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Abstract We introduce Cardinality Networks, a new CNF encoding of cardinality

constraints. It improves upon the previously existing encodings such as the sorting

networks of [8] in that it requires much less clauses and auxiliary variables, while arc

consistency is still preserved: e.g., for a constraint x1 + . . . + xn ≤ k, as soon as k

variables among the xi’s become true, unit propagation sets all other xi’s to false. Our

encoding also still admits incremental strengthening: this constraint for any smaller k

is obtained without adding any new clauses, by setting a single variable to false.

Here we give precise recursive definitions of the clause sets that are needed and

give detailed proofs of the required properties. We demonstrate the practical impact

of this new encoding by careful experiments comparing it with previous encodings on

real-world instances.

1 Introduction

Compared with other systematic constraint solving techniques, SAT solvers have many

advantages for non-expert users as extremely efficient off-the-shelf black boxes that

moreover require no tuning regarding variable (or value) selection heuristics. Therefore

quite some work has been devoted to finding good propositional encodings for many

kinds of constraints.

A particularly important class of constraints are the cardinality constraints, i.e.,

constraints of the form x1 + . . . +xn # k where k is a natural number and the relation

# belongs to {<,≤, =,≥, >}.

Cardinality constraints appear in many practical problems, such as timetabling,

scheduling, or pseudo-Boolean constraint solving. For instance, given an input for-

mula F over n variables x1, . . . , xn, one may be interested in finding a model of F in
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which at most k variables are set to true. For this, one can add the clauses encoding

the constraint x1 + . . . + xn ≤ k. Going beyond, for instance for the min-ones prob-

lem for F , that is, finding a model with the minimal number of true variables, one

can incrementally strengthen the constraint for successively lower k until it becomes

unsatisfiable. In fact, cardinality constraints frequently occur in other optimization

problems too. For example, the Max-SAT problem consists of, given a set of clauses

S = {C1, . . . , Cn}, finding an assignment A that satisfies the maximal number of

clauses in S. One way of doing this is to add a fresh indicator variable xi to each

clause, getting {C1 ∨x1, . . . , Cn ∨xn} and incrementally strengthening the constraint

x1 + . . .+xn ≤ k. In general, it is typical to see situations where n is much larger than

k.

This kind of applications of cardinality constraints has been very elegantly handled

in MiniSAT and its extension to pseudo-Boolean constraints [8]. There, one encoding for

cardinality constraints is based on sorting networks with inputs x1, . . . , xn and output

y1, . . . , yn, such that if exactly k input variables are true, then y1, . . . , yk will become

true and yk+1, . . . , yn will be false. For enforcing the constraint x1 + . . . + xn ≤ k, it

then suffices to set yk+1 to false, and incrementally strengthening the constraint can

be done by setting to false yp’s with successively smaller p.

In [8] it is also proved that for the CNF encoding of sorting networks unit propaga-

tion preserves arc consistency. For instance, for a constraint of the form x1+. . .+xn ≤ k,

as soon as k variables among the xi’s become true, unit propagation sets all other xi’s

to false. The proof of arc consistency given in [8] relies on general properties of sorting

networks.

Here we give recursive definitions for this kind of networks that, given sequences of

input variables, return a sequence of output variables and a set of clauses. The required

arc-consistency properties under unit propagation can be directly proved by induction

from these definitions. Our starting point will be a deconstruction of the odd-even

merge sorting networks of [5], focussing on their specific use for encoding cardinality

constraints in SAT.

For this purpose, and for allowing the reader to become familiar with the notations

and methodology of this paper, in Section 3 we first define Half Merging Networks

and Half Sorting Networks, which require only half as many clauses as their standard

versions while preserving all desired properties.

As said, in many applications, it is typical to find cardinality constraints x1 +

. . . + xn # k where n is much larger than k. This motivated us to look for encodings

that exploit this fact. In Section 4 we introduce Cardinality Networks which require

O(n log2 k) clauses instead of O(n log2 n) as in previous approaches. In addition, Car-

dinality Networks also leverage the advantages from the use of Half Merging and Half

Sorting Networks. All definitions, properties and proofs in this section and in Section 3

are for cardinality constraints of the form x1 + . . . + xn ≤ k. Therefore, in Section 5

we extend them to the other cases such as ≥ and =, and to range constraints of the

form k ≤ x1 + . . . + xn ≤ k′.

We review the existing literature on cardinality constraints in Section 6 and in

Section 7 we demonstrate the practical impact of this new encoding by careful experi-

ments comparing it with previous encodings on real-world instances and we conclude

in Section 8.

A preliminary version of this paper was accepted at the SAT’2009 conference. This

paper is extended in different directions: (i) the constructions are illustrated with some
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examples, (ii) all proofs of propagation properties have been included, (iii) all proofs

regarding the size of our constructions have been worked out in detail and included, (iv)

a thorough study of the literature has been added (Section 6), (v) we have extended

the benchmarks used in the experiments with the ones present in the literature, (vi)

we have compared our new encoding with three additional approaches to cardinality

constraints: one encoding using adders, another one using BDDs and an SMT-based

approach.

2 Preliminaries

Let P be a fixed finite set of propositional variables. If p ∈ P , then p and p are literals

of P . The negation of a literal l, written l, denotes p if l is p, and p if l is p. A clause

is a disjunction of literals l1 ∨ . . .∨ ln. A CNF formula is a conjunction of one or more

clauses C1∧ . . .∧Cn. When it leads to no ambiguities, we will sometimes consider such

a formula as the set of its clauses.

A (partial truth) assignment M is a set of literals such that {p, p} ⊆ M for no p,

i.e., no contradictory literals appear.. A literal l is true in M if l ∈ M , is false in M if

l ∈ M , and is undefined in M otherwise. A clause C is true in M if at least one of its

literals is true in M . A formula F is true in M if all its clauses are true in M . In that

case, M is a model of F . The systems that decide whether a formula has a model or

not are called SAT solvers.

Most state-of-the-art SAT solvers are based on extensions of the DPLL algo-

rithm [7]. The main inference rule in DPLL is known as unit propagation. Given a

set of clauses S and an empty assignment M , clauses are sought in which all literals

are false but one, say l, which is undefined (initially only clauses of size one satisfy this

condition). This literal l is then added to M and the process is iterated until reaching

a fix point. If U is the set of all literals that have been added to the assignment in this

process, we will denote this fact by S |=up U .

