
Fast Congruence Closure and Extensions

Robert Nieuwenhuis 1,3,∗ , Albert Oliveras 1,2

Technical University of Catalonia, Dept. LSI,
Jordi Girona 1, 08034 Barcelona, Spain

Abstract

Congruence closure algorithms for deduction in ground equational theories are ubiq-
uitous in many (semi-)decision procedures used for verification and automated de-
duction. In many of these applications one needs an incremental algorithm that is
moreover capable of recovering, among the thousands of input equations, the small
subset that explains the equivalence of a given pair of terms.

In this paper we present an algorithm satisfying all these requirements. First,
building on ideas from abstract congruence closure algorithms [Kapur (1997,RTA),
Bachmair & Tiwari (2000,CADE)], we present a very simple and clean incremen-
tal congruence closure algorithm and show that it runs in the best known time
O(n log n). After that, we introduce a proof-producing union-find data structure
that is then used for extending our congruence closure algorithm, without increasing
the overall O(n log n) time, in order to produce a k-step explanation for a given
equation in almost optimal time (quasi-linear in k).

Finally, we show that the previous algorithms can be smoothly extended, while
still obtaining the same asymptotic time bounds, in order to support the interpreted
functions symbols successor and predecessor, which have been shown to be very
useful in applications such as microprocessor verification.

Key words: decision procedures, congruence closure, equational reasoning,
verification
PACS: 89.20.Ff, 84.30.Bv, 07.05.Bx, 95.75.Pq, 02.10.-v

∗ Corresponding author.
URLs: www.lsi.upc.edu/~roberto (Robert Nieuwenhuis),

www.lsi.upc.edu/~oliveras (Albert Oliveras).
1 Partially supported by Spanish Min. of Educ. and Science through the LogicTools
project (TIN2004-03382).
2 Partially supported by Spanish Min. of Educ. and Science through a FPU grant
AP2002-3533.
3 Partially supported by personal grant “SMT Solvers for High-Level Hardware
Verification” from Intel Corporation.

Preprint submitted to Elsevier Science 3 October 2006

1 Introduction

Union-find data structures maintain the equivalence relation induced by a
given sequence of Union operations between pairs of elements. Similarly, con-
gruence closure algorithms maintain a congruence relation given by a sequence
of pairs of terms (i.e., equations) without variables. The difference between
equivalence closure and congruence closure is that the congruence relation,
in addition to reflexivity, symmetry and transitivity, also satisfies the mono-
tonicity axioms saying, for all f , that f(a1 . . . an)=f(b1 . . . bn) whenever ai=bi

for all i in 1 . . . n.

Example 1 The equation a= b belongs to the congruence generated by the
three equations: b=d, f(b)=d, and f(d)=a. This is equivalent to saying that
a=b is a logical consequence (in first-order logic with equality) of these three
ground equations. 2

Decision procedures based on congruence closure are used in numerous deduc-
tion and verification systems, where the generation of explanations is highly
desirable if not required. For instance, this is the case in decision procedures
for SMT (SAT Modulo Theories), i.e., procedures for deciding the satisfiability
of Boolean formulae over ground atoms with symbols that are interpreted in
some theory. One important class of SMT problems is called EUF (Equality
with Uninterpreted Functions), containing atoms that are equalities between
terms built over uninterpreted function symbols. EUF (i.e., SAT modulo the
theory of congruences) is important in applications such as the verification
of pipelined processors [1], where, if the control is verified, the concrete data
operations can be abstracted by uninterpreted function symbols.

The lazy approaches to SMT, e.g. [2–6] are lazy in the sense that initially each
equality atom is simply abstracted by considering it as a distinct propositional
variable, and the resulting propositional formula is sent to a propositional SAT
solver. If the SAT solver reaches a (partial) model that is not a congruence, the
model is precluded by adding a new propositional clause called an explanation;
this is iterated (many times) until the SAT solver finds a congruence model
or all assignments have been explored.

Example 2 Assume that, in such a lazy approach, the model being built by the
SAT solver is fed into the congruence closure algorithm as a (long!) sequence
of atoms that, in particular, includes b=d, f(b)=d, and f(d)=a. Then, if
additionally a 6=b is given, it is no longer a congruence (see Example 1).

At that point, the congruence closure algorithm has to generate the new clause
b = d ∧ f(b) = d ∧ f(d) = a −→ a = b, because the first three atoms are
the explanation of a=b. It is hence crucial in these applications to efficiently
recover this small explanation among the (thousands of) input equations. 2

2

Another recent approach for the flexible generation of decision procedures
is called DPLL(T) [7]. The basic idea is similar to the CLP(X) scheme for
constraint logic programming: to provide a clean and efficient integration of
specialized theory solvers within the Davis-Putnam-Logemann-Loveland pro-
cedure [8,9]. A general engine DPLL(X) is used, where X can be instantiated
with a solver for a given theory T , thus producing a system DPLL(T). Each
time the DPLL(T) procedure produces a conflict, explanations need to be
generated by the theory solver for building the conflict graph that is used
for non-chronological backtracking in modern SAT solvers like Chaff [10]. The
fact that this approach currently outperforms previous techniques on logics
with equality is largely due to the efficient incremental algorithm for con-
gruence closure with explanations described here (see [7] for details about
the DPLL(T) approach and experiments on benchmarks from a large vari-
ety of verification problems). In the 2005 SAT Modulo Theories Competition
(SMT-COMP; see [11] as well as the results on the web), our DPLL(T) imple-
mentation in BarcelogicTools won all four divisions in which it participated
(out of seven divisions).

Since in such an incremental setting many Explain operations occur during a
single congruence closure procedure, it is important to efficiently recover these
explanations, even at the expense of making the congruence closure algorithm
slightly slower in practice. Recovering small explanations is well-known to be
crucial for efficiency, but one cannot afford to use a naive approach for that,
since then the cost of Explain would strongly dominate the O(n log n) runtime
of the overall congruence closure algorithm. Here we present, to our knowledge,
the first congruence closure algorithm able to produce these explanations in
an efficient way, quasi-linear in the size of the explanation, without increasing
the asymptotic O(n log n) runtime of the overall congruence closure.

This article is structured as follows.

Some preliminaries on terms, relations, congruences and on the classical Union-
Find data structure are given in Section 2.

In Section 3 we describe a simple and efficient algorithm for incremental con-
gruence closure, whose implementation is described in Subsection 3.3. Despite
an expert reader may skip Subsections 3.4 and 3.5, we include them here for
the self-containedness of the paper. In them, we prove the correctness of the
algorithm and we show that it runs in O(n log n) time, as the fastest known
congruence closure algorithms.

Section 4 of this paper is on union-find data structures with Explain. Indeed,
already for union-find data structures the problem requires some thinking,
since the information about the original input unions is, in general, lost in the
compact representations of the equivalence relation. We describe a union-find

3

data structure that has optimal O(k) Explain operations and optimal Find ,
at the expense of a slightly more costly Union, which has an amortized time
bound of O(log n).

In Section 5 the latter union-find data structure is applied inside our incre-
mental congruence closure algorithm, in order to produce explanations. Its
complexity is analyzed in Subsection 5.1, where we show that the use of this
more costly union-find algorithm (needed for bookkeeping the explanations)
does not increase the overall O(n log n) runtime. The Explain operation is
given in Subsection 5.2 and analyzed in detail in Subsection 5.3 showing that
it is almost optimal, running in O(k α(k, k)) time for a k-step explanation,
where α(k, k) (related to the inverse of Ackermann’s function) is in practice
never larger than 4. Subsection 5.4 discusses quality issues of explanations,
gives extensive experimental results, and introduces several extensions with
practical impact of our explanation algorithms.

In Section 6 the whole framework is extended in order allow an integer in-
terpretation and input formulae containing arbitrary terms built over unin-
terpreted symbols as well as over the interpreted functions symbols successor
and predecessor. Equivalently, one can consider that all subterms t can in fact
be of the form t + k, for some concrete integer value k, called an integer off-
set. Dealing with EUF with integer offsets has been shown to be very useful
in applications such as microprocessor verification [12]. Here we prove that
with this extension of our algorithms the same asymptotic time bounds can
be maintained for all operations.

We finally compare with related work and conclude in Section 7.

