
Barcelogic - Tech. Univ. Catalonia (UPC)

SAT (Modulo Theories) = Resolution

Questions and Challenges

Invited talk, IJCAR 2012 - Manchester
Robert Nieuwenhuis

(+ Ignasi Abı́o, Albert Oliveras, Enric Rodrı́guez, Javier Larrosa, ...)

Barcelogic Research Group, Tech. Univ. Catalonia, Barcelona

IJCAR 2012 Barcelogic – p. 1

Barcelogic - Tech. Univ. Catalonia (UPC)

The objective of this talk is to explain:

Current SAT and SAT Modulo Theories (SMT) technology.

Our current aim:
extend applications from verification to other industrial
combinatorial optimization problems: scheduling,
timetabling...

theoretical limitations

ways to overcome these limitations

trade-offs

challenges

IJCAR 2012 Barcelogic – p. 2

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

IJCAR 2012 Barcelogic – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Good vs Bad

IJCAR 2012 Barcelogic – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Good vs Bad in SAT

IJCAR 2012 Barcelogic – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Good vs Bad in SAT

SAT Solvers. Why do they work so well? Three basic ideas.

IJCAR 2012 Barcelogic – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Good vs Bad in SAT

SAT Solvers. Why do they work so well? Three basic ideas.

Same ideas not as successful in general complete CP search?

IJCAR 2012 Barcelogic – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Good vs Bad in SAT

SAT Solvers. Why do they work so well? Three basic ideas.

Same ideas not as successful in general complete CP search?

What is SAT Modulo Theories (SMT)?

IJCAR 2012 Barcelogic – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Good vs Bad in SAT

SAT Solvers. Why do they work so well? Three basic ideas.

Same ideas not as successful in general complete CP search?

What is SAT Modulo Theories (SMT)?

Lazy approach, improved Lazy approach.

IJCAR 2012 Barcelogic – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Good vs Bad in SAT

SAT Solvers. Why do they work so well? Three basic ideas.

Same ideas not as successful in general complete CP search?

What is SAT Modulo Theories (SMT)?

Lazy approach, improved Lazy approach.

DPLL(T) = DPLL(X) + T-Solver

IJCAR 2012 Barcelogic – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Good vs Bad in SAT

SAT Solvers. Why do they work so well? Three basic ideas.

Same ideas not as successful in general complete CP search?

What is SAT Modulo Theories (SMT)?

Lazy approach, improved Lazy approach.

DPLL(T) = DPLL(X) + T-Solver

CP-like theories and T-solvers. Examples.

IJCAR 2012 Barcelogic – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Good vs Bad in SAT

SAT Solvers. Why do they work so well? Three basic ideas.

Same ideas not as successful in general complete CP search?

What is SAT Modulo Theories (SMT)?

Lazy approach, improved Lazy approach.

DPLL(T) = DPLL(X) + T-Solver

CP-like theories and T-solvers. Examples.

Proof complexity and other insights

IJCAR 2012 Barcelogic – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Good vs Bad in SAT

SAT Solvers. Why do they work so well? Three basic ideas.

Same ideas not as successful in general complete CP search?

What is SAT Modulo Theories (SMT)?

Lazy approach, improved Lazy approach.

DPLL(T) = DPLL(X) + T-Solver

CP-like theories and T-solvers. Examples.

Proof complexity and other insights

When can SAT beat SMT? Hybrids!

IJCAR 2012 Barcelogic – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Good vs Bad in SAT

SAT Solvers. Why do they work so well? Three basic ideas.

Same ideas not as successful in general complete CP search?

What is SAT Modulo Theories (SMT)?

Lazy approach, improved Lazy approach.

DPLL(T) = DPLL(X) + T-Solver

CP-like theories and T-solvers. Examples.

Proof complexity and other insights

When can SAT beat SMT? Hybrids!

The impact of auxiliary variables

IJCAR 2012 Barcelogic – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Good vs Bad in SAT Solvers

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)

IJCAR 2012 Barcelogic – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

Good vs Bad in SAT Solvers

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)

Lesson: Real-world problems 6= random or artificial ones !

IJCAR 2012 Barcelogic – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

Good vs Bad in SAT Solvers

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)

Lesson: Real-world problems 6= random or artificial ones !

What’s GOOD? Complete solvers:

outperforming by far the other methods (see later why)

on real-world problems from many sources, with a

single, fully automatic, push-button, var selection strategy!

Hence modeling is essentially declarative.