In this paper we will work with cardinality constraints a1 + . . . + an # k, where

# ∈ {≤,≥, =}, the ai’s are propositional variables and k is a natural number. An

assignment M satisfies such a constraint if at most (≤), at least(≥) or exactly (=) k

literals in {a1, . . . , an} are true in M . The aim of this paper is, given a set of cardinality

constraints C, to obtain a CNF formula S such that looking for assignments satisfying

C is equivalent to looking for models of S. Moreover this S should be as small as

possible and, whenever a concrete value for a variable in a constraint can be inferred,

this should be detected by unit propagation on S. Note that this latter property is

motivated by the fact that our interest is in finding encodings that work well with

DPLL-based SAT solvers, all of which implement unit propagation.

In what follows, we consider variable sequences, or simply sequences, which are

ordered lists of distinct propositional variables, written 〈x1 . . . xn〉, and denoted by

capital letters A, B, C, . . . Unless stated otherwise, these lists always have length n =

2m, for some m ≥ 0. When necessary these lists will be seen as sets, so that we can

consider subsets of their variables.

Sometimes new fresh variables, that is, distinct new variables, will be introduced,

These will always be denoted by the (possibly subscripted or primed) letters c, d, e.
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3 Half Merging and Half Sorting Networks

In this section we introduce Half Merging Networks and Half Sorting Networks, which

are like the Sorting Networks based on odd-even merges of [5,8], but only need half of

the clauses. The definitions and properties that are given will be used later on and allow

the reader to become familiar with our notations and methodology. We remind that all

the definitions in this section and in Section 4 are designed to be used in constraints

of the form x1 + . . . + xn ≤ k, and that we implicitly assume that all sequences have

size 2m for some m ≥ 0. In Section 5 we explain how to treat the case where n is not

a power of two.

3.1 Half Merging Networks

Given two sequences A and B of length n, the Half Merging Network of A and B,

denoted HMerge(A, B), is a pair (C, S), where C is a sequence of length 2n and S is a

set of clauses, defined as follows.

For sequences of length 1 we define:

HMerge( 〈a〉, 〈b〉 ) = ( 〈 c1 c2 〉, { a∨ b∨ c2, a∨ c1, b∨ c1 } )

For sequences of length n > 1 we define:

HMerge( 〈a1 . . . an〉, 〈b1 . . . bn〉 ) = ( 〈 d1 c2 . . . c2n−1 en 〉, Sodd ∪ Seven ∪ S′ )

recursively in terms of the odd and the even subsequences:

HMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . dn〉, Sodd ),

HMerge( 〈a2 a4 . . . an 〉, 〈b2 b4 . . . bn 〉 ) = ( 〈e1 . . . en〉, Seven ),

where the clause set S′ is:
Sn−1

i=1 { di+1 ∨ ei ∨ c2i+1, di+1 ∨ c2i, ei ∨ c2i }.

Example 1 Intuitively, a (Half) Merging Network merges two sequences of input vari-

ables 〈a1 . . . an〉 and 〈b1 . . . bn〉 that are already sorted into a single sorted output

sequence 〈c1 . . . c2n〉, and the required unit propagation is that if a1 . . . ap and b1 . . . bq

are true, then the first p + q output variables will become true (Lemma 1 below), and

(roughly speaking) if in addition cp+q+1 is set to false, then also ap+1 and bq+1 will

become false (Lemma 2).

Let us take HMerge( 〈a1 a2〉, 〈b1 b2〉 ), which is ( 〈d1 c2 c3 e2〉, S) with S being

the set of clauses:

8

<

:

a1 ∨ b1 ∨d2

a1 ∨d1

b1 ∨d1

8

<

:

a2 ∨ b2 ∨ e2

a2 ∨ e1

b2 ∨ e1

8

<

:

d2 ∨ e1 ∨ c3
d2 ∨ c2
e1 ∨ c2

The partial assignments (a1, a2) = (1, 0) and (b1, b2) = (0, 0) cause S to unit

propagate the first output (d1), but not the second one (c2). If we add another 1 to the

input, for example (a1, a2) = (1, 1), then both d1 and c2 get propagated, but not c3.

For propagating c3 we need to add another input 1, e.g, setting (b1, b2) = (1, 0), but

(b1, b2) = (0, 1) would not do it, since this propagation only works if all ones appear as

a prefix in the input sequences, which will always be the case in our uses of HMerge. If

we set a1 and b1 to true, and c3 to false, unit propagation will set a2 and b2 to false.

Similar properties about propagation of ones and zeros will hold in all the constructions

in this paper and will be precisely stated in each case. ⊓⊔
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Lemma 1 If HMerge( 〈a1 . . . an〉, 〈b1 . . . bn〉 ) = ( 〈 c1 . . . c2n 〉, S ) and p, q ∈ N

with 0 ≤ p, q ≤ n, then S ∪ {a1 . . . ap b1 . . . bq } |=up c1, . . . , cp+q.

Proof (By induction on n). If n = 1 we have

HMerge( 〈a〉, 〈b〉 ) = ( 〈 c1 c2 〉, { a∨ b∨ c2, a∨ c1, b∨ c1 } )

If p = q = 0 there is nothing to prove. If p = 1 and q = 0 it is obvious that setting

a propagates c1, and the case p = 0 and q = 1 is symmetric. Finally, if p = q = 1,

setting a and b propagates c1 and c2.

For the induction step (n > 1) we consider four different cases, depending on the

parity of p and q:

CASE 1: p is odd and q even. (Let p = 2p′ + 1 and q = 2q′). In this case we have

p′ ≤ n
2 − 1 and q′ ≤ n

2 .

Let us focus on the odd part of HMerge :

HMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . dn〉, Sodd ).

In 〈a1, a2, . . . ap〉 there are p′ + 1 odd indices, namely {1, 3, . . . , 2p′ + 1}. Similarly, in

〈b1, b2, . . . bq〉 there are q′ odd indices, namely {1, 3, . . . , 2q′−1}. Since 0 ≤ p′+1, q′ ≤ n
2 ,

by IH we have Sodd ∪ {a1, . . . , a2p′+1, b1, . . . , b2q′−1} |=up d1, . . . , dp′+q′+1

Let us now take the even part of HMerge :

HMerge( 〈a2 a4 . . . an〉, 〈b2 b4 . . . bn〉 ) = ( 〈e1 . . . en〉, Seven ).

