, Lemma 2.8 shows that, whenever a state M || F

contains a conflicting clause, either Fail applies, if there are no decision literals in
M , or otherwise Backjump applies.

Most modern DPLL implementations make additional use of backjump clauses:
they add them to the clause set as learned clauses, also called lemmas, implementing
what is usually called conflict-driven learning.

In Example 2.3, learning the clause 2∨5 will allow the application of UnitPropagate
to any state whose assignment contains either 2 or 5. Hence, it will prevent any
conflict caused by having both 2 and 5 in M . Reaching such similar conflicts fre-
quently happens in industrial problems having some regular structure, and learning
such lemmas has been shown to be very effective in improving performance.

Since a lemma is aimed at preventing future similar conflicts, when these conflicts
are not very likely to be found again the lemma can be removed. In practice, a
lemma is removed when its relevance (see, e.g., [Bayardo and Schrag 1997]) or its
activity level drops below a certain threshold; the activity can be, e.g., the number
of times it becomes a unit or a conflicting clause [Goldberg and Novikov 2002].

To model lemma learning and removal we consider the following extension of the
Basic DPLL system.

Definition 2.5. The DPLL system with learning, denoted by L, consists of the
four transition rules of the Basic DPLL system and the two additional rules:

Learn :

M || F =⇒ M || F, C if

{

each atom of C occurs in F or in M

F |= C

Forget :
M || F, C =⇒ M || F if

{

F |= C

In any application step of Learn, the clause C is said to be learned if it did not
already belong to F . Similarly, it is said to be forgotten by Forget.

Observe that the Learn rule allows one to add to the current formula F an arbi-
trary clause C entailed by F , as long as all the atoms of C occur in F or M . This
models not only conflict-driven lemma learning but also any other techniques that
produce consequences of F , such as limited forms of resolution (see the following
example).

Similarly, the Forget rule can be used in principle to remove from F any clause
that is entailed by the rest of F , not just those previously added to the clause set
by Learn. The applicability of the two rules in their full scope, however, is limited
in practice by the relative cost of determining such entailments in general.

The six rules of the DPLL system with learning model the high-level conceptual
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structure of DPLL implementations. These rules will allow us to formally reason
about properties such as correctness or termination.

Example 2.6. We now show how the Backjump rule can be guided by means of a
conflict graph for finding backjump clauses. In this example we assume a strategy
that is followed in most SAT solvers: (i) Decide is applied only if no other Basic
DPLL rule is applicable (Theorem 5.2 of Section 5 shows that this is not needed,
but here we require it for simplicity) and (ii) after each application of Backjump,
the backjump clause is learned.

Consider a state of the form M || F where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . . 9d 8 5 4 1 2 3.
It is easy to see that this state can be reached after the last decision 9d by six

applications of UnitPropagate. For example, 8 is implied by 9, 6, and 7 because of
the clause 9∨6∨7∨8. A typical DPLL implementation will save the sequence of
propagated literals and remember for each one of them the clause that caused its
propagation. Now, in the state M || F above the clause 1∨2∨3 is conflicting, since
M contains 1, 2 and 3. Using the saved information, the DPLL implementation
can trace back the reasons for this conflicting clause. For example, the saved data
will show that 3 was implied by 5 and 7, due to the clause 5∨7∨3. The literal 5
was in turn implied by 8 and 7, and so on.

This way, working backwards from the conflicting clause and in the opposite order
in which each literal was propagated, it is possible to build the following conflict
graph, where the nodes corresponding to the conflicting clause are shown in gray:

6

8

4

5

2

1

37

9
d

This figure shows the graph obtained when the decision literal of the current
decision level (here, 9d) is reached in this backwards process—which is why this
node and the nodes belonging to earlier decision levels (in this example, literals 6
and 7) have no incoming arrows.

To find a backjump clause, it suffices to cut the graph into two parts. The first
part must contain (at least) all the literals with no incoming arrows. The second
part must contain (at least) all the literals with no outgoing arrows, i.e., the negated
literals of the conflicting clause (in our example, 1, 2 and 3). It is not hard to see
that in such a cut no model of F can satisfy all the literals whose outgoing edges
are cut.

For instance, consider the cut indicated by the dotted line in the graph, where
the literals with cut outgoing edges are 8, 7, and 6. From these three literals,
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by unit propagation using five clauses of F , one can infer the negated literals of
the conflicting clause. Hence, one can infer from F that 8, 7, and 6 cannot be
simultaneously true, i.e., one can infer the clause 8∨7∨6. In this case, this is a
possible backjump clause, that is, the clause C′∨l′ in the definition of the Backjump
rule, with the literal 8 playing the role of l′. The clause allows one to backjump
to the decision level of 7 and add 8 to it. After that, the clause 8∨7∨6 has to be
learned to explain in future conflicts the presence of 8 as a propagation from 6 and
7.

The kind of cuts we have described produce backjump clauses provided that
exactly one of the literals with cut outgoing edges belongs to the current decision
level. The negation of this literal will act as the literal l′ in the backjump rule. In
the SAT literature, the literal is called a Unique Implication Point (UIP) of the
conflict graph. Formally, UIPs are defined as follows. Let D be the set of all the
literals of a conflicting clause C that have become false at the current decision level
(this set is always non-empty, since Decide is applied only if Fail or Backjump do
not apply). A UIP in the conflict graph of C is any literal that belongs to all paths
in the graph from the current decision literal to the negation of a literal in D. Note
that a conflict graph always contains at least one UIP, the decision literal itself,
but in general it can contain more (in our example 9d and 8 are both UIPs).

In practice, it is not actually necessary to build the conflict graph to produce a
backjump clause; it suffices to work backwards from the conflicting clause, main-
taining only a frontier list of literals yet to be expanded, until the first UIP (first
in the reverse propagation ordering) has been reached [Marques-Silva and Sakallah
1999; Zhang et al. 2001].

The construction of the backjump clause can also be seen as a derivation in
the resolution calculus, constructed according to the following backwards conflict
resolution process. In our example, the clause 8∨7∨6 is obtained by successive
resolution steps on the conflicting clause, resolving away the literals 3, 2, 1, 4 and
5, in the reverse order their negations were propagated, with the respective clauses
that caused the propagations:

8∨7∨5

6∨8∨4

4∨1

4∨5∨2

5∨7∨3 1∨2∨3

5∨7∨1∨2

4∨5∨7∨1

5∨7∨4

6∨8∨7∨5

8∨7∨6

The process stops once it generates a clause with only one literal of the current
decision level, which is precisely the first UIP (in our example, the literal 8 in the
clause 8∨7∨6). Some SAT solvers, such as Siege, also learn some of the intermediate
clauses in such resolution derivations [Ryan 2004].

2.5 Correctness of DPLL with Learning

In this subsection we show how the DPLL system with learning can be used as a
decision procedure for the satisfiability of CNF formulas.

Deciding the satisfiability of an input formula F will be done by generating an
arbitrary derivation of the form ∅ || F =⇒L . . . =⇒L Sn such that Sn is final
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with respect to the Basic DPLL system. Note that final states with respect to the
DPLL system with Learning do not always exist, since the same clause could be
learned and forgotten infinitely many times.

For all rules their applicability is easy to check and, as we will show in Theo-
rem 2.11, if infinite subderivations with only Learn and Forget steps are avoided,
one always reaches a state that is final with respect to the Basic DPLL system.
This state S is moreover easily recognizable as final, because it is either FailState
or of form M || F ′ where F ′ has no conflicting clauses and all of its literals are
defined in M . Furthermore, similarly to the Classical DPLL system and as proved
below in Theorem 2.12, in the first case F is unsatisfiable, in the second case it is
satisfied by M .

We emphasize that these formal results apply to any procedure modeled by
the DPLL system with learning, and can moreover be extended to DPLL Modulo
Theories. This generalizes the less formal correctness proof for the concrete pseudo
code of the Chaff algorithm given in [Zhang and Malik 2003], which has the same
underlying proof idea.

The starting point for our results is the next lemma, which lists a few properties
that are invariant for all the states derived in the DPLL system with learning from
initial states of the form ∅ || F .

Lemma 2.7. If ∅ || F =⇒∗

L M || G then the following hold.

(1 ) All the atoms in M and all the atoms in G are atoms of F .

(2 ) M contains no literal more than once and is indeed an assignment, i.e., it
contains no pair of literals of the form p and ¬p.

(3 ) G is logically equivalent to F .

(4 ) If M is of the form M0 l1 M1 . . . ln Mn, where l1, . . . , ln are all the decision
literals of M , then F, l1, . . . , li |= Mi for all i in 0 . . . n.

Proof. Since all four properties trivially hold in the initial state ∅ || F , we only
need to prove that all six rules preserve them. Consider a step M ′ || F ′ =⇒L

M ′′ || F ′′ and assume all properties hold in M ′ || F ′. Property 1 holds in M ′′ || F ′′

because the only atoms that may be added to M ′′ or F ′′ are the ones in F ′ or M ′,
all of which belong to F . The side conditions of the rules clearly preserve Property
2. As for Property 3, only Learn and Forget may break the invariant. But learning
(or forgetting) a clause C that is a logical consequence clearly preserves equivalence
between F ′ and F ′′.

For the fourth property, consider that M ′ is of the form M ′

0 l1 M ′

1 . . . ln M ′

n,
and l1, . . . , ln are all the decision literals of M ′. If the step is an application of
Decide, there is nothing to prove. For Learn or Forget, it easily follows since M ′ is
M ′′ and F ′′ is logically equivalent to F ′. The remaining rules are:

UnitPropagate: Since M ′′ will be of the form M ′l (we use l and C as in the
definition of the rule), we only have to prove that F, l1, . . . , ln |= l, which holds
since (i) F, l1, . . . , ln |= M ′, (ii) M ′ |= ¬C, (iii) C ∨ l is a clause of F ′ and (iv) F

and F ′ are equivalent.

Backjump: Assume that, in the Backjump rule, ld is lj+1, the j+1-th decision
literal. Then (using l′ and C′ as in the definition of the rule), M ′′ is of the form
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M ′

0 l1 M ′

1 . . . lj M ′

j l′. We only need to show that F, l1, . . . , lj |= l′. This holds as
for the UnitPropagate case, since we have (i) F, l1, . . . , lj |= M ′

0 l1 M ′

1 . . . lj M ′

j, (ii)
M ′

0 l1 M ′

1 . . . lj M ′

j |= ¬C′, (iii) F ′ |= C′ ∨ l′ and (iv) F and F ′ are equivalent.

The most interesting property of this lemma is probably Property 4. It shows
that every non-decision literal added to an assignment M is a logical consequence
of the previous decision literals of M and the initial formula F . In other words, we
have that F, l1, . . . , ln |= M . Hence, the only arbitrary additions to M are the ones
made by Decide.

Another important property concerns the applicability of Backjump. Given a
state with a conflicting clause, it may not be clear a priori whether Backjump is
applicable or not, mainly due to the need to find an appropriate backjump clause.
Below we show that, if there is a conflicting clause, it is always the case that either
Backjump or Fail applies. Moreover, whenever the first precondition of Backjump
holds (M ld N |= ¬C), a backjump clause C′ ∨ l′ always exists and can be easily
computed.

Lemma 2.8. Assume that ∅ || F =⇒∗

L M || F ′ and that M |= ¬C for some clause
C in F ′. Then either Fail or Backjump applies to M || F ′.