IJCAR 2012 Barcelogic – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

Good vs Bad in SAT Solvers

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)

Lesson: Real-world problems 6= random or artificial ones !

What’s GOOD? Complete solvers:

outperforming by far the other methods (see later why)

on real-world problems from many sources, with a

single, fully automatic, push-button, var selection strategy!

Hence modeling is essentially declarative.

What’s BAD?

Very low-level language: need modeling and encoding tools

Sometimes no adequate/compact encodings: arithmetic...

Answers “unsat” or model. Optimization not as well studied.

IJCAR 2012 Barcelogic – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

IJCAR 2012 Barcelogic – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒

IJCAR 2012 Barcelogic – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

IJCAR 2012 Barcelogic – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

IJCAR 2012 Barcelogic – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

IJCAR 2012 Barcelogic – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

IJCAR 2012 Barcelogic – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

IJCAR 2012 Barcelogic – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2

IJCAR 2012 Barcelogic – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

IJCAR 2012 Barcelogic – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2

IJCAR 2012 Barcelogic – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 model found!

IJCAR 2012 Barcelogic – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 model found!

More rules: Backjump, Learn, Forget, Restart [M-S,S,M,...]!

IJCAR 2012 Barcelogic – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)

IJCAR 2012 Barcelogic – p. 6

Barcelogic - Tech. Univ. Catalonia (UPC)

Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)
1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

IJCAR 2012 Barcelogic – p. 6

Barcelogic - Tech. Univ. Catalonia (UPC)

Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)
1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Backjump =

1. Conflict Analysis: “Find” a backjump clause C ∨ l (here, 2∨5)

that is a logical consequence of F

that reveals a unit propagation of l at earlier decision
level d (i.e., where its part C is false)

2. Return to decision level d and do the propagation.

IJCAR 2012 Barcelogic – p. 6

Barcelogic - Tech. Univ. Catalonia (UPC)

Conflict Analysis: find backjump clause

Example. Consider assignment: . . . 6 . . . 7 . . . 9 and let F contain:

9∨6∨7∨8, 8∨7∨5, 6∨8∨4, 4∨1, 4∨5∨2, 5∨7∨3, 1∨2∨3.

UnitPropagate gives . . . 6 . . . 7 . . . 9 8 5 4 1 2 3. Conflict w/ 1∨2∨3!

C.An. = do resolutions in reverse order backwards from conflict:

8∨7∨5
6∨8∨4

4∨1

4∨5∨2
5∨7∨3 1∨2∨3

5∨7∨1∨2

4∨5∨7∨1

5∨7∨4
6∨8∨7∨5

8∨7∨6

until reaching clause with only 1 literal of last decision level.

Can use this backjump clause 8∨7∨6 for Backjump to . . . 6 . . . 7 8.

IJCAR 2012 Barcelogic – p. 7

Barcelogic - Tech. Univ. Catalonia (UPC)

Yes, but why is DPLL really that good?

Three key ingredients that only work if used TOGETHER:

IJCAR 2012 Barcelogic – p. 8

Barcelogic - Tech. Univ. Catalonia (UPC)

Yes, but why is DPLL really that good?

Three key ingredients that only work if used TOGETHER:

1. Learn at each conflict backjump clause as a lemma (“nogood”):

makes UnitPropagate more powerful

prevents EXP repeated work in future similar conflicts

IJCAR 2012 Barcelogic – p. 8

Barcelogic - Tech. Univ. Catalonia (UPC)

Yes, but why is DPLL really that good?

Three key ingredients that only work if used TOGETHER:

1. Learn at each conflict backjump clause as a lemma (“nogood”):

makes UnitPropagate more powerful

prevents EXP repeated work in future similar conflicts

2. Decide on variables with many occurrences in recent conflicts:

Dynamic activity-based heuristics (former VSIDS implm.)

idea: work off, one by one, clusters of tightly related vars
(try DPLL on two independent instances together...)

IJCAR 2012 Barcelogic – p. 8

Barcelogic - Tech. Univ. Catalonia (UPC)

Yes, but why is DPLL really that good?

Three key ingredients that only work if used TOGETHER:

1. Learn at each conflict backjump clause as a lemma (“nogood”):

makes UnitPropagate more powerful

prevents EXP repeated work in future similar conflicts

2. Decide on variables with many occurrences in recent conflicts:

Dynamic activity-based heuristics (former VSIDS implm.)

idea: work off, one by one, clusters of tightly related vars
(try DPLL on two independent instances together...)