2 Preliminaries

Let F be a finite set of function symbols with an arity function arity:F →N.
Function symbols g with arity(g) = n are called n-ary symbols (when n = 1,
one says unary and when n = 2, binary). If arity(g) = 0, then g is a constant
symbol. The set of ground terms over F , denoted by T (F), is the smallest set
containing all constant symbols such that g(t1, . . . , tn) is in T (F) whenever
g ∈ F , arity(g) = n, and t1, . . . , tn ∈ T (F). In the rest of the paper, possibly
subscripted or primed a, b, c, d and e always denote constants. Similarly, s, t
and u will denote arbitrary terms and f, g and h denote non-constant function
symbols.

By |s| we denote the size (number of symbols) of a ground term s: we have
|a| = 1 if a is a constant symbol and for non-constant terms we have that
|g(t1, . . . , tn)| = 1+|t1|+. . .+|tn|. The depth of a term s is denoted by depth(s)

4

and is defined: depth(a) = 1 if a is a constant symbol and depth(g(t1, . . . , tn)) =
1 + max(depth(t1), . . . , depth(tn)).

A binary relation R over a set E is a subset of E × E . It is an equivalence
relation if it is reflexive, symmetric, and transitive. An equivalence relation
induces a partition of E into equivalence classes. Two elements a and b belong
to the same equivalence class if and only if (a, b) ∈ R. In this case, we will
say that they are equivalent (in R). Given a binary relation R, its equivalence
closure is the smallest equivalence relation containing R.

A binary relation R on T (F) is monotonic if (g(s1, . . . , sn) , g(t1, . . . , tn)) ∈ R
whenever g is an n-ary function symbol in F and (si , ti) ∈ R for all i in 1 . . . n.
A congruence relation is a monotonic equivalence relation. Any congruence
relation R induces a partition of T (F) into congruence classes, where two
terms s and t belong to the same congruence class if and only if (s, t) ∈ R.
In this case we say that s and t are congruent (in R). A (ground)equation is
an (unordered) pair of ground terms (s, t), denoted by s = t. The size of an
equation s = t will be 1+ |s|+ |t| and the size of a set of equations E, denoted
|E|, will be the sum of the sizes of its equations. Given a set of equations
E built over F , we denote by E∗ the congruence closure of E: the smallest
congruence relation over T (F) containing E. We sometimes write E |= s = t
to denote that (s, t) belongs to E∗; if E ′ is a set of equations, we write E |= E ′

to denote that E |= s = t for all s = t in E ′, and we write E ≡ E ′ to denote
that E |= E ′ and E ′ |= E.

Here we also give some basic notions about the union-find data structure
(see, e.g., [13] for details). The union-find data type maintains the equivalence
closure of a binary relation U = { (e1, e

′
1), . . . , (ep, e

′
p) } given incrementally

(on-line) as a sequence of operations Union(e1, e
′
1), . . . ,Union(ep, e

′
p). Each

equivalence class is identified by its representative, which is a certain ele-
ment of the class. After initializing the data type with the singleton classes
{e1}, {e2}, . . . , {en}, it supports the operations:

• Union(e, e′): merges the classes containing e and e′ into a new class. We will
assume that e and e′ were not in the same class prior to the operation, or,
equivalently, that redundant unions are ignored.
• Find(e): returns the current representative of the class containing e.

5

3 Congruence Closure

3.1 Initial transformations

Although well-known congruence closure algorithms exist, the classical ones
of Downey, Sethi and Tarjan [14], Nelson and Oppen [15], and Shostak [16]
are not very convenient for our purposes. They are formulated on graphs, and,
in order to obtain the best known worst-case complexity bound, O(n log n),
rather involved manipulations are needed; for example, a transformation to
graphs of outdegree 2 is applied, see [14].

Since our DPLL procedure will call the congruence closure module a large
number of times, and since we will extend our procedure to richer logics, we
prefer to replace this transformation by another cleaner one, at the formula
representation level, which is done once and for all, already on the input
formula given to our DPLL(EUF) procedure.

Our initial transformation consists of Curryfying the terms, and then, as in
[17,18], introducing new constant symbols c for giving names to non-constant
subterms t. These two steps will produce an equivalent problem whose size is
linear with respect to the original one.

3.1.1 Transformation into Curry Terms

The first step of our initial transformation consists of Curryfying all input
terms. After that, there will be only one binary “apply” function symbol (de-
noted in the following by f) and constants. More formally: consider a new
signature F ′ obtained from the original F by introducing a new binary func-
tion symbol “f”, and converting all other symbols into constants. Then the
Curry form of a term t in T (F) is a term Curry(t) in T (F ′) defined as follows:

 Curry(c) = c, if c is a constant symbol, and

Curry(g(t1...tn)) = f(. . . f(f(g,Curry(t1)),Curry(t2)), . . . ,Curry(tn))

For example, the Curry form of g(a, h(b), c)) is f(f(f(g, a), f(h, b)), c). Simi-
larly, we consider the Curry transformation on equations, where Curry(s = t)
is Curry(s) = Curry(t), and also on sets of equations, where Curry(E) is
{Curry(eq) | eq ∈ E}. We make the following simple observations:

Proposition 3 Let t be a term. Then |Curry(t)| ≤ 2|t|−1, i.e., the Curry
transformations only produces a linear growth of the input.

6

Proposition 4 Let E be a set of equations over F and let s = t be an equation
over F . Then Curry(E) |= Curry(s = t) if, and only if, E |= s = t.

3.1.2 Flattening into Terms of Depth at Most 2

The second step consists of introducing new constant symbols c for giving
names to non-constant subterms t; such t are then replaced everywhere by
c and the equation t = c is added. More formally, consider the following
transformation step on E:

E ⇒ E ′ ∪ {c = t} (Constant introduction and replacement)

where c is a fresh constant symbol and E ′ is obtained by replacing all occur-
rences of t in E by c.

For example, we flatten the equation f(f(f(g, a), f(h, b)), b) = b by replacing
it by { f(g, a) = c, f(h, b) = d, f(c, d) = e, f(e, b) = b }.We have the
following:

Proposition 5 Let E0 be a set of equations, let s = t be an equation, (both
built over F ′), and let E be obtained by applying zero or more constant intro-
duction and replacement steps on E0. Then the following holds:

(1) E0 |= s = t if, and only if, E |= s = t.
(2) If a and b are constants not occurring in E ∪ {s = t}, then E |= s = t if,

and only if, E ∪ {s = a, t = b} |= a = b.
(3) By applying a linear number of constant introduction and replacement

steps to E0 an E can be obtained such that all equations of E have a
constant side, E has depth at most 2, and |E| ≤ 2|E0|.

As a consequence of Proposition 5 we can assume that our congruence closure
module receives as input only equations between two constants or between a
constant and a “f” applied to two constants. In a DPLL(EUF) setting, this
transformation is done once and for all on the initial problem. After this, the
atoms in our EUF formula will be (dis)equalities between constants: all equa-
tions involving function symbols will have already be sent to the congruence
closure module. However, these transformations can also be done back and
forth at each call to our the congruence closure procedure.

3.2 Incremental congruence closure

Here we will define an incremental congruence closure algorithm: we are given
a sequence of equations over T (F ′) intermixed with questions about whether

7

two terms s, t over T (F ′) are currently congruent. Formally, the abstract data
type we will consider for incremental congruence closure stores a set of equa-
tions E0 and supports the following operations:

• Merge(t=c) : the equation t=c is added to E0. We require t to be either a
constant or a flat term of the form f(a, b).
• AreCongruent?(s, t) : returns “yes” if s and t currently belong to the same

congruence class, i.e., E0 |= s=t, and “no” otherwise.

3.3 Implementation

The procedure uses the following five simple data structures, which induce the
equivalence class representation. As said, each equivalence class is identified
by its representative, which is a certain constant of the class. The procedure we
will present maintains the invariants for data structures 2, 3, 4 and 5 described
below:

(1) Pending : a list whose elements are input equations a=b, or pairs of input
equations (f(a1, a2)=a, f(b1, b2)=b) where ai and bi are already congruent
for i in {1, 2}. In both cases, we inserting such an element in Pending,
if the merge of the constants a and b is pending. The need of adding
pairs of the form (f(a1, a2)=a, f(b1, b2)=b) instead of simply adding a=b
will be clear in Section 5. When needed, Pending will be seen as a set of
equations. In this case, a pair (f(a1, a2)=a, f(b1, b2)=b) will represent the
equation a=b.

(2) The Representative table: an array indexed by constants, containing for
each constant its current representative.