In 〈a1, a2, . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in the

sequence 〈b1, b2, . . . bq〉 there are q′ even indices, namely {2, 4, . . . , 2q′}. Since we know

0 ≤ p′, q′ ≤ n
2 , by IH we have Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′} |=up e1, . . . , ep′+q′ .

Finally, considering the set S′ =
Sn−1

i=1 { di+1 ∨ ei ∨ c2i+1, di+1 ∨ c2i, ei ∨ c2i }

we can check that: c1 is propagated because it is d1, the even c’s (c2, . . . , c2p′+2q′) are

propagated due to the e’s and the third clauses, and c3, . . . , c2p′+2q′+1 are propagated

thanks to the d’s, the e’s and the first clauses.

CASE 2: p is even and q is odd. (Symmetric to the previous one).

CASE 3: p and q are odd. (Let p = 2p′ + 1 and q = 2q′ + 1). In this case we have

p′ ≤ n
2 − 1 and q′ ≤ n

2 − 1.

Let us consider the odd part of HMerge:

HMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . dn〉, Sodd ).

In 〈a1, a2, . . . ap〉 there are p′ + 1 odd indices, namely {1, 3, . . . , 2p′ + 1}. Similarly,

〈b1, b2, . . . bq〉 there are also q′ + 1 odd indices, namely {1, 3, . . . , 2q′ + 1}. Since we

know 0 ≤ p′ + 1, q′ + 1 ≤ n
2 , by IH we have Sodd ∪{a1, . . . , a2p′+1, b1, . . . , b2q′+1} |=up

d1, . . . , dp′+q′+2

Let us now take the even part of HMerge :

HMerge( 〈a2 a4 . . . an〉, 〈b2 b4 . . . bn〉 ) = ( 〈e1 . . . en〉, Seven ).

In 〈a1, a2, . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in the

sequence 〈b1, b2, . . . bq〉 there are q′ even indices, namely {2, 4, . . . , 2q′}. Since we know

0 ≤ p′, q′ ≤ n
2 , by IH we have Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′} |=up e1, . . . , ep′+q′ .

If we now consider the set S′ =
Sn−1

i=1 { di+1 ∨ ei ∨ c2i+1, di+1 ∨ c2i, ei ∨ c2i }

we see that: c1 is propagated because it is d1, the even c’s (c2, . . . , c2p′+2q′+2) are

propagated due to the d’s and the second clauses, and c3, . . . , c2p′+2q′+1 thanks to the

d’s, the e’s and the first clauses.
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CASE 4: p and q are even. (Let p = 2p′ and q = 2q′). In this case we have p′ ≤ n
2

and q′ ≤ n
2 .

Let us consider the odd part of HMerge:

HMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . dn〉, Sodd ).

In 〈a1, a2, . . . ap〉 there are p′ odd indices, namely {1, 3, . . . , 2p′ − 1}. Similarly, in the

sequence 〈b1, b2, . . . bq〉 there are also q′ odd indices, namely {1, 3, . . . , 2q′ − 1}. Since

0 ≤ p′, q′ ≤ n
2 , by IH we have Sodd∪{a1, . . . , a2p′−1, b1, . . . , b2q′−1} |=up d1, . . . , dp′+q′

Let us now take the even part of HMerge :

HMerge( 〈a2 a4 . . . an〉, 〈b2 b4 . . . bn〉 ) = ( 〈e1 . . . en〉, Seven ).

In 〈a1, a2, . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in the

sequence 〈b1, b2, . . . bq〉 there are q′ even indices, namely {2, 4, . . . , 2q′}. Since we know

0 ≤ p′, q′ ≤ n
2 , by IH we have Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′} |=up e1, . . . , ep′+q′ .

If we now consider the set S′ =
Sn−1

i=1 { di+1 ∨ ei ∨ c2i+1, di+1 ∨ c2i, ei ∨ c2i }

we can check that: c1 is propagated because it is d1, the even c’s (c2, . . . , c2p′+2q′) are

propagated due to the e’s and the third clauses, and c3, . . . , c2p′+2q′−1 thanks to the

d’s, the e’s and the first clauses. Note that in the case of p = q = n, then c2p′+2q′ is

indeed en, which is in turn ep′+q′ and is propagated not due to S′ but thanks to the

even part of HMerge . ⊓⊔

Lemma 2 Let HMerge( 〈a1 . . . an〉, 〈b1 . . . bn〉 ) be ( 〈 c1 . . . c2n 〉, S ), and p, q ∈ N

with p, q ≤ n.

If p < n and q < n then S ∪ {a1, . . . , ap, b1, . . . , bq, cp+q+1} |=up ap+1, bq+1.

If p = n and q < n then S ∪ {a1, . . . , ap, b1, . . . , bq, cp+q+1} |=up bq+1.

If p < n and q = n then S ∪ {a1, . . . , ap, b1, . . . , bq, cp+q+1} |=up ap+1.

Proof (By induction on n). If n = 1 we have

HMerge( 〈a〉, 〈b〉 ) = ( 〈 c1 c2 〉, { a∨ b∨ c2, a∨ c1, b∨ c1 } )

If p = q = 0 we can see that setting c1 propagates a and b as expected. If p = 0

and q = 1 then setting b and c2 propagates a. Finally, if p = 1 and q = 0, setting a

and c2 propagates b.

For the induction step (n > 1) we consider again four different cases, depending on

the parity of p and q.

CASE 1: p is odd and q even. (Let p = 2p′ + 1 and q = 2q′). In this case we have

p′ ≤ n
2 − 1 and q′ ≤ n

2 .

Let us first notice that if p′ + q′ +1 ≤ n− 1 then the clauses dp′+q′+2 ∨ c2(p′+q′+1)

and ep′+q′+1 ∨ c2(p′+q′+1) belong to S. In this case, due to cp+q+1, which corresponds

to c2(p′+q′+1) we can propagate dp′+q′+2 and ep′+q′+1. Otherwise, if p′+q′+1 > n−1,

it has to be that q = n and p = n − 1. In this case, we can also assume that ep′+q′+1

holds, because it is en, which corresponds to cp+q+1. Knowing that in both cases

ep′+q′+1 holds, let us focus on the even part of HMerge:

HMerge( 〈a2 a4 . . . an〉, 〈b2 b4 . . . bn〉 ) = ( 〈e1 . . . en〉, Seven ).