3. Forget from time to time low-activity lemmas:

crucial to keep UnitPropagate fast and memory affordable

idea: lemmas from worked-off clusters no longer needed!

IJCAR 2012 Barcelogic – p. 8

Barcelogic - Tech. Univ. Catalonia (UPC)

Not the same success doing this in CP...

It’s not easy to get everything together right. But also (I think):

IJCAR 2012 Barcelogic – p. 9

Barcelogic - Tech. Univ. Catalonia (UPC)

Not the same success doing this in CP...

It’s not easy to get everything together right. But also (I think):

Static (e.g., first-fail) heuristics used
– effect: work simultaneously on too unrelated variables
– would require storing too many nogoods at the same time

IJCAR 2012 Barcelogic – p. 9

Barcelogic - Tech. Univ. Catalonia (UPC)

Not the same success doing this in CP...

It’s not easy to get everything together right. But also (I think):

Static (e.g., first-fail) heuristics used
– effect: work simultaneously on too unrelated variables
– would require storing too many nogoods at the same time

No simple uniform underlying language (as SAT’s clauses):
– hard to express nogoods (in SAT, 1st-class citizens: clauses)
– hard to understand conflict analysis
– hard to implement things really efficiently

IJCAR 2012 Barcelogic – p. 9

Barcelogic - Tech. Univ. Catalonia (UPC)

Not the same success doing this in CP...

It’s not easy to get everything together right. But also (I think):

Static (e.g., first-fail) heuristics used
– effect: work simultaneously on too unrelated variables
– would require storing too many nogoods at the same time

No simple uniform underlying language (as SAT’s clauses):
– hard to express nogoods (in SAT, 1st-class citizens: clauses)
– hard to understand conflict analysis
– hard to implement things really efficiently

Learning nogoods not found very useful...
– mislead by random/academic pbs?
– Indeed, it is useless isolatedly, and also on random pbs!

IJCAR 2012 Barcelogic – p. 9

Barcelogic - Tech. Univ. Catalonia (UPC)

Not the same success doing this in CP...

It’s not easy to get everything together right. But also (I think):

Static (e.g., first-fail) heuristics used
– effect: work simultaneously on too unrelated variables
– would require storing too many nogoods at the same time

No simple uniform underlying language (as SAT’s clauses):
– hard to express nogoods (in SAT, 1st-class citizens: clauses)
– hard to understand conflict analysis
– hard to implement things really efficiently

Learning nogoods not found very useful...
– mislead by random/academic pbs?
– Indeed, it is useless isolatedly, and also on random pbs!

Learning requires explaining filtering algs.! [KB’03,05, ...]

IJCAR 2012 Barcelogic – p. 9

Barcelogic - Tech. Univ. Catalonia (UPC)

Not the same success doing this in CP...

It’s not easy to get everything together right. But also (I think):

Static (e.g., first-fail) heuristics used
– effect: work simultaneously on too unrelated variables
– would require storing too many nogoods at the same time

No simple uniform underlying language (as SAT’s clauses):
– hard to express nogoods (in SAT, 1st-class citizens: clauses)
– hard to understand conflict analysis
– hard to implement things really efficiently

Learning nogoods not found very useful...
– mislead by random/academic pbs?
– Indeed, it is useless isolatedly, and also on random pbs!

Learning requires explaining filtering algs.! [KB’03,05, ...]

Towards a solution... see the next slide...

IJCAR 2012 Barcelogic – p. 9

Barcelogic - Tech. Univ. Catalonia (UPC)

What is SAT Modulo Theories (SMT)?

Origin: Reasoning about equality, arithmetic, data structures such
as arrays, etc., in Software/Hardware verification.

What is SMT? Deciding satisfiability of an (existential) SAT
formula with atoms over a background theory T

Example 1: T is Equality with Uninterpreted Functions (EUF):

3 clauses: f (g(a)) 6= f (c) ∨ g(a)=d, g(a)= c, c 6=d

Example 2: several (how many?) combined theories:

2 clauses: A=write(B, i+1, x), read(A, j+3)=y ∨ f (i−1) 6= f (j+1)

Typical verification examples, where SMT is method of choice.