(3) The Class lists : for each representative, the list of all constants in its
class.

(4) The Use lists : for each representative a, UseList(a) is the list of input
equations f(b1, b2)=b such that a is the representative of b1 or of b2 (or
of both).

(5) The Lookup table: for all pairs of representatives (b, c), Lookup(b, c) is
some input equation f(a1, a2)=a such that b and c are the current re-
spective representatives of a1 and a2 whenever such an equation exists.
Otherwise, Lookup(b, c) is ⊥.

Since initially no input equations have been processed the data structures
UseList and Pending are initialized as empty and Lookup(a, b) is ⊥ for all
pairs (a, b). For each constant a, ClassList(a) is initialized to contain only
a and Representative(a) is set to a. Note that Lookup could be stored in a
hash table, since a 2-dimensional array will be almost empty. In the following
algorithms, a′ always denotes Representative(a) for each constant a.

8

1. Procedure Merge(s=t)
2. If s and t are constants a and b Then
3. add a=b to Pending
4. Propagate()
5. Else /* s=t is of the form f(a1, a2)=a */
6. If Lookup(a′

1, a
′
2) is some f(b1, b2)=b Then

7. add (f(a1, a2)=a, f(b1, b2)=b) to Pending
8. Propagate()
9. Else
10. set Lookup(a′

1, a
′
2) to f(a1, a2)=a

11. add f(a1, a2)=a to UseList(a′
1) and to UseList(a′

2)

12. Procedure Propagate()
13. While Pending is non-empty Do
14. Remove E of the form a=b or (f(a1, a2)=a, f(b1, b2)=b) from Pending
15. If a′ 6= b′ and, wlog., |ClassList(a′)| ≤ |ClassList(b′)| Then
16. old repr a := a′

17. For each c in ClassList(old repr a) Do
18. set Representative(c) to b′

19. move c from ClassList(old repr a) to ClassList(b′)
20. For each f(c1, c2)=c in UseList(old repr a)
21. If Lookup(c′1, c

′
2) is some f(d1, d2)=d Then

22. add (f(c1, c2)=c, f(d1, d2)=d) to Pending
23. remove f(c1, c2)=c from UseList(old repr a)
24. Else
25. set Lookup(c′1, c

′
2) to f(c1, c2)=c

26. move f(c1, c2)=c from UseList(old repr a) to UseList(b′)

Informally, each iteration of Propagate() picks a pending equation. If the equa-
tion is not redundant, lines 18 and 19 add it to the union-find data structure
with eager path compression. Lines 20-26 traverse the UseList of the constant
whose representative has changed and, checking the Lookup table, detect new
pairs of constants to be merged.

The AreCongruent?(s, t) function is much simpler. It only checks whether the
function Normalize described below rewrites both s and t into the same term.

9

27. Procedure Normalize(t)
28. If t is a constant Then
29. return t′

30. Else /* t is f(t1, t2) */
31. u1 :=Normalize(t1)
32. u2 :=Normalize(t2)
33. If u1 and u2 are constants and Lookup(u1, u2) is f(a1, a2) = a Then
34. return a′

35. Else
36. return f(u1, u2)

In order to be used in an SMT setting, a congruence closure procedure needs to
be backtrackable. For that purpose in our implementation we used a mixed pol-
icy which proved to be efficient in practice. The changes on the Representative
and ClassList data structures are stacked in order to be undone, but the
Lookup table is not restored under backtrack, but instead has time stamps to
indicate whether its information is valid or not.

3.4 Correctness

In this section we prove the correctness of the previously presented algorithm.
Similarly to Section 3.5, these results are presented for the self-containedness
of the paper and can be skipped by the expert reader.

The aim of the algorithm is to process a set of equations E0 and to be able to
answer whether an equation belongs to the congruence closure of E0. Inter-
nally, the procedure Merge will compute the congruence closure of the input
equations in the following standard form:

Definition 6 A set of equations E is in standard form if its equations are
of the form a = b or of the form f(a, b) = c whose (respective) left hand side
terms a and f(a, b) only occur once in E.

Definition 7 Let E0 be a set of equations of the form a = b or of the form
f(a, b) = c. A standard congruence closure for E0 is a set of equations E in
standard form such that E0 ≡ E.

In the following, again a′, b′, c′, . . . denote the current representatives of the
constants a, b, c, The set of equations already input to our algorithm is
denoted by E0. At any point of the algorithm, we denote by RepresentativeE
the set of all non-trivial equations of the form a = a′ and of the form f(a′, b′) =
c′ where a, b and c are constants in E0 and Lookup(a′, b′) is f(c1, c2) = c for
some constants c1 and c2.

10

We will prove that after the set E0 of input equations has been processed,
RepresentativeE is a standard congruence closure for E0.

Lemma 8 Apart from the invariants of the data structures 2, 3, 4, and 5, the
following invariants hold each time line 13. is executed and after each call to
Merge.

Inv1: RepresentativeE is in standard form

Inv2: (RepresentativeE ∪ Pending)∗ = E∗
0

PROOF. Invariant Inv1 always holds by definition of RepresentativeE . The
invariants of the data structures 2, 3, 4, and 5, as well as invariant Inv2
trivially hold before any input equation is processed. Given an input equation
s=t, lines 3 and 7 make sure that the equation is added to Pending . If lines 10
and 11 are executed the equation is added to RepresentativeE and also Lookup
and UseList are modified to preserve the data structure invariants. Hence if
Propagate() preserves all invariants, so it does the procedure Merge.

To see that Propagate() preserves all invariants, we check lines 14, 18, 19,
22, 23, 25 and 26, which are the only ones that modify the data structures,
and show that the congruence (RepresentativeE ∪Pending)∗ is changed by no
iteration: (i) each time an equation is removed from Pending (line 14.), lines 18
and 19. ensure that this equality will belong to the next RepresentativeE , and
also preserve the invariants of the data structures 2 and 3; (ii) all equations c =
d that are added to Pending (at line 22.) are in the previous (RepresentativeE∪
Pending)∗: if the input equation f(c1, c2) = c is processed it is because, say, c1

(the reasoning is the same for c2) has changed its representative from a′ to b′,
and f(a′, c′2) and f(b′, c′2) were congruent to c and d respectively in the previous
(RepresentativeE ∪Pending)∗. Moreover, we can remove f(c1, c2) = c from the
UseList (at line 23.) because old repr a is no longer a representative; (iii) lines
25 and 26 ensure that Lookup(a′, b′) is defined for all input terms f(a, b) and
that the UseList for each representative contains all needed equations, i.e.,
they preserve the invariants for UseList and Lookup. 2

Now the following result easily follows:

Theorem 9 After a set of equations E0 has been processed, the following
holds:

(1) RepresentativeE is a standard congruence closure for the input E0.
(2) For any two terms s and t, AreCongruent?(s, t) returns “yes” if and only

if s=t is in the congruence closure of E0.

11

PROOF. For the first claim, note that when the procedure terminates Pending
is always empty. Then, since (RepresentativeE ∪Pending)∗ = E∗

0 by invariant
Inv2, we know that also RepresentativeE ∗ = E∗

0 . Finally, since by invariant
Inv1 RepresentativeE is in standard form, RepresentativeE is a standard con-
gruence closure for the input E0.

For the second claim, note that RepresentativeE , with the equations ori-
ented from left to right, is a convergent term rewrite system for E0 and
AreCongruent?(s, t) simply checks whether s and t have the same normal
form. 2

3.5 Runtime analysis

Theorem 10 A sequence of n Merge operations can be processed in O(n log n)
time, and hence each one of them in O(log n) amortized time. Furthermore,
each question AreCongruent?(s, t) can be answered in O(|s|+|t|) and the space
required for the whole sequence is O(n).

PROOF. As said, an amortized analysis is done over the whole sequence
of n Merge operations. The procedure Merge itself has no loops. Concerning
Propagate(), let m be the number of different constants (note that m ≤ 3n).
The loop at lines 18 and 19 is executed in total O(m log m) times, namely when
some constant changes its representative. For each one of the m constants this
cannot happen more than log m times, because the size of its class is at least
doubled each time and is upper bounded by m. In the loop at lines 21–26, each
one of the at most n input equations of the form f(c1, c2)=c is treated when c1

or c2 changes its representative (which, as before, cannot happen more than
log m times). Altogether, we obtain an O(n log n) runtime. Re-using UseList
and ClassList nodes, only linear space is required.