Proof. If there is no decision literal in M , it is immediate that Fail applies.
Otherwise, M is of the form M0 l1 M1 . . . ln Mn for some n > 0, where l1, . . . , ln
are all the decision literals of M . Since M |= ¬C we have, due to Lemma 2.7-4, that
F, l1, . . . , ln |= ¬C. If we now consider any i in 1 . . . n such that F, l1, . . . , li |= ¬C,
and any j in 0 . . . i − 1 such that F, l1, . . . , lj , li |= ¬C, we can show that then
backjumping to decision level j is possible.

Let C′ be the clause ¬l1∨. . .∨¬lj , and note that M is also of the form M ′ lj+1 N .
Then Backjump is applicable to M || F ′, yielding the state M ′ ¬li || F ′. That is
because the clause C′ ∨ ¬li satisfies all the side conditions of the Backjump rule:

(i) F ′ |= C′∨¬li because F, l1, . . . , lj , li |= ¬C, which implies, given that C is in F ′

and F ′ is equivalent to F (by Lemma 2.7-3), that F, l1, . . . , lj , li is unsatisfiable or,
equivalently, that F |= ¬l1∨ . . .∨¬lj ∨¬li; furthermore, M ′ |= ¬C′ by construction
of C′;

(ii) ¬li is undefined in M ′ (by Lemma 2.7-2);
(iii) li occurs in M .

It is interesting to observe that, the smaller one can choose the value j in the
previous proof, the higher one can backjump. Note also that, if we construct the
backjump clause as in the proof and take i to be n and j to be n − 1 then the
Backjump rule models standard backtracking.

We stress that backjump clauses need not be built as in the proof above, out
of the decision literals of the current assignment. It follows from the termination
and correctness results given in this section that in practice one is free to apply the
backjump rule with any backjump clause. In fact, backjump clauses may be built
to contain no decision literals at all, as is for instance possible in backjumping SAT
solvers relying on the first UIP learning scheme illustrated in Example 2.6.

Given the previous lemma, it is easy to prove that final states with respect to
Basic DPLL will be either FailState or M || F ′, where M is a model of the original
formula F . More formally:

Journal of the ACM, Vol. V, No. N, Month 20YY.



14 · Robert Nieuwenhuis et al.

Lemma 2.9. If ∅ || F =⇒∗

L S, and S is final with respect to Basic DPLL,
then S is either FailState, or it is of the form M || F ′, where

(1 ) all literals of F ′ are defined in M ,

(2 ) there is no clause C in F ′ such that M |= ¬C, and

(3 ) M is a model of F .

Proof. Assume S is not FailState. If (1) does not hold, then S cannot be final,
since Decide would be applicable. Similarly, for (2): by Lemma 2.8, either Fail or
Backjump would apply. Together (1) and (2) imply that all clauses of F ′ are defined
and true in M , and since by Lemma 2.7-3, F and F ′ are logically equivalent this
implies that M is a model of F .

We now prove termination of the Basic DPLL system.

Theorem 2.10. There are no infinite derivations of the form ∅ || F =⇒B S1 =⇒B . . .

Proof. It suffices to define a well-founded strict partial ordering � on states,
and show that each step M || F =⇒B M ′ || F is decreasing with respect to this
ordering, i.e., M || F � M ′ || F . Note that such an ordering must be entirely
based on the first component of the states, because in this system without Learn
and Forget the second component of states remains constant.

Let M be of the form M0 l1 M1 . . . lp Mp, where l1, . . . , lp are all the decision
literals of M . Similarly, let M ′ be M ′

0 l′1 M ′

1 . . . l′p′ M ′

p′ .
Let n be the number of distinct atoms (propositional variables) in F . By Lemma 2.7-

(1,2) we have that p, p′ and the length of M and M ′ are always smaller than or
equal to n.

For each assignment N , define m(N) to be n − length(N), that is, m(N) is the
number of literals “missing” in N for N to be total. Now define: M || F ′ � M ′ || F ′′

if

(i) there is some i with 0 ≤ i ≤ p, p′ such that

m(M0) = m(M ′

0), . . . m(Mi−1) = m(M ′

i−1), m(Mi) > m(M ′

i) or

(ii) m(M0) = m(M ′

0), . . . m(Mp) = m(M ′

p) and m(M) > m(M ′).

Note that in case (ii) we have p′ > p, and all decision levels up to p coincide in
number of literals. Comparing the number of missing literals in sequences is clearly
a strict ordering (i.e., it is an irreflexive and transitive relation) and it is also
well-founded, and hence this also holds for its lexicographic extension on tuples
of sequences of bounded length. It is easy to see that all Basic DPLL rules are
decreasing with respect to � if FailState is added as an additional minimal element.
The rules UnitPropagate and Backjump decrease by case (i) of the definition and
Decide decreases by case (ii).

It is nice to see in this proof that, in contrast to the classical, depth-first DPLL
procedure, progress in backjumping DPLL procedures is not measured by the num-
ber of decision literals that have been tried with both truth values, but by the
number of defined literals that are added to earlier decision levels. The Backjump
rule makes progress in this sense by increasing by one the number of defined literals
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in the decision level it backjumps to. The lower this decision level is (i.e., the higher
up in the depth-first search tree), the more progress is made with respect to �.

As an immediate consequence of this theorem, we obtain the termination of the
DPLL system with learning if infinite subderivations with only Learn and Forget
steps are avoided. The reason is that the other steps (the Basic DPLL ones) decrease
the first components of the states with respect to the well-founded ordering, while
the Learn and Forget steps do not modify that component.

Theorem 2.11. Every derivation ∅ || F =⇒L S1 =⇒L . . . by the DPLL system
with Learning is finite if it contains no infinite subderivations consisting of only
Learn and Forget steps.

Note that this condition is very weak and easily enforced. Learn is typically
only applied together with Backjump in order to learn the corresponding backjump
clause. The theorem entails that such a strategy eventually reaches a state where
only Learn and/or Forget apply, i.e., a state that is final with respect to the Basic
DPLL system. As already mentioned, by Lemma 2.9 this state is moreover easily
recognizable because it is FailState or else it has the form M || G with all literals
of G defined in M and no conflicting clause.

Actually, we could have alternatively defined a state M || G to be final if M

is a partial assignment satisfying all clauses of G, hence allowing some literals of
G to remain undefined. Then the correctness argument would have been exactly
the same but without the use of Lemma 2.9—which now is needed mostly to show
that the current definition of a final state M || G is a sufficient condition for M

to be a model of G. However, in typical DPLL implementations, checking each
time whether a partial assignment is a model of the current formula G is more
expensive, because of the necessary additional bookkeeping, than just extending a
partial model of G to a total one, which can be done with no search. But note
that things may be different in the SMT case (see a brief discussion at the end of
Section 3), or when the goal is to enumerate all models (perhaps in some compact
representation) of the initial formula F .

We are now ready to prove that DPLL with learning provides a decision procedure
for the satisfiability of CNF formulas.

Theorem 2.12. If ∅ || F =⇒∗

L S where S is final with respect to Basic
DPLL, then

(1 ) S is FailState if, and only if, F is unsatisfiable.

(2 ) If S is of the form M || F ′ then M is a model of F .

Proof. For Property 1, if S is FailState it is because there is some state M || F ′

such that ∅ || F =⇒∗

L M || F ′ =⇒L FailState. By the definition of the Fail rule, there
is no decision literal in M and there is a clause C in F ′ such that M |= ¬C. Since F

and F ′ are equivalent by Lemma 2.7-3, we have that F |= C. However, if M |= ¬C,
by Lemma 2.7-4 then also F |= ¬C, which implies that F is unsatisfiable. For the
right-to-left implication, if S is not FailState it has to be of the form M || F ′. But
then, by Lemma 2.9-3, M is a model of F and hence F is satisfiable.

For Property 2, if S is M || F ′ then, again by Lemma 2.9-3, M is a model of
F .
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Note that the previous theorem does not guarantee confluence in the sense of
rewrite systems, say. With unsatisfiable formulas, the only possible final (with
respect to Basic DPLL) state for a sequence is FailState. If, on the other hand,
the formula is satisfiable, different states that are final with respect to Basic DPLL
may be reachable. However, all of them will be of the form M || F ′, with M a
model of the original formula.

Although Theorem 2.12 was given for the relation =⇒L, it also holds for =⇒B,
since the existence of Learn or Forget is not required in the proof.

Theorem 2.13. If ∅ || F =⇒∗

B S where S is final with respect to Basic
DPLL, then

(1 ) S is FailState if, and only if, F is unsatisfiable.

(2 ) If S is of the form M || F ′ then M is a model of F .

2.6 About practical implementations and restarts

State-of-the art SAT-solvers [Moskewicz et al. 2001; Goldberg and Novikov 2002;
Eén and Sörensson 2003; Ryan 2004] essentially apply Abstract DPLL with Learn-
ing using efficient implementation techniques for UnitPropagate (such as the two-
watched literal scheme for unit propagation [Moskewicz et al. 2001]), and good
heuristics for selecting the decision literal when applying the Decide rule. As said,
conflict analysis procedures for applying Backjump and the possibility of applying
learning by other forms of resolution have also been well studied.

In addition, modern DPLL implementations restart the DPLL procedure when-
ever the search is not making enough progress according to some measure. The
rationale behind this idea is that upon each restart, the additional knowledge of
the search space compiled into the newly learned lemmas will lead the heuristics for
Decide to behave differently, and possibly cause the procedure to explore the search
space in a more compact way. The combination of learning and restarts has been
shown to be powerful not only in practice, but also in theory. Essentially, any Basic
DPLL derivation to FailState is equivalent to a tree-like refutation by resolution.
But for some classes of problems tree-like proofs are always exponentially larger
than the smallest general, i.e., DAG-like, resolution ones [Bonet et al. 2000]. The
good news is that DPLL with learning and restarts becomes again equivalent to
general resolution with respect to such notions of proof complexity [Beame et al.
2003].

In our formalism, restarts can be simply modeled by the following rule:

Definition 2.14. The Restart rule is:

M || F =⇒ ∅ || F.

Adding the Restart rule to DPLL with Learning, it is obvious that all results
of this section hold as long as one can ensure that a final state with respect to
Basic DPLL is eventually reached. This is usually done in practice by periodically
increasing the minimal number of Basic DPLL steps between each pair of restart
steps. This is formalized below.
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Definition 2.15. Consider a derivation by the DPLL system with learning ex-
tended with the Restart rule. We say that Restart has increasing periodicity in the
derivation if, for each subderivation Si =⇒ . . . =⇒ Sj =⇒ . . . =⇒ Sk where the
steps producing Si, Sj , and Sk are the only Restart steps, the number of Basic
DPLL steps in Si =⇒ . . . =⇒ Sj is strictly smaller than in Sj =⇒ . . . =⇒ Sk.

Theorem 2.16. Any derivation ∅ || F =⇒ S1 =⇒ . . . by the transition system
L extended with the Restart rule is finite if it contains no infinite subderivations
consisting of only Learn and Forget steps, and Restart has increasing periodicity in
it.

Proof. By contradiction, assume Der is an infinite derivation fulfilling the re-
quirements. Let � be the well-founded ordering on (the first components of) states
defined in the proof of Theorem 2.10. In a subderivation of Der without Restart
steps, at each step either this first component decreases with respect to � (by the
Basic DPLL steps) or it remains equal (by the Learn and Forget steps). Therefore,
since there is no infinite subderivation consisting of only Learn and Forget steps,
there must be infinitely many Restart steps in Der. Also, if between two states
there is at least one Basic DPLL step and no Restart step, these states do not have
the same first component. Therefore, if n denotes the (fixed, finite) number of dif-
ferent first components of states that exist for the given finite set of propositional
symbols, there cannot be any subderivations with more than n Basic DPLL steps
between two Restart steps. This contradicts the fact that there are infinitely many
Restart steps if Restart has increasing periodicity in Der.