IJCAR 2012 Barcelogic – p. 10

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

1. Send { 1∨2, 3, 4 } to SAT solver

IJCAR 2012 Barcelogic – p. 11

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

IJCAR 2012 Barcelogic – p. 11

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T-inconsistent

IJCAR 2012 Barcelogic – p. 11

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T-inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

IJCAR 2012 Barcelogic – p. 11

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T-inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

IJCAR 2012 Barcelogic – p. 11

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T-inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

IJCAR 2012 Barcelogic – p. 11

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T-inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

3. Send {1∨2, 3, 4, 1∨3∨4, 1∨2∨3∨4 } to SAT solver

IJCAR 2012 Barcelogic – p. 11

Barcelogic - Tech. Univ. Catalonia (UPC)

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T-inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

3. Send {1∨2, 3, 4, 1∨3∨4, 1∨2∨3∨4 } to SAT solver

SAT solver says UNSAT

IJCAR 2012 Barcelogic – p. 11

Barcelogic - Tech. Univ. Catalonia (UPC)

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency only of full propositional models

IJCAR 2012 Barcelogic – p. 12

Barcelogic - Tech. Univ. Catalonia (UPC)

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

IJCAR 2012 Barcelogic – p. 12

Barcelogic - Tech. Univ. Catalonia (UPC)

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

IJCAR 2012 Barcelogic – p. 12

Barcelogic - Tech. Univ. Catalonia (UPC)

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

IJCAR 2012 Barcelogic – p. 12

Barcelogic - Tech. Univ. Catalonia (UPC)

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, add clause and restart

IJCAR 2012 Barcelogic – p. 12

Barcelogic - Tech. Univ. Catalonia (UPC)

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, do conflict analysis of the explanation
and Backjump

IJCAR 2012 Barcelogic – p. 12

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) approach (’04) ([NOT], JACM Nov06)

DPLL(T) = DPLL(X) engine + T-Solvers

Modular and flexible: can plug in any T-Solvers into the
DPLL(X) engine.

T-Solvers specialized and fast in Theory Propagation:

Propagate input literals that are theory consequences

more pruning in improved lazy SMT

T-Solver also guides search, instead of only validating it

fully exploited in conflict analysis (non-trivial)

IJCAR 2012 Barcelogic – p. 13

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

∅ || 1∨2, 3, 4 ⇒ (UnitPropagate)

IJCAR 2012 Barcelogic – p. 14

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

∅ || 1∨2, 3, 4 ⇒ (UnitPropagate)
3 || 1∨2, 3, 4 ⇒ (T-Propagate)

IJCAR 2012 Barcelogic – p. 14

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

∅ || 1∨2, 3, 4 ⇒ (UnitPropagate)
3 || 1∨2, 3, 4 ⇒ (T-Propagate)
3 1 || 1∨2, 3, 4 ⇒ (UnitPropagate)

IJCAR 2012 Barcelogic – p. 14

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

∅ || 1∨2, 3, 4 ⇒ (UnitPropagate)
3 || 1∨2, 3, 4 ⇒ (T-Propagate)
3 1 || 1∨2, 3, 4 ⇒ (UnitPropagate)
3 1 2 || 1∨2, 3, 4 ⇒ (T-Propagate)

IJCAR 2012 Barcelogic – p. 14

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

∅ || 1∨2, 3, 4 ⇒ (UnitPropagate)
3 || 1∨2, 3, 4 ⇒ (T-Propagate)
3 1 || 1∨2, 3, 4 ⇒ (UnitPropagate)
3 1 2 || 1∨2, 3, 4 ⇒ (T-Propagate)
3 1 2 4 || 1∨2, 3, 4 ⇒

IJCAR 2012 Barcelogic – p. 14

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

∅ || 1∨2, 3, 4 ⇒ (UnitPropagate)
3 || 1∨2, 3, 4 ⇒ (T-Propagate)
3 1 || 1∨2, 3, 4 ⇒ (UnitPropagate)
3 1 2 || 1∨2, 3, 4 ⇒ (T-Propagate)
3 1 2 4 || 1∨2, 3, 4 ⇒ unsat

Conflict at decision level zero. No search in this example.

IJCAR 2012 Barcelogic – p. 14

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL(T) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

f (g(a)) 6= f (c)
︸ ︷︷ ︸

1

∨ g(a)=d
︸ ︷︷ ︸

2

, g(a)= c
︸ ︷︷ ︸

3

, c 6=d
︸︷︷︸

4

∅ || 1∨2, 3, 4 ⇒ (UnitPropagate)
3 || 1∨2, 3, 4 ⇒ (T-Propagate)
3 1 || 1∨2, 3, 4 ⇒ (UnitPropagate)
3 1 2 || 1∨2, 3, 4 ⇒ (T-Propagate)
3 1 2 4 || 1∨2, 3, 4 ⇒ unsat

Conflict at decision level zero. No search in this example.