In 〈a1, a2, . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in the

sequence 〈b1, b2, . . . bq〉 there are q′ even indices, namely {2, 4, . . . , 2q′}. Since p′ < n
2 ,

by IH we have Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′ , ep′+q′+1} |=up ap+1.

Now, if q < n we should also show that bq+1 is propagated. In this case we have

that q′ < n
2 and also that dp′+q′+2 is propagated. Take now the odd part of HMerge:

HMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . dn〉, Sodd ).
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In 〈a1, a2, . . . ap〉 there are p′ + 1 odd indices, namely {1, 3, . . . , 2p′ + 1}. Similarly, in

〈b1, b2, . . . bq〉 there are q′ odd indices, namely {1, 3, . . . , 2q′ − 1}. Since q′ < n
2 , by IH

we have Sodd ∪ {a1, . . . , a2p′+1, b1, . . . , b2q′−1, dp′+q′+2} |=up bq+1

CASE 2: p is even and q is odd. (Symmetric to the previous one).

CASE 3: p and q are odd. (Let p = 2p′ + 1 and q = 2q′ + 1). In this case we have

p′ ≤ n
2 − 1 and q′ ≤ n

2 − 1.

Let us consider the odd part of HMerge:
HMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . dn〉, Sodd ).

In 〈a1, a2, . . . ap〉 there are p′ + 1 odd indices, namely {1, 3, . . . , 2p′ + 1}. Similarly, in

〈b1, b2, . . . bq〉 there are also q′+1 odd indices, namely {1, 3, . . . , 2q′+1}. Since p′+1 ≤ n
2

and q′ + 1 ≤ n
2 by Lemma 1 we have that Sodd ∪ {a1, . . . , a2p′+1, b1, . . . , b2q′+1} |=up

dp′+q′+2

Now, since p′ + q′ + 1 ≤ n − 1 we know that dp′+q′+2 ∨ ep′+q′+1 ∨ c2(p′+q′+1)+1

belongs to S and together with cp+q+1 and dp′+q′+2 it allows us to propagate ep′+q′+1.

Let us now take the even part of HMerge :
HMerge( 〈a2 a4 . . . an〉, 〈b2 b4 . . . bn〉 ) = ( 〈e1 . . . en〉, Seven ).

In 〈a1, a2, . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in the

sequence 〈b1, b2, . . . bq〉 there are q′ even indices, namely {2, 4, . . . , 2q′}. Since we know

p′ < n
2 and q′ < n

2 , by IH we have Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′ , ep′+q′+1} |=up

ap+1, bq+1

CASE 4: p and q are even. (Let p = 2p′ and q = 2q′). In this case we have p′ ≤ n
2

and q′ ≤ n
2 .

Since for p = q = n there is nothing to prove, let us assume that q < n (case p < n

is symmetric). Hence we know that q′ ≤ n
2 − 1.

Let us first consider the even part of HMerge:
HMerge( 〈a2 a4 . . . an 〉, 〈b2 b4 . . . bn 〉 ) = ( 〈e1 . . . en〉, Seven ).

In 〈a1, a2, . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in the

sequence 〈b1, b2, . . . bq〉 there are q′ even indices, namely {2, 4, . . . , 2q′}. Since p′, q′ ≤ n
2 ,

by Lemma 1 we have Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′} |=up ep′+q′ .

Now, since p′ + q′ ≤ n − 1, the clause dp′+q′+1 ∨ ep′+q′ ∨ c2p′+2q′+1 belongs to S.

Together with ep′+q′ and cp+q+1 this propagates dp′+q′+1.

The odd part of HMerge will now finish the work:
HMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . dn〉, Sodd ).

In 〈a1, a2, . . . ap〉 there are p′ odd indices, namely {1, 3, . . . , 2p′ − 1}. Similarly, in

〈b1, b2, . . . bq〉 there are also q′ odd indices, namely {1, 3, . . . , 2q′ − 1}. If p′ = n
2 then,

since also q′ < n
2 , by IH Sodd ∪ {a1, . . . , a2p′−1, b1, . . . , b2q′−1, dp′+q′+1} |=up bq+1.

If p′ < n
2 then, since also q′ < n

2 by IH we can conclude that the propagation

Sodd ∪ {a1, . . . , a2p′−1, b1, . . . , b2q′−1, dp′+q′+1} |=up ap+1, bq+1 holds. ⊓⊔

Lemma 3 Given A and B sequences of length n, the Half Merging Network HMerge(A, B)

contains O(n log n) clauses with O(n log n) auxiliary variables.

Proof Let am be the number of clauses of HMerge(A, B) if A has length 2m. It is easy

to see that we have the following recurrence:



a0 = 3

am = 2am−1 + 3(2m − 1) for all m > 0

with solution am = 3 + 3m · 2m. Since m = log n this proves the result about the

number of clauses.
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Fig. 1 HSort with input 〈a1 . . . a8〉 and output 〈c1 . . . c8〉

Regarding the number of auxiliary variables, if bm is the number of auxiliary vari-

ables for inputs of length 2m, we have the recurrence:



b0 = 2

bm = 2bm−1 + 2m+1 − 2 for all m > 0

with solution bm = 2+m ·2m+1. Replacing m by log n this gives the desired result. ⊓⊔

3.2 Half Sorting Networks

Given a sequence A of length 2n, the Half Sorting Network of A, denoted HSort(A),

is a pair (C, S), where C is a sequence of length 2n and S is a set of clauses, defined

as follows.

For sequences of length 2 we define:

HSort( 〈a b〉 ) = HMerge( 〈a〉, 〈b〉 )

For sequences of length 2n > 2 we define:

HSort( 〈a1 . . . a2n 〉 ) = ( 〈 c1 . . . c2n 〉, SD ∪ SD′ ∪ SM )

recursively in terms of two subsequences of size n:

HSort( 〈 a1 . . . an 〉 ) = ( 〈d1 . . . dn〉, SD ),

HSort( 〈 an+1 . . . a2n〉 ) = ( 〈d′1 . . . d′n〉, SD′ ),

and the merge of them

HMerge( 〈d1 . . . dn 〉, 〈d′1 . . . d′n 〉 ) = ( 〈c1 . . . c2n〉, SM ),

In Figure 1 one can observe the structure of Half Sorting Networks.