In conclusion, in this section we have formally described a large family of practical
implementations of DPLL with learning and restarts, and proved that they provide
a decision procedure for propositional satisfiability.

3. ABSTRACT DPLL MODULO THEORIES

For many applications, encoding the problems into propositional logic is not the
right choice. Frequently, a better alternative is to express the problems in a richer
non-propositional logic, considering satisfiability with respect to a background the-
ory T .

For example, some properties of timed automata are naturally expressed in Dif-
ference Logic, where formulas contain atoms of the form a − b ≤ k, which are
interpreted with respect to a background theory T of the integers, rationals or reals
[Alur 1999]. Similarly, for the verification of pipelined microprocessors it is conve-
nient to consider a logic of Equality with Uninterpreted Functions (EUF), where the
background theory T specifies a congruence [Burch and Dill 1994]. To mention just
one further example, the conditions arising from program verification usually in-
volve arrays, lists and other data structures, so it becomes very natural to consider
satisfiability problems modulo the combined theory T of these data structures. In
such applications, typical formulas consist of large sets of clauses such as:

p ∨ ¬q ∨ a=f(b − c) ∨ read(s, f(b − c) )=d ∨ a − g(c) ≤7
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containing purely propositional atoms as well as atoms over the combined theory.
This is known as the Satisfiability Modulo Theories (SMT) problem for a theory T :
given a formula F , determine whether F is T -satisfiable, i.e., whether there exists
a model of T that is also a model of F .

In this section we show that many of the existing techniques for handling SMT,
of which SAT is a particular case if we consider T to be the empty theory, can be
described and discussed within the Abstract DPLL framework.

3.1 Formal preliminaries on Satisfiability Modulo Theories

Throughout this section, we consider the same definitions and notation given in
Section 2 for the propositional case, except that here the set P over which formulas
are built is a fixed finite set of ground (i.e., variable-free) first-order atoms, instead
of propositional symbols.

In addition to these propositional notions, here we also consider some notions of
first-order logic (see e.g., [Hodges 1993]). A theory T is a set of closed first-order
formulas. A formula F is T -satisfiable or T -consistent if F ∧ T is satisfiable in the
first-order sense. Otherwise, it is called T -unsatisfiable or T -inconsistent.

As in the previous section, a partial assignment M will sometimes also be seen
as a conjunction of literals and hence as a formula. If M is a T -consistent partial
assignment and F is a formula such that M |= F , i.e., M is a (propositional) model
of F , then we say that M is a T -model of F . If F and G are formulas, then F

entails G in T , written F |=T G, if F ∧ ¬G is T -inconsistent. If F |=T G and
G |=T F , we say that F and G are T -equivalent. A theory lemma is a clause C

such that ∅ |=T C.
The SMT problem for a theory T is the problem of determining, given a formula

F , whether F is T -satisfiable, or, equivalently, whether F has a T -model.
As usual in SMT, given a background theory T , we will only consider the SMT

problem for ground (and hence quantifier-free) CNF formulas F . Such formulas
may contain free constants, i.e., constant symbols not in the signature of T , which,
as far as satisfiability is concerned, can be equivalently seen as existential variables.
Other than free constants, all other predicate and function symbols in the formulas
will instead come from the signature of T . From now on, when we say formula we
will mean a formula satisfying these restrictions.

We will consider here only theories T such that the T -satisfiability of conjunctions
of such ground literals is decidable. We will call any decision procedure for this
problem a T -solver.

3.2 An informal presentation of SMT procedures

The current techniques for deciding the satisfiability of a ground formula F with
respect to a background theory T can be broadly divided into two main categories:
eager and lazy.

Eager SMT techniques. In eager techniques, the input formula is translated
using a satisfiability-preserving transformation into a propositional CNF formula
which is then checked by a SAT solver for satisfiability (see, e.g., [Bryant et al.
2001; Bryant and Velev 2002; Strichman 2002]).

One of the strengths of this eager approach is that it can always use the best
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available SAT solver off the shelf. When the new generation of efficient SAT solvers
such as Chaff [Moskewicz et al. 2001] became available, impressive results using
the eager SMT approach were achieved by Bryant’s group at CMU with the solver
UCLID [Lahiri and Seshia 2004] for, e.g., the verification of pipelined processors.

However, eager techniques are not very flexible: to make them efficient, sophisti-
cated ad-hoc translations are required for each theory. For example, for EUF and
for Difference Logic there exist the per-constraint encoding [Bryant and Velev 2002;
Strichman et al. 2002], the small domain encoding (or range-allocation techniques),
[Pnueli et al. 1999; Bryant et al. 2002; Talupur et al. 2004; Meir and Strichman
2005], and several hybrid approaches [Seshia et al. 2003]. The eager encoding ap-
proach can also handle integer linear arithmetic and the theory of arrays (see [Seshia
2005]).

In spite of the effort spent in devising efficient translations, on many practical
problems the translation process or the SAT solver run out of time or memory (see
[de Moura and Ruess 2004]). The current alternative techniques explained below
are in many cases several orders of magnitude faster.

The correctness of the eager approach for SMT relies on the correctness of both
the SAT solver and the translation, which is specific for each theory. It is out
of the scope of this article to discuss the correctness of these ad-hoc translations.
Assuming them to be correct, the correctness of the eager techniques follows from
the results of Section 2.

Lazy SMT techniques. As an alternative to the eager approach, one can use a
specialized T -solver for deciding the satisfiability of conjunctions of theory literals.
Then, a decision procedure for SMT is easily obtained by converting the given for-
mula into disjunctive normal form (DNF) and using the T -solver to check whether
any of the DNF conjuncts is satisfiable. However, the exponential blowup usually
caused by the conversion into DNF makes this approach too inefficient.

A lot of research has then looked into ways to combine the strengths of specialized
T -solvers with the strengths of state-of-the-art SAT solvers in dealing with the
Boolean structure of formulas. The most widely used approach in the last few
years is usually referred to as the lazy approach [Armando et al. 2000; Filliâtre
et al. 2001; Audemard et al. 2002; Barrett et al. 2002; de Moura and Rueß 2002;
Flanagan et al. 2003; Armando et al. 2004; Ball et al. 2004]. In this approach, each
atom occurring in a formula F to be checked for satisfiability is initially considered
simply as a propositional symbol, forgetting about the theory T . Then the formula
is given to a SAT solver. If the SAT solver determines it to be (propositionally)
unsatisfiable, then F is T -unsatisfiable as well. If the SAT solver returns instead
a propositional model M of F , then this assignment (seen as a conjunction of
literals) is checked by a T -solver. If M is found T -consistent then it is a T -model
of F . Otherwise, the T -solver builds a ground clause that is a logical consequence
of T , i.e., a theory lemma, precluding that assignment. This lemma is added to F

and the SAT solver is started again. This process is repeated until the SAT solver
finds a T -model or returns unsatisfiable.

Example 3.1. Assume we are deciding with a lazy procedure the T -satisfiability
of a large EUF formula, where T is the theory of equality, and assume that the
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model M found by the SAT solver contains, among many others, the four literals:

b=c, f(b)=c, a 6=g(b), g(f(c))=a

Then the T -solver detects that M is not a T -model, since

b=c ∧ f(b)=c ∧ g(f(c))=a |=T a=g(b).

Therefore, the lazy procedure has to be restarted after the corresponding theory
lemma has been added to the clause set. In principle, one can take as theory
lemma simply the negation of M , that is, the disjunction of the negations of all
the literals in M . However, this is usually not a good idea as the generated clause
may end up containing thousands of literals. Lazy procedures are much more
efficient if the T -solver is able instead to generate a small explanation of the T -
inconsistency of M . In this example, the explanation could be simply the clause
b 6=c ∨ f(b) 6=c ∨ g(f(c)) 6=a ∨ a=g(b).

The main advantage of the lazy approach is its flexibility, since it can easily
combine any SAT solver with any T -solver. More importantly, if the SAT solver
used by the lazy SMT procedure is based on DPLL, then several refinements exist
that make the SMT procedure much more efficient. Here we outline the most
significant ones.

Incremental T-solver. The T -consistency of the assignment can be checked in-
crementally, while the assignment is being built by the DPLL procedure, with-
out delaying the check until a propositional model has been found. This can
save a large amount of useless work. It can be done fully eagerly, detecting
T -inconsistencies as soon as they are generated, or, if that is too expensive, at
regular intervals, e.g., once every k literals added to the assignment. The idea
was already mentioned in [Audemard et al. 2002] under the name of early prun-
ing and in [Barrett 2003] under the name of eager notification. Currently, most
SMT implementations work with incremental T -solvers. The incremental use
of T -solvers poses different requirements on their implementation: to make the
incremental approach effective in practice, the solver should (on average, say)
be faster in processing one additional input literal l than in re-processing from
scratch all previous inputs and l together. For many theories this can indeed be
done; see for example Subsection 4.3, where we describe an incremental solver
for Difference Logic.

On-line SAT solver. When a T -inconsistency is detected by the incremental T-
solver, one can ask the DPLL procedure simply to backtrack to some point
where the assignment was still T -consistent, instead of restarting the search from
scratch. For instance, if, in Abstract DPLL terms, the current state is of the form
M || F and M has been detected to be T -inconsistent, then there is some subset
{l1 . . . ln} of M such that ¬l1 ∨ . . . ∨ ¬ln is a theory lemma. This lemma can be
added to the clause set, and, since it is conflicting, i.e., it is false in M , Backjump
or Fail can be applied. As we will formally prove below, after the backjump step
this lemma is no longer needed for completeness and could be safely forgotten:
the procedure will search through all propositional models, finding a T -consistent
one whenever it exists. Nevertheless, keeping theory lemmas can still be very use-
ful for efficiency reasons, because it may cause an important amount of pruning
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later in the search. Theory lemmas are especially effective if they are small, as
observed in, e.g., [de Moura and Rueß 2002; Barrett 2003]. On-line SAT solvers
(in combination with incremental T-solvers) are now common in SMT imple-
mentations, and state-of-the-art SAT solvers like zChaff or MiniSAT provide this
functionality.

Theory propagation. In the approach presented so far, the T -solver provides
information only after a T -inconsistent partial assignment has been generated.
In this sense, the T -solver is used only to validate the search a posteriori, not to
guide it a priori. To overcome this limitation, the T -solver can also be used in a
given DPLL state M || F to detect literals l occurring in F such that M |=T l,
allowing the DPLL procedure to move to the state M l || F . We call this process
theory propagation.

The idea of theory propagation was first mentioned in [Armando et al. 2000]
under the name of Forward Checking Simplification, and since then it has been
applied, in limited form, in very few other systems (see Section 5). In contrast,
theory propagation plays a major role in the DPLL(T ) approach, introduced in
Section 4 of this article. There we show that, somewhat against expectations,
practical T -solvers can be designed to include this feature in an efficient way.
A highly non-trivial issue is how to perform conflict analysis appropriately in
the context of theory propagation. Different options and possible problems for
doing this are analyzed and solved in detail in Section 5, something that, to
our knowledge, had not been done before. In Section 6 we show that theory
propagation, if handled well, has a crucial impact on the performance of SMT
systems.

Exhaustive Theory Propagation. For some theories it even pays off to perform
all possible Theory Propagations before applying the Decide rule. This idea
of exhaustive theory propagation is also introduced in the DPLL(T ) approach
presented here.