Explanation for last T-Propagate:
2∧ 3→ 4 or, equivalently, 2∨ 3 ∨ 4

Explanations are T-lemmas, i.e., tautologies (valid clauses) in T

IJCAR 2012 Barcelogic – p. 14

Barcelogic - Tech. Univ. Catalonia (UPC)

Conflict analysis in DPLL(T)

Need to do backward resolution with two kinds of clauses:

UnitPropagate with clause C: resolve with C (as in SAT)

T-Propagate of lit : resolve with (small) explanation
l1 ∧ . . . ∧ ln → lit provided by T-Solver

IJCAR 2012 Barcelogic – p. 15

Barcelogic - Tech. Univ. Catalonia (UPC)

Conflict analysis in DPLL(T)

Need to do backward resolution with two kinds of clauses:

UnitPropagate with clause C: resolve with C (as in SAT)

T-Propagate of lit : resolve with (small) explanation
l1 ∧ . . . ∧ ln → lit provided by T-Solver

Implemention ideas (see again [NOT], JACM’06)

UnitPropagate: store pointer to clause C, as in SAT solvers

T-Propagate: (pre-)compute explanations at each T-Propagate?
– usually better only on demand, during conflict analysis

then: need to avoid too new T-explanations
– typically only one Explain per approx. 250 T-Propagates.
– depends on T, etc.

IJCAR 2012 Barcelogic – p. 15

Barcelogic - Tech. Univ. Catalonia (UPC)

What does DPLL(T) need from T-Solver ?

T-consistency check of a set of literals M, with:

Explain of T-inconsistency: find small T-inconsistent
subset of M

Incrementality: if l is added to M, check for M l faster than
reprocessing M l from scratch.

Theory propagation: find input T-consequences of M, with:

Explain T-Propagate of l: find (small) subset of M that
T-entails l (needed in conflict analysis).

Backtrack n: undo last n literals added

IJCAR 2012 Barcelogic – p. 16

Barcelogic - Tech. Univ. Catalonia (UPC)

The Barcelogic SMT solver

DPLL(X) = the Barcelogic SAT solver.

+

T-Solvers for:

Congruences (EUF)

Integer/Real Difference Logic

Linear Integer/Real Arithmetic

Arrays

...

Last few years, main activity on:

typical CP filtering algorithms (next)

IJCAR 2012 Barcelogic – p. 17

Barcelogic - Tech. Univ. Catalonia (UPC)

A DPLL(alldifferent) example

Example:
Quasi-Group Completion (QGC)
Each row and column must contain 1 . . . n.

Good method: 3-D encoding in SAT
where pijk means “row i col j has value k”:

3 4

3 4 5

4 5

5

at least one k per [i, j]: clauses like pij1 ∨ . . . ∨ pijn
at most one k per [i, j]: 2-lit clauses like pij1 ∨ pij2

same for exactly one j per [i, k] and i per [j, k]

1 unit clause per filled-in value, e.g., p313

In our 5x5 example, DPLL’s UnitPropagate infers no value

but alldifferent does. Which one?

IJCAR 2012 Barcelogic – p. 18

Barcelogic - Tech. Univ. Catalonia (UPC)

SMT for the theory of alldifferent

QGC Example continued:

alldifferent infers that x, y will
consume 1, 2 and hence z = 3.

Idea:

x y z

3 4

3 4 5

4 5

5

Use 3-D encoding + SMT where T is alldifferent.
As usual in SMT, T-solver knows what pijk’s mean.

From time to time invoke T-solver before Decide, but
do always cheap SAT stuff first: UnitPropagate, Backjump, etc.

T-solver e.g., incremental filtering [Regin’94] but with Explain:
in our example, the literal p133 (meaning z = 3) is entailed by

{ p113 p114 . . . p135 } (meaning x 6= 3, x 6= 4, . . . , z 6= 5).

IJCAR 2012 Barcelogic – p. 19

Barcelogic - Tech. Univ. Catalonia (UPC)

SMT for the theory of alldifferent

Get CP with special-purpose global filtering algorithms, learning,
backjumping, automatic variable selection heuristics...