Each question AreCongruent?(s, t) amounts to computing the normal form of
s and t, and to checking whether they are syntactically equal. Normalize(t)
clearly takes linear time in t and comparing the two canonized terms can also
be done in time O(|s| + |t|), since the canonization of a term never has size
larger than the term itself. 2

4 Producing Explanations from UF

In this section we extend the classical union-find data structure in order to
support the following operation, that is able to explain at any point of the
computation “why” two given elements e and e′ are equivalent at that moment:

12

• Explain(e, e′): if a sequence U of unions of pairs (e1, e
′
1) . . . (ep, e

′
p) has taken

place, it returns a minimal subset E of U such that (e, e′) belongs to the
equivalence relation generated by E and it returns ⊥ if no such E exists.

Example 11 Given the numbered sequence of Union operations:

(1, 8)︸ ︷︷ ︸
1

, (7, 2)︸ ︷︷ ︸
2

, (3, 13)︸ ︷︷ ︸
3

, (7, 1)︸ ︷︷ ︸
4

, (6, 7)︸ ︷︷ ︸
5

, (9, 5)︸ ︷︷ ︸
6

, (9, 3)︸ ︷︷ ︸
7

, (14, 11)︸ ︷︷ ︸
8

, (10, 4)︸ ︷︷ ︸
9

, (12, 9)︸ ︷︷ ︸
10

, (4, 11)︸ ︷︷ ︸
11

, (10, 7)︸ ︷︷ ︸
12

a call to Explain(e1, e4) returns the explanation {(e7, e1), (e10, e7), (e10, e4)}. 2

Since we assume that no redundant union is processed, we have the following:

Proposition 12 The subset E returned by Explain is unique if it exists.

PROOF. Consider the undirected graph which has as edges the pairs in the
sequence U of unions. Since U includes no redundant unions, this graph has
no cycles. It is easy to see that Explain(e, e′) consists exactly of the edges on
the unique path between e and e′. 2

Here we develop a data structure in which Explain can be answered in optimal
time O(k) for a k-step proof, at the expense of slightly more costly Unions,
which have an amortized time bound of O(log n).

The main idea is to consider the graph which has as edges the pairs in the
sequence U of unions. As said, since U includes no redundant unions, this
graph has no cycles, i.e., it is a forest, and therefore Explain(e, e′) consists
exactly of the edges on the unique path between e and e′. Of course this forest
can be maintained with only constant work at each Union, and hence the
only problem is how to efficiently find this unique path for a given Explain
operation.

For this purpose we will choose a root for each tree and direct all its edges to-
wards that root. With this structure being invariant, Explain(e, e′) will amount
to returning the edges in the paths from e and e′ to their common ancestor,
which is computable in time O(k), k being the length of the proof. This con-
crete structure, which in the following will be called proof forest, can be kept
invariant as follows. At each Union(e, e′), assume, w.l.o.g., that the tree of e
has no more elements than the one of e′, and do:

(1) Reverse all edges on the path between e and the root of its tree.
(2) Add an edge e→ e′.

13

It is not difficult to see that this preserves the aforementioned tree structure,
as well as the invariant that the path between two nodes is found by computing
their nearest common ancestor. Moreover, each time an edge is reversed, the
size of its tree is at least doubled. Therefore we have the following:

Lemma 13 In a sequence of n−1 Union operations, each edge in the proof
forest is reoriented at most O(log n) times.

Example 14 (Example 11 revisited).

Assume again that the following sequence of unions takes place:

(1, 8)︸ ︷︷ ︸
1

, (7, 2)︸ ︷︷ ︸
2

, (3, 13)︸ ︷︷ ︸
3

, (7, 1)︸ ︷︷ ︸
4

, (6, 7)︸ ︷︷ ︸
5

, (9, 5)︸ ︷︷ ︸
6

, (9, 3)︸ ︷︷ ︸
7

, (14, 11)︸ ︷︷ ︸
8

, (10, 4)︸ ︷︷ ︸
9

, (12, 9)︸ ︷︷ ︸
10

, (4, 11)︸ ︷︷ ︸
11

, (10, 7)︸ ︷︷ ︸
12

Then the proof forest could be as follows (but note that it is not unique):

8 → 1 → 7 ← 2 12 → 9 → 3 → 13
↗ ↑ ↑

14 → 11 → 4 → 10 6 5

2

The algorithm we propose is to use the standard union-find with path compres-
sion and maintain at the same time the proof forest, which can be represented
by an array of pointers (integers) to parents, as it is done in the union-find data
structure itself. Altogether, the only operation whose cost will be increased is
Union.

Theorem 15 In a sequence of m ≥ n finds and n−1 intermixed unions, the
previous data structure performs each Union in an amortized time bound of
O(log n). Moreover, any Explain(e, e′) operation is supported in O(k) where k
is the size of the proof.

PROOF. For every call to Union the only extra work to be done is the
reorientation of the appropriate edges. Since we will have a maximum of n−1
edges and each edge will be reoriented at most O(log n) times, this extra
work will be O(n log n) in the whole sequence, hence giving an amortized time
bound of O(log n) for each Union. Note that the Find operations are still as
efficient as in [19].

14

As explained above, Explain(e, e′) will consist of all the edges in the paths
from e and e′ to their common ancestor, which, due to the invariant structure
of the proof forest, is computable in time O(k). 2

5 Producing Explanations from Congruence Closure

In this section we use the union-find data structure presented in Section 4 in
order to extend the congruence closure algorithm of Section 3 to support the
following operation:

• Explain(c1, c2): assume a sequence M of merges (s1, t1) . . . (sp, tp) has oc-
curred, and that (c1, c2) is in the congruence closure of M ; then Explain(c1, c2)
returns a subset E = {(si1 , ti1) . . . (sik , tik)} of M , with 1 ≤ i1 <. . . < ik ≤ p,
such that exactly at the ik-th merge c1 and c2 became congruent, due to the
merge operations in E.

The only addition to the congruence closure algorithm presented in Section 3.3
is to consider the proof forest mentioned in the previous section, which stores
the necessary information to implement the required Explain operation. The
procedures Merge,AreCongruent? and Normalize do not need to be changed,
whereas the Propagate procedure is slightly modified by adding the necessary
information to the proof forest (the framed line 6 in the following algorithm):

1. Procedure Propagate()
2. While Pending is non-empty Do
3. Remove E of the form a=b or (f(a1, a2)=a, f(b1, b2)=b) from Pending
4. If a′ 6= b′ and, wlog., |ClassList(a′)| ≤ |ClassList(b′)| Then
5. old repr a := a′

6. Insert edge a→ b labelled with E into the proof forest

7. For each c in ClassList(old repr a) Do
8. set Representative(c) to b′

9. move c from ClassList(old repr a) to ClassList(b′)
10. For each f(c1, c2)=c in UseList(old repr a)
11. If Lookup(c′1, c

′
2) is some f(d1, d2)=d Then

12. add (f(c1, c2)=c, f(d1, d2)=d) to Pending
13. remove f(c1, c2)=c from UseList(old repr a)
14. Else {
15. set Lookup(c′1, c

′
2) to f(c1, c2)=c

16. move f(c1, c2)=c from UseList(old repr a) to UseList(b′)

15

Although in Explain(c1, c2) we assume c1 and c2 to be constants, we will see
that the previous operation can be extended to Explain(s, t) for arbitrary
terms s and t with only extra O(|s| + |t|) time. Another important thing
to remark is that sometimes multiple explanations are possible. Our choice
here is to return the oldest possible explanation since returning the shortest
explanation is NP-hard and even returning irredundant explanations is not
easy, as we will see in Section 5.4.

5.1 Complexity due to proof forest maintenance

Since only Propagate() is modified, by adding line 6, the complexity of the pro-
cedure AreCongruent? will not be changed. As for Merge, note that during a
sequence of n Merge operations, line 6. will be executed every time two classes
are merged, that is, at most m times, where m is the number of constants.
Each time, the only work to be done is the reorientation of the appropriate
edges in the proof forest. Since there are at most m edges and each edge is
reoriented at most O(log m) times, line 6. will only add O(m log m) to the
total complexity, which will remain O(n log n). Hence the complexity results
in Theorem 10 also apply here.