Lemma 4 Given a sequence A of length n, the Half Sorting Network HSort(A) con-

tains O(n log2 n) clauses with O(n log2 n) auxiliary variables.
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Proof Let am be the number of clauses of HSort(A) if A has length 2m. It is easy to

see that we have the following recurrence:



a1 = 3

am = 2am−1 + (3 + 3(m − 1) · 2m−1) for all m > 1

with solution am = −3 +3 · 2m − 3m · 2m−2 +3m2 · 2m−2. Since m = log n this proves

the result about the number of clauses.

Regarding the number of auxiliary variables, if bm is the number of auxiliary vari-

ables for inputs of length 2m, we have the recurrence:



b1 = 2

bm = 2bm−1 + (2 + (m − 1) · 2m) for all m > 1

with solution bm = (8−m+m2) ·2m−1−2. Replacing m by log n this gives the desired

result. ⊓⊔

Similar properties to the ones of Half Merging Networks also hold here, but without

the requirement that the input ones form a prefix: (i) if any p input variables are set

to true, the first p output variables are unit propagated (Lemma 5), and (ii) if in

addition the p + 1-th output is set to false, the remaining input variables are set to

false (Lemma 6), hence not allowing more than p input variables to be true.

Lemma 5 Let HSort( A ) be ( 〈c1 . . . c2n 〉, S ) and let A′ ⊆ A with |A′| = p. Then,

S ∪ A′ |=up c1, . . . , cp

Proof (By induction on n). If n = 1, we have

HSort( 〈a, b 〉) = ( 〈 c1, c2 〉, { a ∨ c1, b ∨ c1, a ∨ b ∨ c2 } )

If p = 0 there is nothing to prove. If p = 1 then either a or b are true, and c1 is

unit propagated. Otherwise, p = 2, both a and b are true, and c1 and then c2 are

propagated.

For the induction step (n > 1), let A = {a1, . . . , a2n}. We have:

HSort( 〈a1 . . . a2n 〉 ) =( 〈 c1 . . . c2n 〉, SD ∪ SD′ ∪ SM ),

with HSort( 〈 a1 . . . an 〉 ) =( 〈d1 . . . dn〉, SD ),

HSort( 〈 an+1 . . . a2n〉 ) =( 〈d′1 . . . d′n〉, SD′ ) and

HMerge( 〈d1 . . . dn 〉, 〈d′1 . . . d′n 〉 )=( 〈c1 . . . c2n〉, SM ).

If we now consider the set AD = A′∩{a1, . . . , an}, with size |AD| = pD, and also AD′ =

A′∩{an+1, . . . , a2n}, with |AD′ | = pD′ , by IH we have AD∪SD |=up d1, . . . , dpB
and

AD′ ∪SD′ |=up d′1, . . . , d′p
B′

. Finally, using these unit propagations and Lemma 1 we

know that SM ∪ {d1, . . . , dpD
, d′1, . . . , d′p

D′
} |=up c1, . . . , cpD+p

D′
, which concludes

the proof since pD + pD′ = p. ⊓⊔

Lemma 6 Let HSort( A ) be ( 〈c1 . . . c2n 〉, S ) and let A′(A with |A′|=p < 2n. Then,

S ∪ A′ ∪ cp+1 |=up aj for all aj ∈ (A − A′)
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Proof (By induction on n.) If n = 1, we have

HSort( 〈a, b 〉) = ( 〈 c1, c2 〉, { a ∨ c1, b ∨ c1, a ∨ b ∨ c2 } )

If p = 0 and we set c1, clearly a and b are unit propagated. If p = 1 and we set c2 and

a, we can propagate b; similarly, if we set c2 and b, we propagate a.

For the induction step (n > 1), let A = {a1, . . . , a2n}. We have:

HSort( 〈a1 . . . a2n 〉 ) =( 〈 c1 . . . c2n 〉, SD ∪ SD′ ∪ SM ),

with HSort( 〈 a1 . . . an 〉 ) =( 〈d1 . . . dn〉, SD ),

HSort( 〈 an+1 . . . a2n〉 ) =( 〈d′1 . . . d′n〉, SD′ ) and

HMerge( 〈d1 . . . dn 〉, 〈d′1 . . . d′n 〉 )=( 〈c1 . . . c2n〉, SM ).

If we now consider the set AD = A′ ∩ {a1, . . . , an}, with size |AD| = pD, and also

AD′ = A′ ∩ {an+1, . . . , a2n}, with |AD′ | = pD′ , using Lemma 5 we can infer that

AD ∪ SD |=up d1, . . . , dpD
and AD′ ∪ SD′ |=up d′1, . . . , d′p

D′
.

If pD < n and pD′ < n, then SM ∪ {d1, . . . , dpD
, d′1, . . . , d′p

D′
, cp+1} |=up

dpD+1, d′p
D′+1 by Lemma 2 (note that p = pD + pD′). With these two unit prop-

agations we can use the IH to obtain the propagations SD ∪ AD ∪ spD+1 |=up

aj for all aj ∈ ({a1 . . . an} − AD) and SD′ ∪ AD′ ∪ dp
D′+1 |=up aj for all aj ∈

({an+1 . . . a2n} − AD′), which concludes the proof in this case.

If pD = n and pD′ < n, then SM ∪ {d1, . . . , dpD
, d′1, . . . , d′p

D′
, cp+1} |=up

d′p
D′+1 by Lemma 2. Now, using the IH we obtain that SD′ ∪ AD′ ∪ dp

D′+1 |=up

aj for all aj ∈ ({an+1 . . . a2n} − AD′), which concludes the proof in this case since

A − A′ = {an+1, . . . , a2n} − AD′ .

Otherwise, pD < n and pD′ = n and the proof is analogous to the previous case.

⊓⊔

4 Cardinality Networks

Here we exploit the fact that in cardinality constraints x1+ . . .+xn ≤ k it is frequently

the case that n is much larger than k. We introduce Cardinality Networks which require

O(n log2 k) clauses instead of O(n log2 n) as in [8]. A main ingredient for Cardinality

Networks are the Simplified Half-Merging Networks, which we introduce first.