Application to real-world professional round-robin sports
scheduling

Sometimes better results with weaker alldiff propagation

IJCAR 2012 Barcelogic – p. 20

Barcelogic - Tech. Univ. Catalonia (UPC)

Another example: DPLL(cumulative)

Plan N tasks. Each has a duration and uses certain finite resources.

IJCAR 2012 Barcelogic – p. 21

Barcelogic - Tech. Univ. Catalonia (UPC)

Another example: DPLL(cumulative)

Plan N tasks. Each has a duration and uses certain finite resources.

Pure SMT approach, modeling with variables st,h:

st,h means start(t) ≤ h (so st,h−1 ∧ st,h means start(t) = h).

T-solver propagates resource capacities (using filtering algs.)

IJCAR 2012 Barcelogic – p. 21

Barcelogic - Tech. Univ. Catalonia (UPC)

Another example: DPLL(cumulative)

Plan N tasks. Each has a duration and uses certain finite resources.

Pure SMT approach, modeling with variables st,h:

st,h means start(t) ≤ h (so st,h−1 ∧ st,h means start(t) = h).

T-solver propagates resource capacities (using filtering algs.)

Better “hybrid” approach, adding variables at,h:

at,h means task t is active at hour h

Time-resource decomposition (AgounBel93, Schutt+09):
quadratic no. of clauses like st,h−duration(t) ∧ st,h −→ at,h

T-solver handles, for each hour h and each resource r, one
Pseudo-Boolean constr. like 3at,h + 4at′ ,h + . . . ≤ capacity(r)

Very good results.

IJCAR 2012 Barcelogic – p. 21

Barcelogic - Tech. Univ. Catalonia (UPC)

Another example: DPLL(cumulative)

Plan N tasks. Each has a duration and uses certain finite resources.

Pure SMT approach, modeling with variables st,h:

st,h means start(t) ≤ h (so st,h−1 ∧ st,h means start(t) = h).

T-solver propagates resource capacities (using filtering algs.)

Better “hybrid” approach, adding variables at,h:

at,h means task t is active at hour h

Time-resource decomposition (AgounBel93, Schutt+09):
quadratic no. of clauses like st,h−duration(t) ∧ st,h −→ at,h

T-solver handles, for each hour h and each resource r, one
Pseudo-Boolean constr. like 3at,h + 4at′ ,h + . . . ≤ capacity(r)

Very good results.
But... why can SAT sometimes still beat SMT? See below!

IJCAR 2012 Barcelogic – p. 21

Barcelogic - Tech. Univ. Catalonia (UPC)

Proof complexity and other insights (I)

The pigeon-hole principle for n pigeons and n− 1 holes:

Let PHPn
n−1 denote the set of clauses:

xi,1 ∨ . . . ∨ xi,n−1 for i = 1 . . . n
(every pigeon is in at least one hole)

xi,k ∨ xj,k for 1 ≤ i < j ≤ n and 1 ≤ k ≤ n− 1

(no two pigeons are in the same hole)

[Haken’85]:
Any resolution refutation of PHPn

n−1 requires size exponential in n.

Note: pigeon-hole-like situations do occur in practice. E.g., hidden

in scheduling/timetabling: n−1 (human) resources for n tasks...

IJCAR 2012 Barcelogic – p. 22

Barcelogic - Tech. Univ. Catalonia (UPC)

Proof complexity and other insights (II)

[Zhang&Malik’03]:
CDCL SAT solvers can generate a proof trace file, from which one
can extract, for each lemma, a resolution proof from input clauses:

idk . . .

id3 . . .

id2: 5∨7∨3 id1: 1∨2∨3

5∨7∨1∨2

. .
.

id: lemma

One trace line per conflict/lemma: id← {id1. . .idk}

If input is unsat, conflict at DL zero: last lemma is the empty clause:

trace file ≥ (binary) resolution refutation:

SAT solver runtime ≥ size of smallest resolution refutation.

IJCAR 2012 Barcelogic – p. 23

Barcelogic - Tech. Univ. Catalonia (UPC)

Proof complexity and other insights (III)

SMT solvers can also generate such traces.

SMT unsat proofs are modular, with two parts:

A (purely propositional) resolution refutation from:

the clauses of the input CNF

the generated explanations
(these clauses are written in the trace as well)

For each explanation clause, an independent proof in (its) T.

So, after all, SMT does generate a SAT encoding, but lazily.

SMT solver runtime ≥ size of smallest resolution refutation.

IJCAR 2012 Barcelogic – p. 24

Barcelogic - Tech. Univ. Catalonia (UPC)

In which cases can SAT beat SMT?