5.2 Implementation of Explain

The Explain operation will be performed on the proof forest previously defined.
As said, each edge a − b is labelled with a single input equation a=b or with
a pair of input structural equations (f(a1, a2)=a, f(b1, b2)=b). Intuitively, the
information on the label represents the reasons why the edge was added. The
way the proof forest (and the information associated to its edges) is represented
is not described here; it can be done e.g., as in Subsection 4, by an array of
pointers. The way Explain is implemented is described informally by means
of the following example:

Example 16 Below we show a numbered sequence of six Merge operations
and the state of the proof forest after processing them. Each edge of the proof
forest is annotated with its corresponding input equation or pair of input equa-
tions:

f(g, h)=d︸ ︷︷ ︸
1

, c=d︸︷︷︸
2

, f(g, d)=a︸ ︷︷ ︸
3

, e=c︸︷︷︸
4

, e=b︸︷︷︸
5

, b=h︸︷︷︸
6

,

a
1,3−→ d

2←− c
4←− e

5←− b
6←− h

16

On an Explain(a, b) operation, the nearest common ancestor d is detected, and
the merge operations on the paths a ; d (1,3) and b ; d (5,4,2) are output
as part of the proof; but from 1 and 3 also recursively Explain(h, d) needs to be
output. In order to obtain the desired complexity bound, it is necessary to avoid
repeated visits to nodes like b, e, c, d in such recursive calls. After the merge
operations in the path b ; d have been output, the constants b, e, c and d can
be considered to be inside the same equivalence class C. Since the information
in the edges in the path b ; d has already been output, in any future traversal
one can jump from any element of C to d (here d is the highest node of C, the
element of C that is closest to the root of its tree in the proof forest). Hence,
in the recursive call to Explain(h, d), only the edge b − h is traversed, since
from b one can directly jump to d. 2

Although the algorithm seems quite simple, avoiding such repeated visits is a
little bit tricky. The solution we propose uses an additional union-find data
structure in the following way.

The Additional Union-Find, and HighestNode. At each call to Explain,
an additional union-find data structure is reset to keep track of the constants
that are already equivalent by the proof output so far.If b and d are in such a
situation, any subsequent call to Explain(b, d) does not have to be processed,
since the proof already contains an explanation for this fact. But the situation
is more complicated, since also parts of previous subproofs can be reused, as
it happened in Example 16. There, Explain(h, d) can be seen as the union
h=b ∪ Explain(b, d), but since Explain(b, d) is already part of the output it
does not have to be processed. To detect such situations, in this additional
Union-Find, apart from the Find(a) operation, there is also a HighestNode(a)
operation, which returns the highest node among all nodes of the proof tree in
the equivalence class of a, that is, the one which is closest to the root; this high-
est node is simply stored at the node of Find(a). Maintaining the HighestNode
information will be easy: since only unions of the form Union(a, parent(a))
will take place, the HighestNode of the new class is always the HighestNode of
the second argument of the call, i.e. the HighestNode of parent(a). Note that
this is done using the additional Union-Find.

Finding the Nearest Common Ancestor in the Proof Forest. As shown
in the example, the first thing to do upon a call to Explain(a, b) is to compute
the nearest common ancestor of a and b. We consider a NearestCommonAnces-
tor(a,b) operation that retrieves the highest node of the class of the nearest
common ancestor of a and b in the proof forest. When looking for it, as it hap-
pens in the ExplainAlongPath procedure below, one has to jump over whole
classes of equivalent constants by means of the HighestNode operation in order
to avoid traversing edges already part of the proof.

17

Now we can present the two procedures implementing Explain:

1. Procedure Explain(c1, c2)
2. Set PendingProofs to {c1=c2}
3. While PendingProofs is not empty Do
4. Remove an equation a=b from PendingProofs
5. c := NearestCommonAncestor(a,b)
6. ExplainAlongPath(a,c)
7. ExplainAlongPath(b,c)

8. Procedure ExplainAlongPath(a,c)
9. a := HighestNode(a) /* note that c is already HighestNode(c)
10. While a 6=c Do
11. b := parent(a) /* in the additional Union-Find */
12. If edge a→ b is labelled with a single input merge a=b

13. Output a=b

14. Else /* edge labelled with f(a1, a2)=a and f(b1, b2)=b */
15. Output f(a1, a2)=a and f(b1, b2)=b

16. Add a1=b1 and a2=b2 to PendingProofs
17. Union(a, b) /* in the additional Union-Find */
18. a := HighestNode(b)

5.3 Complexity of Explain

Theorem 17 For an Explain(c1, c2) operation, a k-step proof can be found in
time O(k α(k, k)).

PROOF. Let k be the number of steps in the final proof that is output.
There are in total O(k) iterations of the ExplainAlongPath loop since at each
iteration either one (line 13) or two (line 15) such steps are output. In fact,
for each call of the form ExplainAlongPath(a,c), the number of iterations cor-
responds to the number of different equivalence classes along the path from
a to c, and at each iteration, one union between classes takes place, as well
as one call to HighestNode (i.e., one Find). Hence in total O(k) such classes
are merged along the whole proof. The total work done for searching nearest
common ancestors (line 5 of procedure Explain) is also O(k), because it can be
done in time linear in the number of classes that are merged in the subsequent

18

two calls ExplainAlongPath(a,c) and ExplainAlongPath(b,c). Furthermore, for
each iteration of ExplainAlongPath, at most two equalities are added to Pend-
ingProofs, and hence the loop of procedure Explain is executed O(k) times.
Altogether, the global runtime is dominated by the O(k) unions of classes and
the O(k) calls to Find , which has a total cost of O(k α(k, k)) in the union-find
algorithm with path compression. 2

For operations of the form Explain(s, t) with arbitrary s and t, one first has to
Curryfy and flatten the terms s and t until they have been reduced to constants
cs and ct, respectively. For each replacement of a term f(a1, a2) with a constant
a a call to Merge(f(a1, a2), a) is required. Finally a call Explain(cs, ct) gives
the desired explanation.

Proposition 18 For an Explain(s, t) with s and t arbitrary terms, an addi-
tional O(|s|+ |t|) time is required to output a k-step proof.

PROOF. It is easy to see that the number of constant introduction and
replacements is linear in the size of the term. Hence we only have to prove
that each call Merge(f(a1, a2), a) takes constant time. If in the algorithm of
section 3.3 Lookup(a′, b′) is ⊥, lines 10. and 11. are executed in constant time.
Otherwise, (f(a1, a2)=a, f(b1, b2)=b) is added to Pending for some b1, b2 and
b and Propagate is called. The key point now is to note that the constant a is
fresh. This implies that |ClassList(a′)| = 1 and hence only one iteration of the
first loop will be needed. As for the second loop, since a is fresh, its UseList
will be empty and no iteration will be required. 2

5.4 Quality of explanations and experimental results

Finding short explanations is good for most practical applications, and also
finding the oldest explanation (i.e., the one contained in the shortest prefix of
the sequence E) is desirable (roughly, because it allows one to do more powerful
backjumping). Since our algorithm always returns the oldest explanation (see
the definition of Explain), from now on we will focus on length.

Example 19 After a given sequence of input equations E, there can be several
explanations for an equation s=t. Consider the sequence of 7 input equations
E:

a=b1 b1=b2 b2=b3 b3=c f(a1, a1)=a f(c1, c1)=c a1=c1

19

In our algorithm, Explain(a=c) will return the first four equations, although
the last three equations also form a correct explanation of a=c. 2

Unfortunately, trying to always find the shortest explanation (in number of
steps) is too ambitious: given such an E, an equation s= t, and a natural
number k, deciding whether an explanation of size smaller than k exists for
s=t is already an NP-hard problem 4 . Therefore, the usual criterion for quality
of an explanation is its irredundancy : after removing any step, it is no longer
a valid explanation. Surprisingly, the explanations found by our algorithm as
presented in the previous subsection sometimes still contain redundant steps.

Example 20 After the sequence of input equations:

a1=b1 a1=c1 f(a1, a1)=a f(b1, b1)=b f(c1, c1)=c

the proof forest may consist of the two trees:

a→ b← c and b1 → a1 ← c1

Now Explain(a=c) will return all five equations. However, the two equations
containing b1 are redundant. 2

We have run our algorithm as given in the previous subsection over a very
large set of benchmarks (all the EUF examples mentioned in [7], available
at the second author’s home page), producing about 20000 different proofs.
There, on average, explanations have 14.9 steps; redundant explanations are
returned in 13.92 percent of the cases, having, on average, 51 steps of which
6 are redundant.