Lazy techniques that learn theory lemmas and do not perform any theory prop-
agation in effect dump a large number of ground consequences of the theory
into the clause set, duplicating theory information into the SAT solver. This
duplication is instead completely unnecessary in a system with exhaustive the-
ory propagation—and is greatly reduced with non-exhaustive theory propagation.
The reason is that any literal generated by unit propagation over a theory lemma
can also be generated by theory propagation.1

For some logics, such as Difference Logic, for instance, exhaustive theory prop-
agation usually yields speedups of several orders of magnitude, as we show in
Section 6.

3.3 Abstract DPLL Modulo Theories

In this section we formalize the different enhancements of the lazy approach to Sat-
isfiability Modulo Theories. We do this by adapting the Abstract DPLL framework
for the propositional case presented in the previous section. One significant differ-
ence is that here we deal with ground first-order literals instead of propositional

1But see the discussion about strategies with lazier theory propagation at the end of Subsection 5.1.
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ones. Except for that, the rules Decide, Fail, UnitPropagate, and Restart remain
unchanged: they will still regard all literals as syntactical items as in the proposi-
tional case. Only Learn, Forget and Backjump are slightly modified to work modulo
theories: in these rules, entailment between formulas now becomes entailment in
T . In addition, atoms of T -learned clauses can now also belong to M , and not only
to F ; this is required for Property 3.9 below, needed to recover from T -inconsistent
states. Note that the theory version of Backjump below uses both the propositional
notion of satisfiability (|=) and the first-order notion of entailment modulo theory
(|=T ).

Definition 3.2. The rules T -Learn, T -Forget and T -Backjump are:

T -Learn :

M || F =⇒ M || F, C if

{

each atom of C occurs in F or in M

F |=T C

T -Forget :

M || F, C =⇒ M || F if
{

F |=T C

T -Backjump :

M ld N || F, C =⇒ M l′ || F, C if























M ld N |= ¬C, and there is
some clause C′ ∨ l′ such that:

F, C |=T C′ ∨ l′ and M |= ¬C′,

l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

Modeling the naive lazy approach. Using these rules, it is easy to model the
basic lazy approach (without any of the refinements of incremental T -solvers, on-
line SAT solvers or theory propagation). Each time a state M || F is reached that
is final with respect to Decide, Fail, UnitPropagate, and T -Backjump, i.e., final in a
similar sense as in the previous section, M can be T -consistent or not. If it is, then
M is indeed a T -model of F , as we will prove below. If M is not T -consistent, then
there exists a subset {l1, . . . , ln} of M such that ∅ |=T ¬l1∨. . .∨¬ln. By one T -Learn
step, the theory lemma ¬l1∨. . .∨¬ln can be learned and then Restart can be applied.
As we will prove below, if these learned theory lemmas are never removed by the
T -Forget rule, this strategy is terminating under similar requirements as those in
the previous section, namely, the absence of infinite subderivations consisting of
only Learn and Forget steps and the increasing periodicity of Restart steps. Then,
the strategy is also sound and complete as stated in the previous section: the initial
formula is T -unsatisfiable if, and only if, FailState is reached; moreover, if FailState
is not reached then a T -model has been found.

Modeling the lazy approach with an incremental T -solver. Assume a
state M || F has been reached where M is T -inconsistent. Note that in practice
this is detected by the incremental T -solver, and that this state need not be final
now. Then, as in the naive lazy approach, there exists a subset {l1, . . . , ln} of M

such that ∅ |=T ¬l1∨. . .∨¬ln. This theory lemma is then learned, producing the
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state M || F, ¬l1∨. . .∨¬ln. As in the previous case, Restart can then be applied and
the same results hold.

Modeling the lazy approach with an incremental T -solver and an on-
line SAT solver. As in the previous case, if a subset {l1, . . . , ln} of M is detected
such that ∅ |=T ¬l1∨ . . .∨¬ln, the theory lemma is learned, reaching the state
M || F, ¬l1 ∨ . . .∨¬ln. But now, since in addition we consider an on-line SAT
solver, instead of completely restarting, the procedure repairs the T -inconsistency
of the partial assignment by exploiting the fact that the recently learned theory
lemma is a conflicting clause. As we show later, and similarly to what happened in
the propositional case, if there is no decision literal in M then Fail applies, other-
wise T -Backjump applies. Our results below prove that, even if the theory lemma
is always forgotten immediately after backjumping, this approach is terminating,
sound, and complete under similar conditions as the ones of the previous section.

Modeling the previous refinements and theory propagation. This re-
quires the following additional rule:

Definition 3.3. The TheoryPropagate rule is:

M || F =⇒ M l || F if







M |=T l

l or ¬l occurs in F

l is undefined in M

The purpose of this rule is to prune the search by assigning a truth value to literals
that are (propositionally) undefined by the current assignment M but T -entailed
by it, rather than letting the Decide rule guess a value for them. As said, this sort
of propagation can lead to dramatic improvements in performance. Below we prove
that the correctness results mentioned for the previous three lazy approaches also
hold in combination with arbitrary applications of this rule.

Modeling the previous refinements and exhaustive theory propagation.
Exhaustive theory propagation is modeled simply by assuming that TheoryPropagate
is applied with a higher priority than Decide. The correctness of this approach fol-
lows immediately from the correctness of the previous one which had arbitrary
applications of TheoryPropagate.

3.4 Correctness of Abstract DPLL Modulo Theories

Up to now we have seen several different application strategies of (subsets) of the
given rules, which lead to different SMT procedures. In this subsection we give a
simple and uniform proof showing that all the approaches described in the previous
subsection are indeed decision procedures for the SMT problem. The proofs are
structured in the same way as the ones given in Section 2.5 for the propositional
case, and hence here we focus on the variations and extensions that are needed.

Definition 3.4. The Basic DPLL Modulo Theories system consists of the rules
Decide, Fail, UnitPropagate, TheoryPropagate and T -Backjump.

Definition 3.5. The Full DPLL Modulo Theories system, denoted by FT, consists
of the rules of Basic DPLL Modulo Theories and the rules T -Learn, T -Forget, and
Restart.
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As before, a decision procedure will be obtained by generating a derivation using
the given rules with a particular strategy. However, here the aim of a derivation
is to compute a state S to which the main theorem of this section, Theorem 3.10,
can be applied, that is, a state S such that: (i) S is final with respect to the rules
of Basic DPLL Modulo Theories and (ii) if S is of the form M || F then M is
T -consistent.

Property 3.9 below provides a very general class of strategies in which such a
state S is always reached, without violating the requirements of termination of
Theorem 3.7 (also given below). Such a state S can be recognized in a similar way
as in the propositional case: it is either FailState or it is of the form M || F where
all the literals of F are defined in M , there are no conflicting clauses, and M is
T -consistent.

The following lemma states invariants similar to the ones of Lemma 2.7 of the
previous section.

Lemma 3.6. If ∅ || F =⇒∗

FT M || G then the following hold.

(1 ) All the atoms in M and all the atoms in G are atoms of F .

(2 ) M contains no literal more than once and is indeed an assignment, i.e., it
contains no pair of literals of the form p and ¬p.

(3 ) G is T -equivalent to F .

(4 ) If M is of the form M0 l1 M1 . . . ln Mn, where l1, . . . , ln are all the decision
literals of M , then F, l1, . . . , li |=T Mi for all i in 0 . . . n.

Proof. As for Lemma 2.7, all rules preserve the properties. The new rule
TheoryPropagate preserves them like UnitPropagate; the other rules as for their
propositional versions.

Theorem 3.7 (Termination). Let Der be a derivation of the form:
∅ || F = S0 =⇒FT S1 =⇒FT . . .

Then Der is finite if the following two conditions hold:

(1 ) Der has no infinite subderivations consisting of only T -Learn and T -Forget

steps.

(2 ) For every subderivation of Der of the form:
Si−1 =⇒FT Si =⇒FT . . . =⇒FT Sj =⇒FT . . . =⇒FT Sk

where the only three Restart steps are the ones producing Si, Sj, and Sk, either:
—there are more Basic DPLL Modulo Theories steps in Sj =⇒FT . . . =⇒FT Sk

than in Si =⇒FT . . . =⇒FT Sj, or
—a clause is learned2 in Sj =⇒FT . . . =⇒FT Sk that is not forgotten in Der.

Proof. The proof is a slight extension of the one of Theorem 2.16. The only
new aspect is that some Restart steps are applied with non-increasing periodicity.
But since for each one of them a new clause has been learned that is never forgotten
in Der, there can only be finitely many of them. From this, a contradiction follows
as in Theorem 2.16.

2See Definition 2.5.
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Lemma 3.8. If ∅ || F =⇒∗

FT M || F ′ and there is some conflicting clause in
M || F ′, i.e., M |= ¬C for some clause C in F ′, then either Fail or T -Backjump

applies to M || F ′.

Proof. As in Lemma 2.8.

Property 3.9. If ∅ || F =⇒∗

FT M || F ′ and M is T -inconsistent, then either
there is a conflicting clause in M || F ′, or else T -Learn applies to M || F ′, generating
a conflicting clause.

Proof. If M is T -inconsistent, then there exists a subset {l1, . . . , ln} of M such
that ∅ |=T ¬l1∨ . . .∨¬ln. Hence, the conflicting clause ¬l1∨ . . .∨¬ln is either in
M || F ′, or else it can be learned by one T -Learn step.

Lemma 3.8 and Property 3.9 show that a rule of Basic DPLL modulo theories
is always applicable to a state of the form M || F , or to its successor after a single
T -Learn step, whenever a literal of F is undefined in M , or F contains a conflicting
clause, or M is T -inconsistent. Together with Theorem 3.7 (Termination), this
shows how to compute a state to which the following main theorem is applicable.

Theorem 3.10. Let Der be a derivation ∅ || F =⇒∗

FT S , where (i) S is final
with respect to Basic DPLL Modulo Theories, and (ii) if S is of the form M || F ′

then M is T -consistent. Then

(1 ) S is FailState if, and only if, F is T -unsatisfiable.

(2 ) If S is of the form M || F ′ then M is a T -model of F .

Proof. The first result follows from Lemmas 3.6-3, 3.6-4, as in Theorem 2.12.
The second part is proved as in Lemma 2.9 of the previous section, but using
Lemma 3.8 and Lemma 3.6-3, instead of Lemma 2.8 and Lemma 2.7-3.

The previous theorem shows that a large family of practical approaches provide
a decision procedure for satisfiability modulo theories. Note that the results of this
section are independent from the theory T under consideration, the only (obviously
necessary) requirement being the decidability of the T -consistency of conjunctions
of ground literals.

We conclude this section by observing that, as in the propositional case, our
definition of final state for Abstract DPLL Modulo Theories forces the assignment
M in a state of the form M || G to be total. We remarked in the previous section
that the alternative definition of final state where M can be partial as long as
it satisfies G is inefficient in practice in the SAT case. With theories, however,
this is not always true. Depending on the theory T and the available T -solver,
it may be considerably more expensive to insist on extending a satisfying partial
assignment to a total one than to check periodically whether the current assignment
has become a model of the current formula. The reason is that by Theorem 3.10
one can stop the search with a final state M || G only if M is also T -consistent, and
T -consistency checks can have a high cost, especially when the T -satisfiability of
conjunction of literals is NP-hard. We have maintained the same definition of final
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state for both Abstract DPLL and Abstract DPLL Modulo Theories mainly for
simplicity, to make the lifting of the former to the latter clearer. We stress though
that as in the previous section essentially the same correctness proof applies if one
uses the alternative definition of final state in this section.