SMT’s lazy SAT encoding could end up being a full one

And... this full encoding could be a rather naive one!

Example:
T = cardinality constraint x1 + . . .+ xn ≤ k.
T-solver is just a counter.

Input: propositional clauses implying x1 + . . .+ xn > k.

Refutation requires all (n
k+1) explanations of the form

y1 ∧ . . . ∧ yk → y

IJCAR 2012 Barcelogic – p. 25

Barcelogic - Tech. Univ. Catalonia (UPC)

In which cases can SAT beat SMT?

SMT’s lazy SAT encoding could end up being a full one

And... this full encoding could be a rather naive one!

Example:
T = cardinality constraint x1 + . . .+ xn ≤ k.
T-solver is just a counter.

Input: propositional clauses implying x1 + . . .+ xn > k.

Refutation requires all (n
k+1) explanations of the form

y1 ∧ . . . ∧ yk → y

For T-constraints triggering many explanations, i.e., bottle necks,
better use good SAT encoding with auxiliary variables!

Here, e.g., Cardinality Networks: O(n log2 k) clauses and aux. vars.

IJCAR 2012 Barcelogic – p. 25

Barcelogic - Tech. Univ. Catalonia (UPC)

When to use SAT, and when SMT?

Most constraints are no bottle necks and generate very few
explanations =⇒ handle with SMT.

For bottle necks, better use SAT encoding with aux vars

Little detail.... problems have many constraints, and cannot predict
at encoding time wich one will be a bottle neck!

IJCAR 2012 Barcelogic – p. 26

Barcelogic - Tech. Univ. Catalonia (UPC)

When to use SAT, and when SMT?

Most constraints are no bottle necks and generate very few
explanations =⇒ handle with SMT.

For bottle necks, better use SAT encoding with aux vars

Little detail.... problems have many constraints, and cannot predict
at encoding time wich one will be a bottle neck!

Solution from [Abío and Stuckey, CP 2012]:

Start with SMT, but generate SAT encoding with aux vars on
the fly for those constraint (parts) appearing in many conflicts

Usually improves best of SAT/SMT, and never really worse.

IJCAR 2012 Barcelogic – p. 26

Barcelogic - Tech. Univ. Catalonia (UPC)

When to use SAT, and when SMT?

Most constraints are no bottle necks and generate very few
explanations =⇒ handle with SMT.

For bottle necks, better use SAT encoding with aux vars

Little detail.... problems have many constraints, and cannot predict
at encoding time wich one will be a bottle neck!

Solution from [Abío and Stuckey, CP 2012]:

Start with SMT, but generate SAT encoding with aux vars on
the fly for those constraint (parts) appearing in many conflicts

Usually improves best of SAT/SMT, and never really worse.

Challenges/questions:

Generalize beyond cardinality and pseudo-boolean constraints

Whether/how SAT solver should split (decide) on aux vars?

IJCAR 2012 Barcelogic – p. 26

Barcelogic - Tech. Univ. Catalonia (UPC)

Auxiliary variables & proof complexity

Extended Resolution (ER) introduces auxiliary vars (definitions).

No problem family found (yet?) without short ER unsat proofs.

IJCAR 2012 Barcelogic – p. 27

Barcelogic - Tech. Univ. Catalonia (UPC)

Auxiliary variables & proof complexity

Extended Resolution (ER) introduces auxiliary vars (definitions).

No problem family found (yet?) without short ER unsat proofs.

Two ways to (try to) exploit this:

Use encoding with aux. vars. and split/decide on them?

Compatible with [AS’12] on-the-fly SMT→ SAT encodings.

Limitation: No P-size domain-consistent SAT encoding, not
even with aux vars, for, e.g., alldiff [BessiereEtal’09].

CDCL SAT solvers that introduce aux var definitions
[AudemardKS’10,Huang’10]

IJCAR 2012 Barcelogic – p. 27

Barcelogic - Tech. Univ. Catalonia (UPC)

Auxiliary variables & proof complexity

Extended Resolution (ER) introduces auxiliary vars (definitions).

No problem family found (yet?) without short ER unsat proofs.

Two ways to (try to) exploit this:

Use encoding with aux. vars. and split/decide on them?

Compatible with [AS’12] on-the-fly SMT→ SAT encodings.

Limitation: No P-size domain-consistent SAT encoding, not
even with aux vars, for, e.g., alldiff [BessiereEtal’09].