Fortunately, one can easily and efficiently post-process explanations in order
to fully remove all redundant steps. On the one hand, it is not very hard to see
that one of our explanations can be redundant only if it contains at least three
equations of the same structural class, i.e., of the form f(a1, a2)=a, f(b1, b2)=
b, f(c1, c2)=c where ai, bi and ci have the same representative for i in {1, 2}.

Theorem 21 A call to Explain(a, b) returns a redundant proof only if the
proof contains three equations of the same structural class.

PROOF. Any proof P of a=b can be seen as a set of subproofs of the form

x− x1 − x2 − . . .− xn − y

4 Ashish Tiwari. Personal communication.

20

where for some subproof x is a and y is b. Moreover, each step c− d is due to
(i) an input equation c=d or (ii) input equations f(c1, c2)=c and f(d1, d2)=d.
In the latter case, P must also contain subproofs for c1=d1 and c2=d2.

Let’s take a redundant proof P of a=b and let P ′ be an irredundant proof
such that P ′ (P . There is at least one subproof x=y where P and P ′ differ.
If all the steps in this subproof of P ′ appeared in the proof forest, they would
also belong to the corresponding subproof of x=y in P . Hence, there must
be a step c=d in P ′ not present in the proof forest. Since all steps of type
(i) belong to the proof forest, the step has to be of type (ii), involving input
equations f(c1, c2)=c and f(d1, d2)=d, with c’s and d’s equivalent in P ′. Since
P ′ (P , we know that f(c1, c2)=c (the same argument holds for f(d1, d2)=d)
also appears in P and, analyzing the Explain procedure it can be seen that
the proof forest must include an edge c − e present in P labelled with input
equations f(c1, c2)=c and f(e1, e2)=e, where ei is equivalent to ci for i in
{1, 2}. Hence, f(c1, c2)=c, f(d1, d2)=d and f(e1, e2)=e are equations in P that
belong to the same structural class. 2

The presence of such equations of the same structural class can be checked in
time linear in k, and is an extremely good filter: three such equations occur
only in 0.13 percent of the irredundant explanations.

The 14 percent of the explanations marked as “possibly redundant” by this
test can be post-processed as follows in time O(k2 log k) in order to remove all
redundancies: while not all equations are marked as “necessary”, pick an un-
marked one, remove it if the remaining equations are still a correct explanation
(checking this takes O(k log k) time), and otherwise mark it as “necessary”.

5.5 Proof Forests with Structural Classes as Nodes.

We have also implemented a variant of our proof forest where the nodes are
these structural classes and hence all edges are labelled with a single input
equation between constants. Now, instead of inserting edges labelled with
(f(a1, a2) = a, f(b1, b2) = b), one merges the two nodes (classes) [...a...] and
[...b...] into a single one.

Example 22 Consider again the input sequence of the previous example:

a1=b1 a1=c1 f(a1, a1)=a f(b1, b1)=b f(c1, c1)=c

Now the proof forest will consist of the two trees (one of them being a single
node):

21

[a, b, c] and b1 → a1 ← c1

and Explain(a=c) will return only the structural equations involving a and c
and the corresponding recursive explanation that a1=c1. 2

In such proof forests, the Explain operation is implemented in a very similar
way as before. For simplicity, in the previous subsection we have not mentioned
this improvement, but it is not hard to see that all results apply.

With this new approach, only 3.3 percent of the explanations are still redun-
dant, having on average 37 steps, of which 7 are redundant. Using the test, now
postprocessing is needed only in 3.83 percent of the cases. By the stronger test
given by Theorem 24 below, it might be possible to remove part of the 0.53
percent of false positives, but this is unlikely to be of any practical relevance.

Example 23 Let’s see why some redundancies can still appear. Consider:

1. f(a1, a1)=a 2. f(b1, b1)=b 3. f(c1, c1)=c 4. f(d1, d1)=d

5. a1=b1 6. c1=d1 7. a1=c 8. a1=a 9. d=d1

Then the proof tree may become: [a, b] → a1 ← [c, d] ← d1 ← c1

↑

b1

and Explain(b=d1) returns the set of all 9 input equations, of which #1 and #8
are redundant. This redundancy is caused by the two equivalent classes [a, b]
and [c, d]. Indeed, it can be shown that if no two such equivalent non-singleton
structural classes exist, proofs will always be irredundant. But it seems too
expensive to maintain that property during the congruence closure procedure;
in particular, the difficulties arise when two such classes become equivalent (in
the example, after d=d1) while they are already in the same tree, i.e., when
they are already equal by equations between constants. 2

Theorem 24 With the structural classes implementation, a call to Explain(a, b)
returns a redundant proof only if it contains two equivalent non-singleton struc-
tural classes.

PROOF. Again, take a redundant proof P of a=b and let P ′ be an irredun-
dant proof such that P ′ (P . We can identify a subproof x=y where P and
P ′ differ. Moreover this subproof in P ′ is such that it includes a step c=d of
type (ii) not present in the proof forest nor in the corresponding subproof of
P . Let f(c1, c2)=c and f(d1, d2)=d, with c’s and d’s equivalent in P ′, be the

22

input equations involved in this step. Clearly, c and d do not belong to the
same structural class, since the step is not in P .

But, since P ′ (P , we know that f(c1, c2)=c (the same argument holds for
f(d1, d2)=d) appears in P . If we analyze the Explain procedure it must be the
case that P includes a step c− e where c and e belong to the same structural
class and another step d−e′ with d and e′ belonging the same structural class.
Hence, c and d belong to two different non-singleton equivalent structural
classes. 2

5.6 Explain on non-Transformed Inputs

Here we show how one can adapt the Explain procedure explained above in
order to deal with sequences of non-Curryfied, non-flattened equations. The
idea is very simple. Each time the congruence closure procedure receives an
equation s=t, it internally applies Curryfication and flattening. In this process,
the terms s ant t will be replaced by constants cs and ct, giving rise to the
equation cs=ct. Due to flattening, several other equations of the form f(a, b)=c
will also be generated. Now, the only modification in Explain is that only
equations between constants will be output, but replacing newly introduced
constants by the original terms they abstract.

6 Extension to Integer Offsets

Although the logic of EUF is already very useful for the verification of pipelined
microprocessors [1], several extensions have been shown to be relevant in prac-
tice. In a paper by Bryant, Lahiri, and Seshia [12], the functions successor (s)
and predecessor (p) appear, and all terms are interpreted as integers. We will
show that, surprisingly, all previously presented results can be smoothly ex-
tended to support these two interpreted function symbols. Moreover, the same
time and space bounds can still be obtained and very efficient decision proce-
dures are obtained in practice [7].

6.1 Congruence Closure with integer offsets

In this section we deal with (conjunctions of positive, as before) input equa-
tions built over free symbols and successor and predecessor. To denote a
(sub)term t with k successor symbols s(. . . s(t) . . .), we write t + k and sim-
ilarly write t + k with negative k for p(. . . p(t) . . .). This is why we speak of

23

terms with integer offsets. Given a set of equations E over terms with inte-
ger offsets, the congruence closure with integer offsets of E is the smallest
congruence relation ′ =′ containing E and such that:

(1) ∀x p(s(x)) = x
(2) ∀x s(p(x)) = x
(3) ∀x p(p(...p(︸ ︷︷ ︸

n

x)...) 6= x for all integers n > 0

Note that axioms like s(s(x)) 6= x are not needed: reasoning ad absurdum, if
s(s(x))=x then p(p(s(s(x))))=p(p(x)) which, by (1) implies that x=p(p(x)),
contradicting (3). The first difference with the standard congruence closure
problem is that conjunctions of positive equations with integer offsets can
be unsatisfiable, that is, the congruence closure with integer offsets does not
always exist.

Example 25 The set { f(a) = c, f(b) = c + 1, a = b } is unsatisfiable. 2

However, in spite of this difference, we will show that one can still obtain the
same time and space bounds as for the case with only uninterpreted symbols.
The main idea is to extend the notion of equivalence relation for dealing with
equivalences up to offsets :

Example 26 Consider the three equations:

a + 2 = b− 3

b− 5 = c + 7

c = d− 4

which can equivalently

be written as:

a = b− 5

b = c + 12

c = d− 4

Here all four constants are equivalent up to some offset. If we take b as the
representative of this class, we can write the other constants with their corre-
sponding offsets with respect to the representative b in a class list:

{ b = a + 5 = c + 12 = d + 8}

thus storing an infinite set of congruence classes, namely the ones represented
by . . . , b− 1, b, b + 1, . . . in finite space. 2

6.1.1 The Initial Transformations

The extension to integer offsets does not affect much the process of Curryfi-
cation and flattening. Curryfication is only modified by imposing that for any
term t and any integer k we have Curry(t + k) = Curry(t) + k and flattening
is not affected at all.