4.1 Simplified Half-Merging Networks

If we are only interested in the (maximal) n+1 bits of the output (instead of the 2n orig-

inal ones), Half Merging Networks can be further simplified. Given two sequences A and

B of length n, the Simplified Half-Merging Network of A and B, denoted SMerge(A, B),

is a pair (C, S), where C is a sequence of length n +1 and S is a set of clauses, defined

as follows. For n = 1, we have

SMerge( 〈 a 〉, 〈 b 〉) = ( 〈 c1, c2 〉, { a ∨ b ∨ c2, a ∨ c1, b ∨ c1 } )

The case n > 1 is defined

SMerge( 〈a1 . . . an〉, 〈b1 . . . bn〉 ) = ( 〈 d1 c2 . . . cn+1 〉, Sodd ∪ Seven ∪ S′ )

recursively in terms of the odd and the even subsequences,
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SMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . d n

2
+1〉, Sodd )

SMerge( 〈a2 a4 . . . an 〉, 〈b2 b4 . . . bn 〉 ) = ( 〈e1 . . . e n

2
+1〉, Seven )

where the clause set S′ is:
S

n

2

i=1{ di+1 ∨ ei ∨ c2i+1, di+1 ∨ c2i, ei ∨ c2i }.

Remark: We have defined Simplified Half-Merging Networks with n+1 outputs because

this n + 1-th bit is needed for the odd recursive case: d n

2
+1 is used in the clause set

S′. But output e n

2
+1 from the even subcase is not used, and the n + 1-th bit is not

used either in the Cardinality Networks defined below. This fact can be exploited

for a slightly further optimization in our encodings by using Simplified Half-Merging

Networks with n outputs for these subcases, but for clarity of explanation we have

chosen not to do so here.

We now precisely state the propagation properties of Simplified Half-Merging Net-

works. Lemma 7 is the equivalent of Lemma 1, proving that p+ q inputs ones properly

placed (e.g. as prefixes in the input sequences), unit propagate the first p + q outputs.

After that, Lemma 8, the equivalent of Lemma 2, proves how zeros can be propagated

from outputs to inputs.

Lemma 7 If SMerge( 〈a1 . . . an〉, 〈b1 . . . bn〉 ) = ( 〈 c1 . . . cn+1 〉, S ) and p, q ∈ N

with 1 ≤ p + q ≤ n + 1, then S ∪ {a1, . . . , ap, b1, . . . , bq } |=up cp+q.

Proof (By induction on n). If n = 1, we have

SMerge( 〈 a 〉, 〈 b 〉) = ( 〈 c1, c2 〉, { a ∨ c1, b ∨ c1, a ∨ b ∨ c2 } ).

If p = 0, q = 1 then setting b clearly propagates c1. Similarly, if p = 1, q = 0, setting a

propagates c1. Otherwise, p = 1, q = 1, and a and b propagate c2.

For the induction step (n > 1) we consider four different cases, depending on

whether p and q are odd or even:

CASE 1: p is odd and q even. (Let p = 2p′ + 1 and q = 2q′).

Let us focus on the odd part of SMerge :
SMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . d n

2
+1〉, Sodd ).

In 〈a1 a2 . . . ap〉 there are p′ + 1 odd indices, namely {1, 3, . . . , 2p′ + 1}. Similarly, in

〈b1 b2 . . . bq〉 there are q′ odd indices, namely {1, 3, . . . , 2q′ − 1}. Hence, by IH we have

Sodd ∪ {a1, . . . , a2p′+1, b1, . . . , b2q′−1 } |=up dp′+q′+1 (note that 1 ≤ (p′ + 1) + q′ ≤
n
2 +1). Now, if p′ = q′ = 0 we know that dp′+q′+1 is d1, which is is turn c1, and hence

the result holds. Hence, from now on, let us assume that 1 ≤ p′ + q′.

Let us take the even part of SMerge :

SMerge( 〈a2 a4 . . . an〉, 〈b2 b4 . . . bn〉 ) = ( 〈e1 . . . e n

2
+1〉, Seven )

In 〈a2 a4 . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in 〈b2 b4 . . . bq〉

there are q′ even indices, namely {2, 4, . . . , 2q′}. Hence, using the IH we have that

Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′ , } |=up ep′+q′ (note that 1 ≤ p′ + q′ ≤ n
2 + 1).

Finally, since 1 ≤ p′ + q′ ≤ n
2 the clause dp′+q′+1 ∨ ep′+q′ ∨ c2p′+2q′+1 belongs to

S, and hence literal c2p′+2q′+1 can be unit propagated, as we wanted to prove.

CASE 2: p is even and q odd. (Symmetric to the previous one).
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CASE 3: p and q are odd. (Let p = 2p′ + 1 and q = 2q′ + 1).

We will now use only the odd part of SMerge :
SMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . d n

2
+1〉, Sodd ).

In 〈a1 a2 . . . ap〉 there are p′ + 1 odd indices, namely {1, 3, . . . , 2p′ + 1}. Similarly, in

〈b1 b2 . . . bq〉 there are q′ + 1 odd indices, namely {1, 3, . . . , 2q′ + 1}. Hence, by IH we

have Sodd ∪ {a1, . . . , a2p′+1, b1, . . . , b2q′+1, } |=up dp′+q′+2 (note that, using that n

is even, one can see that 1 ≤ (p′ + 1) + (q′ + 1) ≤ n
2 + 1).

Now, since 1 ≤ p′ + q′ + 1 ≤ n
2 , the clause dp′+q′+2 ∨ c2p′+2q′+2 belongs to S, the

literal c2p′+2q′+2 can be unit propagated.

CASE 4: p and q are even. (Let p = 2p′ and q = 2q′).

We will now only use the even part of SMerge :

SMerge( 〈a2 a4 . . . an〉, 〈b2 b4 . . . bn〉 ) = ( 〈e1 . . . e n

2
+1〉, Seven )

In 〈a2 a4 . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in 〈b2 b4 . . . bq〉

there are q′ even indices, namely {2, 4, . . . , 2q′}. Hence, using the IH we have that

Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′ , } |=up ep′+q′ (note that 1 ≤ p′ + q′ ≤ n
2 + 1).