4. THE DPLL(T) APPROACH

We have now seen an abstract framework that allows one to model a large number
of complete and terminating strategies for SMT. In this section we describe the
DPLL(T ) approach for Satisfiability Modulo Theories, a general modular architec-
ture on top of which actual implementations of such SMT strategies can be built.
This architecture is based on a general DPLL engine, called DPLL(X), that is not
dependent on any particular theory T . Instead, it is parametrized by a solver for
a theory T of interest. A DPLL(T ) system for T is produced by instantiating the
parameter X with a module Solver

T
that can handle conjunctions of literals in T ,

i.e., a T -solver.
The basic idea is similar to the CLP (X) scheme for constraint logic program-

ming [Jaffar and Maher 1994]: provide a clean and modular, but at the same time
efficient, integration of specialized theory solvers within a general-purpose engine,
in our case one based on DPLL.

The DPLL(T ) architecture presented here combines the advantages of the eager
and lazy approaches to SMT. On the one hand, the architecture allows for very
efficient implementations, as witnessed by our system, BarcelogicTools, which im-
plements DPLL(T ) for a number of theories and compares very favorably with other
SMT systems—see Section 6. On the other hand, DPLL(T ) has the flexibility of
the lazy approaches: more general logics can be dealt with by simply plugging in
other solvers into the general DPLL(X) engine, provided that these solvers conform
to a minimal interface.

4.1 Overall Architecture of DPLL(T )

At each state M || F of a derivation, the DPLL(X) engine knows M and F , but
it treats all literals and clauses as purely propositional ones. As a consequence,
all the needed theory-based inferences are exclusively localized in the theory solver
Solver

T
, which knows M but not the current F .

For the purposes of this paper, it is not necessary to precisely define the interface
between DPLL(X) and Solver

T
. It suffices to know that Solver

T
provides operations

that can be called by DPLL(X) to:

—Notify Solver
T

that a certain literal has been set to true.

—Ask Solver
T

to check whether the current partial assignment M , as a conjunction
of literals, is T -inconsistent. This request can be made by DPLL(X) with differ-
ent degrees of strength: for theories where deciding T -inconsistency is in general
expensive, it might be more convenient to use cheaper, albeit incomplete, T -
inconsistency checks for most of the derivation, and resort to a more expensive
but complete check only when necessary.3

3Note that, according to the correctness results of Abstract DPLL modulo theories, a decision of
T -inconsistency is only needed when a final state w.r.t. the Basic DPLL rules is reached.

Journal of the ACM, Vol. V, No. N, Month 20YY.



Solving SAT and SMT · 27

It is required that when Solver
T

detects a T -inconsistency it is also able to identify
a subset {l1, . . . , ln} of M such that ∅ |=T ¬l1∨ . . .∨¬ln. This theory lemma
¬l1∨. . .∨¬ln, which we will call the (theory) explanation of the T -inconsistency,
is then communicated by Solver

T
to the engine.

—Ask Solver
T

to identify currently undefined input literals that are T -consequences
of M . Again, this request can be made by DPLL(X) with different degrees of
strength. Solver

T
answers with a (possibly empty) list of literals of the input for-

mula that are newly detected T -consequences of M . Note that for this operation
Solver

T
needs to know the set of input literals.

—Ask Solver
T

to provide a justification for the T -entailment of some theory prop-
agated literal l. This is needed for the following reasons. In a concrete imple-
mentation of the DPLL(X) engine, backjumping is typically guided by a conflict
graph, as explained in Example 2.6. But there is a difference with respect to the
purely propositional case: a literal l at a node in the graph can now also be due
to an application of theory propagation. Hence, building the graph requires that
Solver

T
be able to recover and return as a justification of l a (preferably small,

non-redundant) subset {l1, . . . , ln} of literals of the assignment M that T -entailed
l when l was T -propagated. Computing that subset amounts to generating the
theory lemma ¬l1∨· · ·∨¬ln∨ l. We will call this lemma the (theory) explanation
of l. (See Example 5.1, and also Subsection 4.3 and Section 5 for more details
and refinements.)

—Ask Solver
T

to undo the last n notifications that a literal has been set to true.

In the rest of this section, we describe two concrete SMT strategies for the Ab-
stract DPLL modulo theories framework, and show how they can be implemented
using the DPLL(T ) architecture.

The first one, described in Subsection 4.2, performs exhaustive theory propaga-
tion in a very eager way: in a state M || F , TheoryPropagate is immediately applied
whenever some input literal l is T -entailed by M . Therefore Solver

T
is required to

detect all such entailments immediately after a literal is set to true. In contrast, the
second DPLL(T ) system, described in Subsection 4.4, allows Solver

T
to sometimes

fail to detect some entailed literals.
Each system is accompanied by a concrete motivating example of a theory of

practical relevance, namely Difference Logic and EUF Logic, respectively. For Dif-
ference Logic, an efficient design for Solver

T
is described in Subsection 4.3.

Further refinements of theory propagation and conflict-driven clause learning are
discussed in more detail in Section 5.

4.2 DPLL(T ) with exhaustive theory propagation and Difference Logic

Here we deal with a particular application strategy of the rules of Abstract DPLL
Modulo Theories modeling exhaustive theory propagation. We show how it can
be implemented using the DPLL(T ) architecture, and explain the roles of the
DPLL(X) engine and the theory solver Solver

T
in it.

Solver
T

processes the input formula, stores the list of all literals occurring in it,
and hands it over to DPLL(X), which treats it as a purely propositional CNF.
After that, the various Abstract DPLL rules are applied by DPLL(X) as described
below:
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TheoryPropagate: Immediately after Solver
T

is notified that a literal l has been
added to M , (e.g., as a consequence of UnitPropagate or Decide), Solver

T
is also

requested to provide all input literals that are T -consequences of M l but not of
M alone. Then, for each one of them, TheoryPropagate is immediately applied by
DPLL(X). Note that this way M never becomes T -inconsistent, a property that
can be exploited by Solver

T
to increase its efficiency (see the next subsection for

the case of Difference Logic), and by the DPLL(X) engine since it will never need
to ask for the T -consistency of M .

UnitPropagate: If TheoryPropagate is not applicable, DPLL(X) tries to apply
UnitPropagate next, possibly triggering more rounds of theory propagation, and
stops if it discovers a conflicting clause. (In a concrete implementation all this can
be implemented with the commonly used two-watched-literals scheme.)

Backjump and Fail: If DPLL(X) detects a conflicting clause, it immediately
applies T -Backjump or Fail, depending respectively on whether the current assign-
ment contains a decision literal or not. (In a concrete implementation, an appro-
priate backjump clause can be computed as explained in the next section.) At each
backjump, DPLL(X) tells Solver

T
how many literals have been removed from the

assignment.

T -Learn: Immediately after each T -Backjump application, the T -Learn rule is
applied to learn the backjump clause. This is possible because this clause is always
a T -consequence of the formula F in the current state M || F . Note that, as
explained in Subsection 3.2 for the case of exhaustive theory propagation, theory
lemmas (clauses C such that ∅ |=T C) are never learned, since they are useless in
this context.

Restart: For correctness with respect to the Abstract DPLL modulo theories
framework, one must guarantee that Restart has increasing periodicity. Typically
this is achieved by only applying Restart when certain system parameters reach
some prescribed limits, such as the number of conflicts or the number of new units
derived, and increasing this restart limit periodically.

T -Forget: For correctness with respect to Abstract DPLL modulo theories, it
suffices to apply this rule only to previously T -learned clauses. This is what is
usually done, removing part of these clauses according to their activity (e.g., the
number of times involved in recent conflicts).

Decide: In this strategy, DPLL(X) applies Decide only if none of the other Basic
DPLL rules apply. The choice of the decision literal is well known to have a strong
impact on the search behavior. Numerous heuristics for this purpose exist.

4.3 Design of Solver
T

for Difference Logic

To provide an example in this article of Solver
T

for a given T , here we briefly outline
the design of a theory solver for Difference Logic. Despite its simplicity, Difference
Logic has been used to express important practical problems, such as verification
of timed systems, scheduling problems or the existence of paths in digital circuits
with bounded delays.
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In Difference Logic, the background theory T can be the theory of the integers, the
rationals or the reals, depending on the application. Input formulas are restricted
to Boolean combinations of atoms of the form a ≤ b + k, where a and b are free
constants and k is a (possibly negative) integer, rational or real constant. Over the
integers, atoms of the form a < b+k can be equivalently written as a ≤ b+(k−1);
for instance, a < b + 7 becomes a ≤ b + 6. A similar transformation exists for
the rationals and reals, by decreasing k by a small enough amount ε. For a given
input formula, the ε to be applied to its literals can be computed in linear time
[Schrijver 1987; Armando et al. 2004]. Similarly, negations and equalities can also
be removed, and one can assume that all literals are of the form a ≤ b + k. Their

conjunction can be seen as a graph with an edge a
k

−→ b for each literal a ≤ b + k.
Independently of whether T is the theory of the integers, the rationals or the reals,
such a conjunction is T -satisfiable if, and only if, there is no cycle in the graph with
negative accumulated weight. Therefore, once all literals are of the form a ≤ b + k,
the specific theory does not matter any more.

Initial Setup. As said, for the initial setup of DPLL(T ), Solver
T

reads the input
CNF, stores the list of all literals occurring in it, and hands it over to DPLL(X)
as a purely propositional CNF. For efficiency reasons, it is important that in
this CNF the relation between literals and their negations is made explicit. For
example, over the integers, if a ≤ b+2 and b ≤ a−3 occur in the input then, since
one is equivalent to the negation of the other, they should be abstracted by a
propositional variable and its negation. This can be detected by using a canonical
form during this setup process. For instance, one can impose an ordering on the
free constants and require that the smallest one, say a in the example above,
be always on the left-hand side of the ≤ symbol. So here we would have that
b ≤ a − 3 is handled as the negation of a ≤ b + 2.
For reasons we will see below, Solver

T
also builds a data structure containing,

for each constant symbol, the number of input literals it occurs in, and the list
of all these literals.

DPLL(X) sets the truth value of a literal. Then, Solver
T

adds the correspond-

ing edge to the graph. Here we will write a0
k ∗

−→ an if there is a path in the

graph of the form a0
k1−→ a1

k2−→ . . .
kn−1

−→ an−1
kn−→ an with n ≥ 0 and where

k = k1 + . . . + kn is called the length of this path.
Note that one can assume that DPLL(X) does not communicate to Solver

T
any

redundant edges (i.e., edges already entailed by G), since such consequences
would already have been communicated by Solver

T
to DPLL(X). Similarly,

DPLL(X) will not communicate to Solver
T

any edges that are inconsistent with
the graph. Therefore, there will be no cycles of negative length. Here, Solver

T

must return to DPLL(X) all input literals that are new consequences of the
graph once the new edge has been added. Essentially, for detecting the new

consequences of a new edge a
k

−→ b, Solver
T

needs to check all paths ai
ki ∗

−→

a
k

−→ b
k′

j ∗

−→ bj and see whether there is any input literal that follows from
ai ≤ bj + (ki + k + k′

j), i.e., an input literal of the form ai ≤ bj + k′, with
k′ ≥ ki + k + k′

j . For checking all such paths from ai to bj that pass through
the new edge from a to b, the graph is kept in double adjacency list representa-
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tion. Then a standard single-source-shortest-path algorithm starting from a can
be used for computing all ai with their corresponding minimal ki (and similarly
for the bj). Its cost, for M literals containing N different constant symbols, is
O(N · M).

While doing this, the visited nodes are marked and inserted into two lists, one for
the ai’s and one for the bj ’s. At the same time, two counters are kept measuring
the total number of input literals containing the ai’s and, respectively, the bj ’s.