Example 27 The equation g(a + 1, h(b + 2), b− 2) = b− 1 in Curryfied form

24

becomes:

f(f(f(g, a + 1), f(h, b + 2)), b− 2) = b− 1

which is flattened into:

f(g, a + 1) = c

f(h, b + 2) = d

f(c, d) = e

f(e, b− 2) = b− 1
2

Note that, due to the fact that the first arguments of the “f” symbol do not
represent full (sub)terms of the original input, after the transformation they
will have no integer offsets.

Moreover, this property is preserved during the congruence closure process,
because the congruence closure process can only make them equal to other
such first-argument terms. This fact is illustrated by the following example.

Example 28 Consider the equations:

g(a, a, a) = c

g(b, b, b) = d

a = b

Curry

=⇒

f(f(f(g, a), a), a) = c

f(f(f(g, b), b), b) = d

a = b

flat

=⇒

f(g, a) = g1 f(g, b) = g′
1

f(g1, a) = g2 f(g′
1, b) = g′

2

f(g2, a) = c f(g′
2, b) = d

a = b

Here the constant g represents a non-existing 0-ary version of g, and g1 rep-
resents a term g(a) with a unary version of g, which of course also does not
exist in the input equations; similarly, g2 is g(a, a) (a non-existing version of
g with 2 arguments). During the congruence closure process, when a is merged
with b, the unary, binary and ternary versions of g and g′ get merged as well,
But note that it is impossible that gi gets merged with gj or with g′

j, for i 6= j.
Roughly speaking, there is a distinct sort for each arity. 2

Altogether, we can assume that no integer offsets will ever appear in the first
argument of a “f” symbol.

6.1.2 The Algorithm for Integer Offsets

In the following, k with possible subscripts will represent concrete integers.
Again, our incremental congruence closure algorithm receives a sequence of
equations intermixed with questions about whether two terms s and t are
currently congruent. The algorithm stores a set of equations E0 and supports
the following operations:

25

• Merge(t=c+kc) : the equation t=c+kc is added to E0. If E0 is inconsistent,
it returns unsatisfiable. Due to the initial transformations we can assume t
to be either a constant or a flat term of the form f(a, b + kb).
• AreCongruent?(s, t) : returns “yes” if s and t currently belong to the same

congruence class, i.e., E0 |= s=t, and “no” otherwise.

The data structures used in this case are similar to the ones used in Section 3.

(1) Pending : a list whose elements are input equations a=b + kb, or pairs of
input equations (f(a1, a2 + ka2) = a + k1, f(b1, b2 + kb2) = b + kb) where
a1 and b1 are already congruent, as well as a2 + ka2 and b2 + kb2 . In both
cases, we insert such an element if the merge of the constants a and b
modulo the corresponding offset is pending.

(2) The Representative table: an array indexed by constants, containing for
each constant a, the pair (b, k) such that b is its representative with
b=a + k.

(3) The Class lists : for each representative, the list of all pairs (constant,
offset) in its class, as in Example 26.

(4) The Use lists : for each representative a, UseList(a) is the list of input
equations f(b1, b2 + kb2)=b + kb such that a is the representative of b1 or
of b2 (or of both).

(5) The Lookup table: for all pairs of representatives (b, c) and constant kc,
Lookup(b, c+ kc) is some input equation f(a1, a2 + ka2)=a+ ka such that
Representative(a1) = (b, 0), Representative(a2) = (c, ka2 − kc) iff such an
equation exists. Otherwise, Lookup(b, c+kc) is ⊥. Since this would require
an infinite three-dimensional table, we store it in a finite hash table.

(6) The Proof forest : the same structured presented in Section 4. For each
input or derived equation a=b + kb it includes an oriented edge a→ b or
b→ a. Note that no offset appears in the proof forest.

The initialization is adapted as expected from the case without offsets. In the
following, for each constant a, as before we denote its representative constant
by a′, and now we also write r(a+ka) to denote the representative of such a
sum, i.e., r(a+ka) is a′+ka−k if Representative(a) = (a′, k). Similarly, the
representative of an equation a=b + k is a′ =b′ + k′ where k′ is k + ka − kb if
Representative(a) = (a′, ka) and Representative(b) = (b′, kb).

The algorithm is adapted to support integer offsets as follows:

26

1. Procedure Merge(s= t)
2. If s and t are of the form a and b + kb, respectively Then
3. add a=b + kb to Pending
4. return Propagate()
5. Else /* s= t is of the form f(a1, a2 + ka2)=a + ka */
6. If Lookup(a′

1, r(a2 + ka2)) is some f(b1, b2 + kb2)=b + kb Then
7. add (f(a1, a2 + ka2)=a + ka, f(b1, b2 + kb2)=b + kb) to Pending
8. return Propagate()
9. Else
10. set Lookup(a′

1, r(a2 + ka2)) to f(a1, a2 + ka2)=a + ka

11. add f(a1, a2 + ka2)=a + ka to UseList(a′
1) and to UseList(a′

2)

12. Procedure Propagate()
13. While Pending is non-empty Do
14. Remove E of the form a=b + kb or

(f(a1, a2 + ka2)=a + ka, f(b1, b2 + kb2)=b + kb) from Pending

15. Let a′=b′ + kb′ be the representative of E

16. If a′ 6= b′ and, wlog., |ClassList(a′)| ≤ |ClassList(b′)| Then
17. old repr a := a′

18. Insert edge a→ b labelled with E into the proof forest
19. For each (c, kc) in ClassList(old repr a) Do
20. set Representative(c) to (b′, kc − kb′)
21. remove (c, kc) from ClassList(old repr a)
22. add (c, kc − kb′) to ClassList(b′)
23. For each f(c1, c2 + kc2)=c + kc in UseList(old repr a)
24. If Lookup(c′1, r(c2 + kc2)) is some f(d1, d2 + kd2)=d + kd Then
25. add (f(c1, c2 + kc2)=c + kc, f(d1, d2 + kd2)=d + kd) to Pending
26. remove f(c1, c2 + kc2)=c + kc from UseList(old repr a)
27. Else
28. set Lookup(c′1, r(c2 + kc2)) to f(c1, c2 + kc2)=c + kc

29. move f(c1, c2 + kc2)=c + kc from UseList(old repr a) to UseList(b′)
30. Else If a′=b′ and kb′ 6=0
31. return unsatisfiable

Similarly, the AreCongruent?(s, t) procedure follows the same structure as the
one in Section 3, but here Normalize takes the integer offsets into account when
normalizing a term. In order to simplify the presentation, in the procedure
Normalize we sometimes identify the pair (a, ka) with a + ka.

27

32. Procedure Normalize(t)
33. If t is a constant a + kaThen
34. return r(a + ka)
35. Else /* t is f(t1, t2 + kt2) */
36. (u1, k1) :=Normalize(t1) /* note that k1 will be zero */
37. (u2, k2) :=Normalize(t2 + kt2)
38. If u1, u2 are cnts and Lookup(u1, u2+k2) is f(a1, a2+ka2)=a+ka Then
39. return r(a + ka)
40. Else
41. return f(u1, u2 + k2)

The notions of standard form and of standard congruence extend in the ex-
pected way to integer offsets and the corresponding correctness and runtime
analysis results, analogous to Theorems 10 and 9, follow along the same lines.

Theorem 29 A sequence of n Merge operations can be processed in O(n log n)
time, and hence each one of them in O(log n) amortized time. Furthermore,
each question AreCongruent?(s, t) can be answered in O(|s|+|t|) and the space
required for the whole sequence is O(n).

Theorem 30 After a set of equations E0 has been processed, for any two
terms s and t, AreCongruent?(s, t) returns “yes” if and only if s=t is in the
congruence closure with integer offsets of E0.

6.2 Proof-producing congruence closure with integer offsets

The extension of the proof-producing mechanism from the case with no integer
offsets is even simpler. The key point is to note that if a and b are in the same
equivalence class, they are equivalent up to a unique integer offset. Hence there
is at most one kb such that a=b + kb holds.