Now, using that n is even, one can see that 1 ≤ p′ + q′ ≤ n
2 and hence the clause

ep′+q′ ∨ c2p′+2q′ belongs to S, allowing one to propagate the literal c2p′+2q′ . ⊓⊔

Lemma 8 Let SMerge( 〈a1 . . . an〉, 〈b1 . . . bn〉 ) be ( 〈 c1 . . . cn+1 〉, S ), and p, q ∈ N

with p + q ≤ n.

If p < n and q < n then S ∪ {a1, . . . , ap, b1, . . . , bq, cp+q+1} |=up ap+1, bq+1.

If p = n and q = 0 then S ∪ {a1, . . . , an, cn+1} |=up b1.

If p = 0 and q = n then S ∪ {b1, . . . , bn, cn+1} |=up a1.

Proof (By induction on n). If n = 1, we have

SMerge( 〈 a 〉, 〈 b 〉) = ( 〈 c1, c2 〉, { a ∨ c1, b ∨ c1, a ∨ b ∨ c2 } ).

Hence, if p = 0 and q = 0, clearly setting c1 unit propagates a and b. If p = 1 and

q = 0, setting c2 and a propagates b. Finally, if p = 0 and q = 0, setting c2 and b

propagates a.

For the induction step (n > 1) we consider four different cases, depending on

whether p and q are odd or even:

CASE 1: p is odd and q is even. (Let p = 2p′ + 1 and q = 2q′). We only need to prove

the first property because the other conditions cannot hold.

Since 1 ≤ p′ + q′ + 1 ≤ n
2 , both dp′+q′+2 ∨ c2p′+2q′+2 and ep′+q′+1 ∨ c2p′+2q′+2

belong to S. Hence, setting c2p′+2q′+2 unit propagates dp′+q+2 and ep′+q′+1.

Let us consider the odd part of SMerge :
SMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . d n

2
+1〉, Sodd ).

In 〈a1 a2 . . . ap〉 there are p′ + 1 odd indices, namely {1, 3, . . . , 2p′ + 1}. Similarly, in

〈b1 b2 . . . bq〉 there are q′ odd indices, namely {1, 3, . . . , 2q′ − 1}. Now, since p < n and

q < n imply p′ + 1 < n
2 and q′ < n

2 , and we know that p′ + q′ + 1 ≤ n
2 , by IH we infer

that

Sodd ∪ {a1, . . . , a2p′+1, b1, . . . , b2q′−1, dp′+q′+2 } |=up a2p′+3, b2q′+1.

For propagating a2p′+2, let us take the even part of SMerge :

SMerge( 〈a2 a4 . . . an〉, 〈b2 b4 . . . bn〉 ) = ( 〈e1 . . . e n

2
+1〉, Seven )

In 〈a2 a4 . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in 〈b2 b4 . . . bq〉

there are q′ even indices, namely {2, 4, . . . , 2q′}. Hence, since p′ < n
2 , q′ < n

2 and

p′ + q′ ≤ n
2 , by IH we conclude the proof since
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Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′ , ep′+q′+1 } |=up a2p′+2, b2q′+2.

CASE 2: p is even and q odd. (Symmetric to the previous one).

CASE 3: p and q are odd. (Let p = 2p′ + 1 and q = 2q′ + 1). Again, we only need to

prove the first property.

Let us consider the odd part of SMerge :

SMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . d n

2
+1〉, Sodd ).

In 〈a1 a2 . . . ap〉 there are p′ + 1 odd indices, namely {1, 3, . . . , 2p′ + 1}. Similarly,

in 〈b1 b2 . . . bq〉 there are q′ + 1 odd indices, namely {1, 3, . . . , 2q′ + 1}. Now, since

it holds that (p′ + 1) + (q′ + 1) ≤ n
2 + 1, by Lemma 7 we obtain the propagation

Sodd ∪ {a1, . . . , a2p′+1, b1, . . . , b2q′+1, } |=up dp′+q′+2.

Using this propagated literal and also c2p′+2q′+3, and knowing that the clause

dp′+q′+2 ∨ ep′+q′+1 ∨ c2p′+2q′+3 belongs to S (because 1 ≤ p′ + q′ + 1 ≤ n
2 ), we prop-

agate ep′+q+1.

Now, let us consider even part of SMerge:

SMerge( 〈a2 a4 . . . an〉, 〈b2 b4 . . . bn〉 ) = ( 〈e1 . . . e n

2
+1〉, Seven )

In 〈a2 a4 . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in the

sequence 〈b2 b4 . . . bq〉 there are q′ even indices, namely {2, 4, . . . , 2q′}. Hence, since

p′ < n
2 , q′ < n

2 and p′ + q′ ≤ n
2 , by IH we conclude the proof since

Seven ∪ {a2, . . . , a2p′ , b2, . . . , b2q′ , ep′+q′+1 } |=up a2p′+2, b2q′+2.

CASE 4: p and q are even. (Let p = 2p′ and q = 2q′).

Let us first focus on the even part of SMerge :

SMerge( 〈a2 a4 . . . an〉, 〈b2 b4 . . . bn〉 ) = ( 〈e1 . . . e n

2
+1〉, Seven )

In 〈a2 a4 . . . ap〉 there are p′ even indices, namely {2, 4, . . . , 2p′}. Similarly, in the se-

quence 〈b2 b4 . . . bq〉 there are q′ even indices, namely {2, 4, . . . , 2q′}. Hence, by Lemma 7

we have Seven∪{a2, . . . , a2p′ , b2, . . . , b2q′ } |=up ep′+q′ (note that 1 ≤ p′+q′ ≤ n
2 +1).

Now, since 1 ≤ p′ + q′ ≤ n
2 , the clause dp′+q′+1 ∨ ep′+q′ ∨ c2p′+2q′+1 belongs to

S, and the previously propagated literal ep′+q′ together with c2p′+2q+1 propagate

dp′+q′+1.

Now, let us take the odd part of SMerge :

SMerge( 〈a1 a3 . . . an−1〉, 〈b1 b3 . . . bn−1〉 ) = ( 〈d1 . . . d n

2
+1〉, Sodd ).