Then, if, w.l.o.g., the ai’s are the ones that occur in less input literals, we check,
for each input literal l containing some ai, whether the other constant in l is some
of the found bj , and whether l is entailed or not (this can be checked in constant
time since previously all bj have been marked). The asymptotic worst-case cost
of this part is O(L), where L is the number of different input literals. In our
experience this is much faster than the O(N2) check of the Cartesian product of
ai’s and bj ’s.

Implementation of Explain and Backtrack. Whenever the m-th edge is added
to the graph, the edge is annotated with its insertion number m. When a literal
l of the form a ≤ b + k is returned as a T -consequence of the m-th edge, this m

is recorded together with l. If later on the explanation for l is required, a path in
the graph from a to b of length at most k is searched, using a depth-first search
as before, but without traversing any edges with insertion number greater than
m. This not only improves efficiency, but it is also needed for not returning “too
new” explanations, which may create cycles in the implication graph (see Sec-
tion 5). Each time DPLL(X) backjumps, it communicates to Solver

T
how many

edges it has to remove, e.g., up to some insertion number m. According to our
experiments, the best way (with negligible cost) for dealing with this in Solver

T

is the naive one, i.e., using a trail stack of edges with their insertion numbers and
all their associated T -consequences.

4.4 DPLL(T ) with non-exhaustive theory propagation and EUF Logic

For some logics, such as the logic of Equality with Uninterpreted Functions (EUF),
exhaustive theory propagation is not the best strategy. In EUF, atoms consist
of ground equations between terms, and the theory T consists of the axioms of
reflexivity, symmetry, and transitivity of ‘=’, as well as the monotonicity axioms,
saying, for all f , that f(x1 . . . xn)= f(y1 . . . yn) whenever xi = yi for all i in 1 . . . n

(see also Example 3.1).
Our experiments with EUF revealed that a non-exhaustive strategy behaves bet-

ter in practice than one with exhaustive theory propagation. More precisely, we
found that detecting exhaustively all negative equality consequences is very ex-
pensive, whereas all positive equalities can propagated efficiently by means of a
congruence closure algorithm [Downey et al. 1980]. It is beyond the scope of this
article to describe the design of a theory solver for EUF. We refer the reader to
[Nieuwenhuis and Oliveras 2003] for a description and discussion of a modern in-
cremental, backtrackable congruence closure algorithm for this purpose. We point
out that efficiently retrieving explanations (for constructing the conflict graph and
generating theory lemmas) inside an incremental congruence closure algorithm is
non-trivial. Increasingly better techniques have been developed in [de Moura et al.
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2004; Stump and Tan 2005; Nieuwenhuis and Oliveras 2005b].
We describe below an application strategy of Abstract DPLL Modulo Theories for

DPLL(T ) with non-exhaustive theory propagation. The emphasis will be on those
aspects that differ from the exhaustive case, and on how and when T -inconsistent
partial assignments M are detected and repaired.

TheoryPropagate: In this strategy, when Solver
T

is asked for new T -consequences,
it may return only an incomplete list. Therefore, DPLL(X) can no longer maintain
the invariant that the partial assignment is always T -consistent as in the exhaus-
tive case of Subsection 4.2. For this reason, it is no longer necessary to ask for
T -consequences as eagerly as in the exhaustive case. Instead, for efficiency reasons
it is better to ask Solver

T
for new T -consequences only if no Basic DPLL rule other

than Decide applies and the current assignment is T -consistent. For each returned
T -consequence, TheoryPropagate is immediately applied by DPLL(X).

UnitPropagate: DPLL(X) applies this rule while possible unless it detects a
conflicting clause.

Backjump and Fail: DPLL(X) may apply T -Backjump or Fail due to two possible
situations. The first one is when it detects a conflicting clause, as usual. The second
one is due to a T -inconsistency of the current partial assignment M .

Solver
T

is asked to check the T -consistency of M each time no Basic DPLL
rule other than Decide applies—and before being asked for theory consequences.
When M is T -inconsistent Solver

T
identifies a subset {l1, . . . , ln} of it such that

∅ |=T ¬l1∨. . .∨¬ln, and returns the theory lemma ¬l1∨. . .∨¬ln as an explanation
of the inconsistency. DPLL(X) then handles the lemma as a conflicting clause,
applying T -Backjump or Fail to it.

T -Learn: Immediately after each T -Backjump application, the T -Learn rule is
applied for learning the backjump clause.

Now, in backjumps due to T -inconsistencies, the backjump clause may sometimes
be the theory lemma denoting the T -inconsistency itself (if it has only one literal of
the current decision level). Therefore, in this case, sometimes theory lemmas will
be learned. Another possibility is to always learn the theory lemma coming from a
T -inconsistency, even if it is not the backjump clause. This may be useful, because
it prevents the same T -inconsistency from occurring again.

Restart: This rule is applied as in the exhaustive strategy of Subsection 4.2.

T -Forget: it is also applied as in the exhaustive case, but in this case among the
(less active) lemmas that are removed there are also theory lemmas. This is again
less simple than in the exhaustive case, because different forgetting policies could
be applied to the two kinds of lemmas. Note that, in any case, none of the lemmas
needs to be kept for completeness.

Decide: This rule is applied as in the exhaustive strategy of Subsection 4.2.

We conclude this section by summarizing the key differences between the two
strategies for exhaustive and non-exhaustive theory propagation, described in Sub-
sections 4.2 and 4.4: in the former, which we applied to Difference Logic, the partial
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model never becomes T -inconsistent, since all input literals that are T -consequences
are immediately set to true. In contrast, the DPLL(T ) system described in Sub-
section 4.4, and applied to EUF logic, allows, for efficiency reasons, Solver

T
to fail

sometimes to detect some entailed literals, and hence it must be able to recover
from T -inconsistent partial assignments.

5. THEORY PROPAGATION STRATEGIES AND CONFLICT ANALYSIS

The idea of theory propagation was first mentioned in [Armando et al. 2000] under
the name of Forward Checking Simplification, in the context of temporal reasoning.
The authors suggest that a literal l can be propagated if ¬l is inconsistent with
the current state, but they also imply that this is expensive “since it requires a
number of T -consistency checks roughly equal to the number of literals in [the
whole formula] ϕ”. A similar notion called Enhanced Early Pruning is mentioned
in [Audemard et al. 2002] in the context of the MathSAT system, but nothing
is said about when and how it is applied, and how it relates to conflict analysis.
Also, the new system Yices (see Section 6) appears to apply some form of theory
propagation. Except for these systems and ours, we are not aware of any other
systems that apply theory propagation, nor of any other descriptions of theory
propagation in the literature outside our own previous work on the subject.

In [Ganzinger et al. 2004] we showed that, somewhat against expectations, prac-
tical T -solvers can be designed to do theory propagation efficiently. To the best
of our knowledge, before that, the methods for detecting a theory consequence l

were essentially based on sending ¬l to the theory solver, and checking whether a
T -inconsistency was derived.

Some essential and non-trivial issues about theory propagation have remained
largely unstudied until now:

—when to compute the explanations for the theory propagated literals;

—how to handle conflict analysis adequately in the context of theory propagation;

—how eagerly to perform theory propagation.

In this section, we analyze these issues in detail. We point out that thinking in
terms of Abstract DPLL Modulo Theories was crucial in giving us a sufficient
understanding for doing this analysis in the first place, especially by helping us
clearly separate correctness concerns from efficiency ones. We start with a running
example illustrating some of the questions above.

Example 5.1. Consider EUF logic and a clause set F containing, among others:

(1) a=b ∨ g(a) 6=g(b)
(2) h(a)=h(c) ∨ p

(3) g(a)=g(b) ∨ ¬p

Now consider a state of the form M, c = b, f(a) 6= f(b) || F , giving rise to the
following sequence of derivation steps:
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Step: New literal: Reason:
Decide h(a) 6=h(c)
TheoryPropagate a 6=b since h(a) 6=h(c) ∧ c=b |=T a 6=b

UnitPropagate g(a) 6=g(b) because of a 6=b and Clause 1
UnitPropagate p because of h(a) 6=h(c) and Clause 2.

In the resulting state, Clause 3 is conflicting. When seen as a conflict graph, as
done in Example 2.6 for the propositional case, the situation looks as follows:

c=b a 6=b g(a) 6=g(b)

h(a) 6=h(c) p

In this graph, the double arrows→→ indicate theory propagations, whereas the single
arrows denote unit propagations. The backjump clause h(a)=h(c) ∨ c 6=b can be
produced by considering the indicated cut in the graph, as in Example 2.6. This
clause can also be obtained by the backwards resolution process on the conflicting
clause illustrated in Example 2.6, specifically, by resolving in reverse chronological
order with the clauses that caused propagations, until a clause with exactly one
literal from the current decision level is derived.

The only difference here with respect to the propositional case is that now we can
have theory propagated literals as well. For each one of these literals, resolution is
done with the theory lemma explaining its propagation (here, the leftmost premise
of the last resolution step):

h(a)=h(c) ∨ c 6=b ∨ a 6=b

a=b ∨ g(a) 6=g(b)

h(a)=h(c) ∨ p g(a)=g(b) ∨ ¬p

g(a)=g(b) ∨ h(a)=h(c)

h(a)=h(c) ∨ a=b

h(a)=h(c) ∨ c 6=b

The resulting clause can be used as a backjump clause, in the same way as in
Example 2.6 for the propositional case.

In what follows, we argue that in general it is not a good idea to compute these
theory lemmas (or explanations) immediately, during theory propagation. Instead,
it is usually better to compute each of them only as needed in resolution steps
during conflict analysis. We also explain what problems may occur in delaying the
computation of explanations until they are really needed, and give detailed results
showing when and how a backjump clause can be found.

5.1 When to compute explanations for the theory propagated literals

Each time a theory propagation step of the form M || F =⇒ M l || F takes place,
this is because l1∧ . . .∧ ln |=T l for some subset {l1, . . . , ln} of M . Now, a very
simple way of managing theory propagated literals for the purposes of conflict
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analysis is to use T -Learn immediately after each such a theory propagation step,
adding the corresponding theory lemma ¬l1∨ . . .∨¬ln∨ l to the current formula.
After that, the theory propagated literal l can be simply seen as a unit propagated
literal by the newly learned clause. Hence, when a conflicting clause is detected, the
backjump clause can be computed exactly as in the propositional case, as explained
in Example 2.6.

Unfortunately, this approach, used for instance in the latest version of the Math-
SAT system [Bozzano et al. 2005], has some important drawbacks. We have done
extensive experiments, running our DPLL(T ) implementations on all the formulas
available in the SMT-LIB benchmark library [Ranise and Tinelli 2003; Tinelli and
Ranise 2005] for the logics EUF, RDL, IDL and UFIDL (see the next section). In
these experiments, we have counted (i) the number of theory propagation steps
and (ii) the number of times theory propagated literals are involved in a conflict,
in other words, the number of resolution steps with explanations.