Hence, a call to Explain(a, b + kb) can always be reduced to Explain(a, b).
This way, the algorithm presented in Section 5 needs almost no modification.
The only thing to be noted is that if an edge labelled with (f(a1, a2 + ka2)=
a+ka, f(b1, b2+kb2)=b+kb) is output, the proofs to be added to PendingProofs
do not consider the integer offsets, that is, one simply adds a1=b1 and a2=b2.

All the points presented in the case with no integer offsets, such as the possible
redundancy of the proofs, the sufficient conditions for irredundancy or the
possibility of working with structural classes also apply in the presence of
integer offsets.

28

7 Related Work and Conclusion

To our knowledge, this is the first congruence closure algorithm able to produce
explanations in time that does not depend on the number of input equations
n. Moreover, the congruence closure algorithm itself is not only simple, but
it also runs in the best known time, namely O(n log n), and is indeed very
fast in practice. Due to its simplicity and efficiency, the algorithms here pre-
sented have been implemented in two state-of-the-art SMT solvers such as
BarcelogicTools and MathSAT [20].

We believe that this kind of fundamental algorithmic developments are ex-
tremely useful, because we have seen several less adequate ad-hoc solutions be-
ing applied in modern deduction and verification tools. This was already men-
tioned in [5], where the possibility of using a trial-and-error method for finding
explanations was considered to be impractical. Instead, they proposed ex-
tracting explanations from abstract proofs, which, compared to our approach,
is asymptotically worse in theory and produces substantially worse explana-
tions in practice. Another example of this phenomenon is SRI’s “lemmas-on-
demand” approach in the ICS tool: in [3] it is mentioned that “Unfortunately,
current domain-specific decision procedures lack such a conflict explanation
facility. Therefore, we developed an algorithm that calls C-solver O(k × n)
times, where k is given, for finding such an overapproximation”.

Several authors have attacked the specific problem of generating explanations
in the context of union-find and congruence closure [21–23]. In particular, in
the paper “Justifying Equality” [23], for union-find Explain is done in time
O(n α(n)), i.e., it depends on the number of unions that have taken place.
For the (strict) generalization to congruence closure, this is indeed also the
case (although no concrete bound is given in that paper), and the notion
of local irredundancy achieved in [23] already holds for our basic algorithm
of Section 5. Another interesting approach is the one of [24]. There, only
the union-find case is considered. Proofs are built using assumptions and the
axioms of reflexivity, symmetry and transitivity. Given such a proof, it is shown
that by means of a term rewrite system, a minimal proof can be obtained in
time O(nlog23).

References

[1] J. R. Burch, D. L. Dill, Automatic Verification of Pipelined Microprocessor
Control, in: D. L. Dill (Ed.), 6th International Conference on Computer Aided
Verification, CAV’94, Vol. 818 of Lecture Notes in Computer Science, Springer,
1994, pp. 68–80.

29

[2] A. Armando, C. Castellini, E. Giunchiglia, SAT-Based Procedures for Temporal
Reasoning, in: S. Biundo, M. Fox (Eds.), 5th European Conference on Planning,
ECP’99, Vol. 1809 of Lecture Notes in Computer Science, Springer, 2000, pp.
97–108.

[3] L. de Moura, H. Rueß, Lemmas on Demand for Satisfiability Solvers, in: 5th
International Conference on Theory and Applications of Satisfiability Testing,
SAT’02, 2002, pp. 244–251.

[4] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, R. Sebastiani, A SAT-
Based Approach for Solving Formulas over Boolean and Linear Mathematical
Propositions, in: A. Voronkov (Ed.), 18th International Conference on
Automated Deduction, CADE’02, Vol. 2392 of Lecture Notes in Conference
Science, Springer, 2002, pp. 195–210.

[5] C. Barrett, D. Dill, A. Stump, Checking Satisfiability of First-Order Formulas
by Incremental Translation into SAT, in: E. Brinksma, K. G. Larsen (Eds.),
14th International Conference on Computer Aided Verification, CAV’02, Vol.
2404 of Lecture Notes in Computer Science, Springer, 2002, pp. 236–249.

[6] C. Flanagan, R. Joshi, X. Ou, J. B. Saxe, Theorem Proving using Lazy
Proof Explanation, in: W. A. H. Jr., F. Somenzi (Eds.), 15th International
Conference on Computer Aided Verification, CAV’03, Vol. 2725 of Lecture Notes
in Computer Science, Springer, 2003, pp. 355–367.

[7] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, C. Tinelli, DPLL(T):
Fast Decision Procedures, in: R. Alur, D. Peled (Eds.), 16th International
Conference on Computer Aided Verification, CAV’04, Vol. 3114 of Lecture Notes
in Computer Science, Springer, 2004, pp. 175–188.

[8] M. Davis, H. Putnam, A Computing Procedure for Quantification Theory,
Journal of the ACM, JACM 7 (3) (1960) 201–215.

[9] M. Davis, G. Logemann, D. Loveland, A Machine Program for Theorem-
Proving, Communications of the ACM, CACM 5 (7) (1962) 394–397.

[10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff:
Engineering an Efficient SAT Solver, in: 38th Design Automation Conference,
DAC’01, ACM Press, 2001, pp. 530–535.

[11] C. W. Barrett, L. de Moura, A. Stump, SMT-COMP: Satisfiability Modulo
Theories Competition, in: K. Etessami, S. Rajamani (Eds.), 17th International
Conference on Computer Aided Verification, CAV’05, Vol. 3576 of Lecture Notes
in Computer Science, Springer, 2005, pp. 20–23.

[12] R. E. Bryant, S. K. Lahiri, S. A. Seshia, Modeling and Verifying Systems Using
a Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted
Functions, in: E. Brinksma, K. G. Larsen (Eds.), 14th International Conference
on Computer Aided Verification, CAV’02, Vol. 2404 of Lecture Notes in
Computer Science, Springer, 2002, pp. 78–92.

30

[13] T. T. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to algorithms, MIT
Press, 1990.

[14] P. J. Downey, R. Sethi, R. E. Tarjan, Variations on the Common Subexpressions
Problem, Journal of the ACM, JACM 27 (4) (1980) 758–771.

[15] G. Nelson, D. C. Oppen, Fast Decision Procedures Based on Congruence
Closure, Journal of the ACM, JACM 27 (2) (1980) 356–364.

[16] R. E. Shostak, An Algorithm for Reasoning about Equality, Communications
of the ACM, CACM 21 (7) (1978) 583–585.

[17] D. Kapur, Shostak’s Congruence Closure as Completion, in: H. Comon
(Ed.), 8th International Conference on Rewriting Techniques and Applications,
RTA’97, Vol. 1232 of Lecture Notes in Computer Science, Springer, 1997, pp.
23–37.

[18] L. Bachmair, A. Tiwari, Abstract Congruence Closure and Specializations,
in: D. A. McAllester (Ed.), 17th International Conference on Automated
Deduction, CADE’97, Vol. 1831 of Lecture Notes in Computer Science,
Springer, 2000, pp. 64–78.

[19] R. E. Tarjan, Efficiency of a Good but not Linear Set Union Algorithm, Journal
of the ACM, JACM 22 (2) (1975) 215–225.

[20] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz,
R. Sebastiani, The MathSAT 3 System., in: R. Nieuwenhuis (Ed.), 20th
International Conference on Automated Deduction, CADE’05, Vol. 3632 of
Lecture Notes in Computer Science, Springer, 2005, pp. 315–321.

[21] A. Stump, D. L. Dill, Generating Proofs from a Decision Procedure, in:
A. Pnueli, P. Traverso (Eds.), Proceedings of the FLoC Workshop on Run-Time
Result Verification, 1999.

[22] R. Klapper, A. Stump, Validated Proof-Producing Decision Procedures, in:
2nd Workshop on Pragmatics of Decision Procedures in Automated Reasoning,
PDPAR’04, Cork, Ireland, 2004.

[23] L. de Moura, H. Rueß, N. Shankar, Justifying Equality, in: 2nd Workshop on
Pragmatics of Decision Procedures in Automated Reasoning, PDPAR’04, Cork,
Ireland, 2004.

[24] A. Stump, L. Tan, The Algebra of Equality Proofs, in: J. Giesl (Ed.), 16th
International Conference on Term Rewriting and Applications, RTA’05, Vol.
3467 of Lecture Notes in Computer Science, Springer, 2005, pp. 469–483.

31