CDCL SAT solvers that introduce aux var definitions
[AudemardKS’10,Huang’10]

Also, between resolution and extended resolution: cutting planes.

DPLL-like linear integer arithmetic solvers like [JdM’11]

IJCAR 2012 Barcelogic – p. 27

Barcelogic - Tech. Univ. Catalonia (UPC)

Concluding remarks

Apart from the challenges we have mentioned...

Need more CP filtering algorithms with explain.

Progress (but need more) in optimization problems:
– Branch and bound is just another SMT theory [SAT’06]
– Framework for branch and bound w/ lower bounding and
optimality proof certificates [SAT’09, JAR’11].

– MAX-SMT.

...

IJCAR 2012 Barcelogic – p. 28

Barcelogic - Tech. Univ. Catalonia (UPC)

Concluding remarks

Apart from the challenges we have mentioned...

Need more CP filtering algorithms with explain.

Progress (but need more) in optimization problems:
– Branch and bound is just another SMT theory [SAT’06]
– Framework for branch and bound w/ lower bounding and
optimality proof certificates [SAT’09, JAR’11].

– MAX-SMT.

...

Barcelogic looks for industrial problems, partners, (EU) projects...

Thank You!

IJCAR 2012 Barcelogic – p. 28

	The objective of this talk is to explain:
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk

	verd {Good} vs vermell {Bad} in SAT Solvers
	verd {Good} vs vermell {Bad} in SAT Solvers
	verd {Good} vs vermell {Bad} in SAT Solvers
	verd {Good} vs vermell {Bad} in SAT Solvers

	DPLL (or CDCL) SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers

	Backtrack vs. Backjump
	Backtrack vs. Backjump
	Backtrack vs. Backjump

	Conflict Analysis: find backjump clause
	Yes, but why is DPLL really vermell {that} good?
	Yes, but why is DPLL really vermell {that} good?
	Yes, but why is DPLL really vermell {that} good?
	Yes, but why is DPLL really vermell {that} good?

	Not the same success doing this in CP...
	Not the same success doing this in CP...
	Not the same success doing this in CP...
	Not the same success doing this in CP...
	Not the same success doing this in CP...
	Not the same success doing this in CP...

	What is SAT Modulo Theories (SMT)?
	The vermell {Lazy} approach to SMT
	The vermell {Lazy} approach to SMT
	The vermell {Lazy} approach to SMT
	The vermell {Lazy} approach to SMT
	The vermell {Lazy} approach to SMT
	The vermell {Lazy} approach to SMT
	The vermell {Lazy} approach to SMT
	The vermell {Lazy} approach to SMT

	Improved Lazy approach
	Improved Lazy approach
	Improved Lazy approach
	Improved Lazy approach
	Improved Lazy approach
	Improved Lazy approach

	dpllt approach ('04)
 small {([NOT], JACM Nov06)}
	dpllt Example small { (the same vermell {EUF} one) }
	dpllt Example small { (the same vermell {EUF} one)
}
	dpllt Example small { (the same vermell {EUF} one)
}
	dpllt Example small { (the same vermell {EUF} one)
}
	dpllt Example small { (the same vermell {EUF} one)
}
	dpllt Example small { (the same vermell {EUF} one)
}
	dpllt Example small { (the same vermell {EUF} one)
}

	Conflict analysis in dpllt
	Conflict analysis in dpllt

	What does dpllt need from vermell {solt }?
	The verd {	extsl {Barcelogic}} SMT solver
	A DPLL(verd {	extbf {	exttt {alldifferent}}})
example
	SMT for the theory of verd {	extbf {	exttt {alldifferent}}}
	SMT for the theory of verd {	extbf {	exttt {alldifferent}}}
	Another example: DPLL(verd {	extbf {	exttt {cumulative}}})
	Another example: DPLL(verd {	extbf {	exttt {cumulative}}})
	Another example: DPLL(verd {	extbf {	exttt {cumulative}}})
	Another example: DPLL(verd {	extbf {	exttt {cumulative}}})

	Proof complexity and other insights (I)
	Proof complexity and other insights (II)
	Proof complexity and other insights (III)
	In which cases can SAT beat SMT?
	In which cases can SAT beat SMT?

	When to use SAT, and when SMT?
	When to use SAT, and when SMT?
	When to use SAT, and when SMT?

	Auxiliary variables & proof complexity
	Auxiliary variables & proof complexity
	Auxiliary variables & proof complexity

	Concluding remarks
	Concluding remarks