It turns out that, on average, theory propagations are around 250 times more
frequent than resolution steps with explanations. For almost all examples, the ratio
lies between 20 and 1500. Hence, immediately computing an explanation each time
a theory propagation takes place, as done in MathSAT, is bound to be highly
inefficient: on average just one of these lemmas out of every 250 is ever going to be
used (possibly, even less than that, as each theory propagated literal may occur in
more than one conflict). The cost of generating explanations is twofold: it is the
cost incurred by Solver

T
in computing the clause and that incurred by DPLL(X) in

inserting the clause in the clause database and maintaining it under propagation.
There is however a potential advantage in the MathSAT approach, for strate-

gies where TheoryPropagate is applied only if no other rule except Decide is ap-
plicable (this is what we did for EUF in Subsection 4.4). Assume as before that
TheoryPropagate applies to a state M || F because l1∧ . . .∧ ln |=T l for for some
subset {l1, . . . , ln} of M . Also assume that, due to a previous TheoryPropagate step,
the explanation ¬l1∨. . .∨¬ln ∨ l is still present in F , although, due to backtrack-
ing, l has become again undefined in M . Then the effect of theory propagating l

can now be achieved more efficiently by a unit propagation step with the clause
¬l1∨ . . .∨¬ln ∨ l. If this leads to a conflict at the current decision level before
TheoryPropagate is tried, then a gain in efficiency may be obtained. If, on the other
hand, no conflict occurs before applying TheoryPropagate, then it is likely that re-
peated work is done by Solver

T
, rediscovering the fact that l is a T -consequence of

M .
For some theory solvers it may be possible that, when computing a T -consequence,

there is only a low additional cost in computing its explanation as well at the same
time. But even then one usually would not want to pay the time and memory
cost of adding the lemma as a new clause—since in many cases this is going to be
wasted work and space. One could simply store the lemma as a passive clause, i.e.,
not active in the DPLL procedure, or store some information on how to compute
it later.

5.2 Handling conflict analysis in the context of theory propagation

In the previous subsection we have argued that it is preferable to generate expla-
nations only at the moment they are needed for conflict analysis. Here we analyze
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the possible problems that arise in doing so, and discuss when and how it is still
possible to compute a backjump clause. In a state of the form M1 l M2 l′ M3 || F ,
we say that l is older than l′, and that l′ is newer than l.

Too new explanations:
Let us first revisit Example 5.1. After the four steps, where Clause 3 is conflicting, if
Solver

T
is asked to compute the explanation of a 6=b, it can also return g(a) 6=g(b),

instead of the “real” explanation h(a) = h(c) ∨ c 6= b ∨ a 6= b. Indeed a 6= b is a
T -consequence of g(a) 6= g(b) as well. But g(a) 6= g(b) is a too new explanation: it
did not even belong to the partial assignment at the time a 6= b was propagated,
and was in fact deduced by UnitPropagate from a 6=b itself and Clause 1. Too new
explanations are problematic because they can cause cycles in the conflict graph:

a 6=b g(a) 6=g(b)

h(a) 6=h(c) p

For the conflict graph above, the backwards resolution process computing the back-
jump clause does in fact loop:

g(a)=g(b) ∨ a 6=b

a=b ∨ g(a) 6=g(b)

h(a)=h(c) ∨ p g(a)=g(b) ∨ ¬p

g(a)=g(b) ∨ h(a)=h(c)

h(a)=h(c) ∨ a=b

g(a)=g(b) ∨ h(a)=h(c)

Therefore, to make sure that a backjump clause can be found, Solver
T

should never
return too new explanations. A sufficient condition is to require that all literals in
the explanation of a literal l be older than l. In other words, if the current state is
of the form M l N || F , then all literals in the explanation of l should occur in M .

Too old explanations:
In our example, when Solver

T
was asked to compute the explanation of a 6= b, it

could also have returned f(a) 6=f(b). This literal was already available before a 6=b

was obtained, but, as mentioned in Subsection 4.4, Solver
T

might have failed to
detect a 6= b as a negative consequence of it. It is interesting to observe that, with
f(a)= f(b) ∨ a 6= b as the explanation of a 6= b, the resulting conflict graph has no
unique implication point (UIP). In fact, there is not even a path from the current
decision literal h(a) 6= h(c) to the conflicting literal (of the current decision level)
g(a) 6=g(b):
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f(a) 6=f(b) a 6=b g(a) 6=g(b)

h(a) 6=h(c) p

However, looking at what happens with the backwards resolution procedure, one
can see that it still produces a backjump clause, that is, a clause with exactly one
literal from the current decision level:

f(a)=f(b) ∨ a 6=b

a=b ∨ g(a) 6=g(b)

h(a)=h(c) ∨ p g(a)=g(b) ∨ ¬p

g(a)=g(b) ∨ h(a)=h(c)

h(a)=h(c) ∨ a=b

h(a)=h(c) ∨ f(a)=f(b)

The following theorem states that in the backwards resolution process too old
explanations are never a problem. It follows that just disallowing too new expla-
nations suffices to guarantee that a backjump clause is always found.

Theorem 5.2. Assume that for any state of the form M || F and for any l in
M due to TheoryPropagate, the explanation of l produced by Solver

T
contains no

literals newer than l in M . Then, if some clause C is conflicting in a state S, either
Fail applies to S, or else the backwards resolution process applied to C reaches a
backjump clause.

Proof. Let d be the largest of the decision levels of the literals in C, and let
D be the (non-empty) set of all literals of C that have become false at decision
level d. If D is a singleton, C itself is a backjump clause. Otherwise, we can apply
the backwards conflict resolution process, resolving away literals of decision level d,
until we reach a backjump clause having exactly one literal of level d. This process
always terminates because each resolution step replaces a literal of decision level
d by a finite number (zero in the case of a too old explanation) of strictly older
literals of level d. The process is also guaranteed to produce a clause with just one
literal of decision level d because, except for the decision literal itself, every literal
of decision level d is resolvable.

Note that the previous theorem is rather general by making no assumptions on
the strategy followed in applying the DPLL rules. Also note that the theorem
holds in the purely propositional case a well, where the theory T is empty and
the theorem’s assumption is vacuously true as TheoryPropagate never applies. Its
generality entails that, for instance, one can apply Decide even in the presence
of a conflicting clause, or if UnitPropagate also applies. In contrast, in [Zhang
and Malik 2003], the correctness proof of the Chaff algorithm assumes the fixed
standard strategy in which unit propagation is done exhaustively before making any
new decisions, which is considered an “important invariant”. Theorem 5.2 instead
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shows that it is unproblematic for conflict analysis if a literal l is unit propagated at
a decision level d when in fact it could have been propagated already at an earlier
level. The reason is simply that in the backwards resolution step resolving on l

replaces it by zero literals of level d, in perfect analogy to what happens to theory
propagated literals with a too old explanation.

5.3 The degree of eagerness by which theory propagation should be performed

So far we have seen two possible strategies for theory propagation.
The first one, which we defined for Difference Logic, requires that Solver

T
returns

all theory consequences (Subsection 4.2). In that strategy, TheoryPropagate is
invoked each time a new literal is added to the current partial assignment. This is
done to ensure that the partial assignment never becomes T -inconsistent.

The second strategy, defined for EUF logic, assumes that Solver
T

may return
only some subset of the theory consequences, and applies TheoryPropagate only if
no rule other than TheoryPropagate or Decide is applicable (Subsection 4.4).

However, there may also be expensive theories where one does not want to do full
theory propagation (or check T -consistency) before every Decide step, but instead
invoke it in some cheaper, incomplete way. The complete check is only required at
the leaves of the search tree, i.e., each time a propositional model has been found,
in order to decide its T -consistency (this coincides with what is done in the naive
lazy approach). The MathSAT approach [Bozzano et al. 2005] is based on a similar
hierarchical view, where cheaper checks are performed more eagerly than expensive
ones.

6. EXPERIMENTS WITH AN IMPLEMENTATION OF DPLL(T )

We have experimented the DPLL(T ) architecture with various implementations
collaboratively developed at Iowa and in Barcelona. We describe here our most ad-
vanced implementation, BarcelogicTools, developed mostly in Barcelona. The sys-
tem follows the strategies presented in Section 4, and its solvers are as described in
Subsection 4.3 and in [Nieuwenhuis and Oliveras 2003; 2005b]. Its DPLL(X) engine
implements state-of-the-art techniques such as the two-watched literal scheme for
unit propagation, the first-UIP learning scheme, and VSIDS-like decision heuristics
[Moskewicz et al. 2001; Zhang et al. 2001]. The T -Forget rule is currently applied
by DPLL(X) after each restart, removing a portion of the learned clauses according
to their activity level [Goldberg and Novikov 2002], defined as the number of times
they were involved in a conflict since the last restart.

6.1 The 2005 SMT Competition

The effectiveness of BarcelogicTools was shown at the 2005 SMT Competition [Bar-
rett et al. 2005]. The competition used problems from the SMT-LIB library [Tinelli
and Ranise 2005], a fairly large collection of benchmarks (around 1300) coming from
such diverse areas as software and hardware verification, bounded model checking,
finite model finding, and scheduling. These benchmarks were in the standard for-
mat of SMT-LIB [Ranise and Tinelli 2003], and were classified into 7 competition
divisions according to their background theory and some additional syntactic re-
strictions. For each division, around 50 benchmarks were randomly chosen and
given to each entrant system with a time limit of 10 minutes per benchmark.
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BarcelogicTools entered and won all four divisions for which it had a theory
solver: EUF, IDL and RDL (resp. integer and real Difference Logic), and UFIDL
(combining EUF and IDL). At least 10 systems participated in each of these divi-
sions. Among the competitors were well-known SMT solvers such as SVC [Barrett
et al. 1996], CVC [Barrett et al. 2002], CVC-Lite [Barrett and Berezin 2004], Math-
SAT [Bozzano et al. 2005], and two very recent successors of ICS [Filliâtre et al.
2001]: Yices (by Leonardo de Moura) and Simplics (by Dutertre and de Moura).
Apart from EUF and Difference Logic, these systems also support other theories
such as arrays (except MathSAT), and linear arithmetic (SVC only over the reals).

It is well-known that in practical problems over richer (combined) theories usu-
ally a large percentage of the work still goes into EUF and Difference Logic. For
example, in [Bozzano et al. 2005] it is mentioned that in many calls a general solver
is not needed: “very often, the unsatisfiability can be established in less expressive,
but much easier, sub-theories”. Similarly, [Seshia and Bryant 2004], which deals
with quantifier-free Presburger arithmetic, states that it has been found by them
and others that literals are “mainly” difference logic.

The competition was run on 2.6 GHz, 512 MB, Pentium 4 Linux machines, with
a 512 KB cache. For each division, the results of the best three systems are shown
in the following table, where Total time is the total time in seconds spent by each
system, with a timeout of 600 seconds, and Time solved is the time spent on the
solved problems only:

Top-3 systems # problems Total Time

solved time solved

BarcelogicTools 39 8358 1758
EUF (50 problems): Yices 37 9601 1801

MathSAT 33 12386 2186
BarcelogicTools 41 6341 940

RDL (50 pbms.): Yices 37 9668 1868
MathSAT 37 10408 2608
BarcelogicTools 47 3531 1131

IDL (51 pbms.): Yices 47 4283 1883
MathSAT 46 4295 1295
BarcelogicTools 45 2705 305

UFIDL (49 pbms.): Yices 36 9789 1989
MathSAT 22 17255 1055

Not only did BarcelogicTools solve more problems than each of the other systems,
it also did so in considerably less time, even—and in spite of the fact that it solved
more problems—if only the time spent on the solved problems is counted.

6.2 Experiments on the impact of Theory Propagation

In our experience, the overhead produced by theory propagation is almost always
compensated by a significant reduction of the search space. In [Ganzinger et al.
2004] we presented extensive experimental results showing its effectiveness in our
DPLL(T ) approach for EUF logic. In [Nieuwenhuis and Oliveras 2005a] we dis-
cussed a large number of experiments for Difference Logic, with additional empha-
sis on the good scaling properties of the approach. The new SMT solver Yices now
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also heavily relies on theory propagation.

Of course, theory propagation may not pay off in certain specific problems where
the theory plays an insignificant role, i.e., where reasoning is done almost entirely
at the Boolean level. Such situations can be detected on the fly by computing the
percentage of conflicts caused by theory propagations. If this number is very low,
theory propagation can be switched off automatically, or applied more lazily, to
speed up the computation. (This is done in a forthcoming release of our system.)

In the following two figures, BarcelogicTools with and without theory propagation
is compared, on the same type of machine as in the previous subsection, in terms of
run time (in seconds) and number of decisions (applications of Decide) on a typical
real-world Difference Logic suite (fisher6-mutex, see [Tinelli and Ranise 2005]),
consisting of 20 problems of increasing size.
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The figures show the typical behavior on the larger problems where the theory
plays a significant role: both the run time and the number of decisions are orders
of magnitude smaller in the version with theory propagation (note that times and
decisions are plotted on a logarithmic scale). In both cases the DPLL(X) engine
used was exactly the same, although in the exhaustive theory case some parts of
the code were never executed (e.g., theory lemma learning).

6.3 Experiments comparing BarcelogicTools with the eager approach

For completeness, we finally compare BarcelogicTools with UCLID, the best-known
tool implementing the eager translation approach to SMT [Lahiri and Seshia 2004].
We show below run time results (in seconds) for three typical series of benchmarks
for UFIDL coming from different methods for pipelined processor verification given
in [Manolios and Srinivasan 2005a; 2005b] (more precisely, for the BIDW case (i)
flushing, (ii) commitment good MA and (iii) commitment GFP). The benchmarks
were run on the same type of machine as in the previous two subsections, but this
time with a one hour timeout. We used Siege [Ryan 2004] as the final SAT solver
for UCLID, since it performed better than any other available SAT solver on these
problems.
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6-stage:
7-stage:
8-stage:
9-stage:

10-stage:

UCLID BlTools

258 1
835 3

3160 15
>3600 23
>3600 54

UCLID BlTools

3596 5
>3600 8
>3600 18
>3600 18
>3600 29

UCLID BlTools

19 1
58 1

226 1
664 1

>3600 2

We emphasize that these results are typical for the pipelined processor verifica-
tion problems coming from this source, a finding that has also independently been
reproduced by Manolios (private communication). We refer the reader to the re-
sults given in [Ganzinger et al. 2004], showing that our approach also dominates
UCLID in the pure EUF case, as well as for EUF with integer offsets (interpreted
successor and predecessor symbols).

7. CONCLUSIONS

We have shown that the Abstract DPLL formalism introduced here can be very
useful for understanding and formally reasoning about a large variety of DPLL-
based procedures for SAT and SMT.

In particular, we have used it here to describe several variants of a new, efficient,
and modular approach for SMT, called DPLL(T ). Given a DPLL(X) engine, a
DPLL(T ) system for a theory T is obtained by simply plugging in the corresponding
theory solver Solver

T
, which must only be able to deal with conjunctions of theory

literals and conform to a minimal and simple set of additional requirements.
We are currently working on several—in our opinion very promising—ways to

improve and extend both the abstract framework and the DPLL(T ) architecture.
The abstract framework can be extended to deal more effectively with theories

where the satisfiability of conjunctions of literals is already NP-hard by lifting, from
the theory solver to the DPLL(X) engine, some or all of the case analysis done by
the theory solver. Along those lines, the framework can also be nicely extended
to a Nelson-Oppen style combination framework for handling formulas over several
theories. The resulting DPLL(T1, . . . , Tn) architecture can deal modularly and
efficiently with the combined theories.

Preliminary experiments reveal that other applications of the DPLL(T ) frame-
work can produce competitive decision procedures as well for completely different
(at least on the surface) kinds of problems. For example, optimization aspects of
problems such as pseudo-Boolean constraints can be nicely expressed and efficiently
solved in this framework by recasting them as particular SMT problems.
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Filliâtre, J.-C., Owre, S., Rueß, H., and Shankar, N. 2001. ICS: Integrated Canonization and
Solving (Tool prese ntation). In Proceedings of CAV’2001, G. Berry, H. Comon, and A. Finkel,
Eds. Lecture Notes in Computer Science, vol. 2102. Springer-Verlag, 246–249.

Flanagan, C., Joshi, R., Ou, X., and Saxe, J. B. 2003. Theorem proving using lazy proof
explanation. In Procs. 15th Int. Conf. on Computer Aided Verification (CAV). LNCS 2725.

Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., and Tinelli, C. 2004. DPLL(T):
Fast Decision Procedures. In Proceedings of the 16th International Conference on Computer
Aided Verification, CAV’04 (Boston, Massachusetts), R. Alur and D. Peled, Eds. Lecture Notes
in Computer Science, vol. 3114. Springer, 175–188.

Goldberg, E. and Novikov, Y. 2002. BerkMin: A fast and robust SAT-solver. In Design,
Automation, and Test in Europe (DATE ’02). 142–149.

Hodges, W. 1993. Model Theory. Enclyclopedia of mathematics and its applications, vol. 42.
Cambridge University Press.

Jaffar, J. and Maher, M. 1994. Constraint Logic Programming: A Survey. Journal of Logic
Programming 19/20, 503–581.

Lahiri, S. K. and Seshia, S. A. 2004. The UCLID Decision Procedure. In Computer Aided
Verification, 16th International Conference, (CAV). Lecture Notes in Computer Science, vol.
3114. 475–478.

Manolios, P. and Srinivasan, S. K. 2005a. A computationally efficient method based on com-
mitment refinement maps for verifying pipelined machines. In ACM IEEE Int. Conf. on Formal
Methods and Models for Co-Design (MEMOCODE).

Manolios, P. and Srinivasan, S. K. 2005b. Refinement maps for efficient verification of processor
models. In Design, Automation and Test in Europe Conference and Exposition (DATE). IEEE
Computer Society, 1304–1309.

Marques-Silva, J. and Sakallah, K. A. 1999. GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48, 5 (may), 506–521.

Meir, O. and Strichman, O. 2005. Yet another decision procedure for equality logic. In Pro-
ceedings of the 17th International Conference on Computer Aided Verification, CAV’05 (Ed-
imburgh, Scotland), K. Etessami and S. K. Rajamani, Eds. Lecture Notes in Computer Science,
vol. 3576. Springer, 307–320.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. 2001. Chaff: Engi-
neering an Efficient SAT Solver. In Proc. 38th Design Automation Conference (DAC’01).

Nieuwenhuis, R. and Oliveras, A. 2003. Congruence Closure with Integer Offsets. In 10h Int.
Conf. Logic for Programming, Artif. Intell. and Reasoning (LPAR), M. Vardi and A. Voronkov,
Eds. LNAI 2850. 78–90.

Nieuwenhuis, R. and Oliveras, A. 2005a. DPLL(T) with Exhaustive Theory Propagation and
its Application to Difference Logic. In Proceedings of the 17th International Conference on
Computer Aided Verification, CAV’05 (Edimburgh, Scotland), K. Etessami and S. K. Rajamani,
Eds. Lecture Notes in Computer Science, vol. 3576. Springer, 321–334.

Nieuwenhuis, R. and Oliveras, A. 2005b. Proof-Producing Congruence Closure. In Proceedings
of the 16th International Conference on Term Rewriting and Applications, RTA’05 (Nara,
Japan), J. Giesl, Ed. Lecture Notes in Computer Science, vol. 3467. Springer, 453–468.

Journal of the ACM, Vol. V, No. N, Month 20YY.



Solving SAT and SMT · 43

Nieuwenhuis, R., Oliveras, A., and Tinelli, C. 2005. Abstract DPLL and Abstract DPLL

Modulo Theories. In ”11th Int. Conf. Logic for Programming, Artif. Intell. and Reasoning
(LPAR)”, F. Baader and A. Voronkov, Eds. Lecture Notes in Computer Science, vol. 3452.
Springer, 36–50.

Pnueli, A., Rodeh, Y., Shtrichman, O., and Siegel, M. 1999. Deciding equality formulas
by small domains instantiations. In Procs. 11th Int. Conf. on Computer Aided Verification
(CAV). LNCS 1633. 455–469.

Ranise, S. and Tinelli, C. 2003. The SMT-LIB Format: An Initial Proposal. In Proceedings of
the 1st Workshop on Pragmatics of Decision Procedures in Automated Reasoning. Miami.

Ryan, L. 2004. Efficient Algorithms for Clause-Learning SAT Solvers. M.S. thesis, School of
Computing Science, Simon Fraser University.

Schrijver, A. 1987. Theory of Linear and Integer Programming. John Wiley and Sons, New
York.

Seshia, S., Lahiri, S., and Bryant, R. 2003. A Hybrid SAT-Based Decision Procedure for
Separation Logic with Uninterpreted Functions. In Procs. 40th Design Automation Conference
(DAC). 425–430.

Seshia, S. A. 2005. Adaptive eager boolean encoding for arithmetic reasoning in verification.
Ph.D. thesis, Carnegie-Mellon University.

Seshia, S. A. and Bryant, R. E. 2004. Deciding quantifier-free presburger formulas using pa-
rameterized solution bounds. In 19th IEEE Symposium on Logic in Computer Science (LICS
2004). IEEE Computer Society, 100–109.

Strichman, O. 2002. On Solving Presburger and Linear Arithmetic with SAT. In Formal
Methods in Computer-Aided Design, 4th International Conference, FMCAD 2002, Portland,
OR, USA, November 6-8, 2002, Proceedings, M. Aagaard and J. W. O’Leary, Eds. Lecture
Notes in Computer Science, vol. 2517. Springer, 160–170.

Strichman, O., Seshia, S. A., and Bryant, R. E. 2002. Deciding separation formulas with SAT.
In Procs. 14th Intl. Conference on Computer Aided Verification (CAV). LNCS 2404. 209–222.

Stump, A. and Tan, L.-Y. 2005. The algebra of equality proofs. In Proceedings of the 16th In-
ternational Conference on Term Rewriting and Applications, RTA’05 (Nara, Japan), J. Giesl,
Ed. Lecture Notes in Computer Science, vol. 3467. Springer, 469–483.

Talupur, M., Sinha, N., Strichman, O., and Pnueli, A. 2004. Range Allocation for Separation
Logic. In Computer Aided Verification, 16th International Conference, CAV 2004, Boston,

MA, USA, July 13-17, 2004, Proceedings. Lecture Notes in Computer Science. Springer, 148–
161.

Tinelli, C. 2002. A DPLL-based Calculus for Ground Satisfiability Modulo Theories. In Procs.
8th European Conf. on Logics in Artificial Intelligence. LNAI 2424. 308–319.

Tinelli, C. and Ranise, S. 2005. SMT-LIB: The Satisfiability Modulo Theories Library.
http://goedel.cs.uiowa.edu/smtlib/.

Zhang, H. 1997. SATO: An efficient propositional prover. In Proceedings of the 14th International
Conference on Automated Dedu ction. Springer-Verlag, 272–275.

Zhang, L., Madigan, C. F., Moskewicz, M. W., and Malik, S. 2001. Efficient conflict driven
learning in a Boolean satisfiability solver. In Int. Conf. on Computer-Aided Design (IC-
CAD’01). 279–285.

Zhang, L. and Malik, S. 2003. Validating SAT Solvers Using an Independent Resolution-Based
Checker: Practical Implementations and Other Applications. In 2003 Design, Automation and
Test in Europe Conference (DATE 2003). IEEE Computer Society, 10880–10885.

...

Journal of the ACM, Vol. V, No. N, Month 20YY.