In 〈a1 a2 . . . ap〉 there are p′ odd indices, namely {1, 3, . . . , 2p′ − 1}. Similarly, in the

sequence 〈b1 b2 . . . bq〉 there are q′ odd indices, namely {1, 3, . . . , 2q′ − 1}. Now, since it

holds that p′ + q′ ≤ n
2 , we can apply IH:

– if p < n and q < n, then p′ < n
2 and q′ < n

2 , and we can conclude that Sodd ∪

{a1, . . . , a2p′−1, b1, . . . , b2q′−1, dp′+q′+1 } |=up a2p′+1, b2q′+1.

– if p = n and q = 0, then p′ = n
2 and q′ = 0, and we have that

Sodd ∪ {a1, . . . , an−1, d n

2
+1 } |=up b1

– if p = 0 and q = n, then p′ = 0 and q′ = n
2 , and we have that

Sodd ∪ {b1, . . . , bn−1, d n

2
+1 } |=up a1

⊓⊔

Lemma 9 Given A and B sequences of length n, the Simplified Half-Merging Network

SMerge(A,B) contains O(n log n) clauses with O(n log n) auxiliary variables.
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Fig. 2 Representation of Card(〈a1 . . . a32〉, 8) with output 〈c1 . . . c8〉.

Proof Let am be the number of clauses of SMerge(A, B) if A has length 2m. It is easy

to see that we have the following recurrence:



a0 = 3

am = 2am−1 + 3 · 2m−1 for all m > 0

with solution am = 3 · 2m + 3m · 2m−1. Since m = log n this proves the result about

the number of clauses.

Regarding the number of auxiliary variables, if bm is the number of auxiliary vari-

ables for inputs of length 2m, we have the recurrence:



b0 = 2

bm = 2bm−1 + 2m for all m > 0

with solution bm = (m+2) ·2m. Replacing m by log n this gives the desired result. ⊓⊔

4.2 K-Cardinality Networks

Given a sequence A of length n = m × k with k = 2r and m ∈ N, the k-Cardinality

Network of A, denoted Card(A, k), is a pair (C, S), where C is a sequence of length k

and S is a set of clauses, defined as follows1 .

For sequences of length k, we define:

Card( 〈a1 . . . ak〉, k ) = HSort( 〈a1 . . . ak〉 )

For sequences of length n > k we define:

Card( 〈 a1 . . . an 〉 , k ) = ( 〈 c1 . . . ck 〉, SD ∪ SD′ ∪ SM )

1 For k not being a power of two, see Section 5.
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recursively in terms of subsequences of sizes k and n − k:

Card( 〈 a1 . . . ak 〉, k ) = ( 〈d1 . . . dk〉, SD ),

Card( 〈ak+1 . . . an〉, k ) = ( 〈d′1 . . . d′k〉, SD′ ),

and a simplified half-merge of them (note that its last output is not used)

SMerge( 〈d1 . . . dk 〉, 〈d′1 . . . d′k 〉 ) = ( 〈c1 . . . ck+1〉, SM ),

In Figure 2 one can observe the structure of k-Cardinality Networks.

Lemma 10 Given a sequence A of length n = m × k, the k-Cardinality Network

Card(A, k) contains O(n log2 k) clauses with O(n log2 k) auxiliary variables.

Proof Let am be the number of clauses if A has length m × k, with k = 2r. It is easy

to see that we have the following recurrence:



a1 = −3 + 3 · 2r − 3r · 2r−2 + 3r2 · 2r−2

am = a1 + am−1 + (3 · 2r + 3r · 2r−1) for all m > 1

with solution am = −3m + 6m2r + 3mr2r−2 + 3mr22r−2 − 3 · 2r − 3r2r−1. Since

m = log n and 2r = k this proves the result about the number of clauses, since we

obtain am = −3n
k + 6n + 3

4n log k + 3
4n log2 k − 3k − 3

2k log k.

Regarding the number of auxiliary variables, if bm is the number of auxiliary vari-

ables for inputs of length n = m × k, with k = 2r, we have the recurrence:



b1 = (8 − r + r2) · 2r−1 − 2

bm = b1 + bm−1 + (r + 2) · 2r for all m > 1

with solution bm = m(8− r + r2) · 2r−1 − 2 + (m− 1)(r + 2) · 2r. Since m = log n and

2r = k we obtain bm = 1
2mk(8 − log k + log2 k) − 2 + k(m − 1)(log k + 2) − 2. ⊓⊔

Again, the usual properties of how zeros and ones are unit propagated follow. Their

proofs are analogous to the ones of Lemma 5 and Lemma 6.

Lemma 11 If Card( A, k ) = (〈 c1 . . . ck 〉, S ) and A′ ⊆ A with |A′| = p ≤ k, then

S ∪ A′ |=up c1, . . . , cp

Proof Sequence A will be of the form 〈a1 . . . an〉 with n = m × k. We will prove the

lemma by induction on m.

If m = 1, we have Card( 〈a1, . . . ak 〉, k) = HSort( 〈a1, . . . , ak〉 ). Using lemma

5 we conclude that {c1, . . . , cp} are unit propagated.

For the induction step (m > 1) we have:

Card( 〈 a1 . . . an 〉 , k ) = ( 〈 c1 . . . ck 〉, SD ∪ SD′ ∪ SM )

with Card( 〈a1 . . . ak 〉, k ) = ( 〈d1 . . . dk〉, SD ),

Card( 〈ak+1 . . . an〉, k ) = ( 〈d′1 . . . d′k〉, SD′ ) and

SMerge( 〈d1 . . . dk 〉, 〈d′1 . . . d′k 〉 ) = ( 〈c1 . . . ck+1〉, SM )

If we now consider the sets AD = A′ ∩ {a1, . . . , ak}, with size |AD | = pD, and AD′ =

A′ ∩ {ak+1, . . . , an}, with |AD′ | = pD′ , by IH we have AD ∪ SD |=up d1, . . . , dpD

and AD′ ∪ SD′ |=up d′1, . . . , d′p
D′

. Now, by using lemma 7 we know that SM ∪

{d1, . . . , dpD
, d′1, . . . , d′p

D′
} |=up c1, . . . , cpD+p

D′
, which, since p = pD + pD′ , con-

cludes the proof. ⊓⊔
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Theorem 1 If Card( 〈a1 . . . an〉, k ) = (〈 c1 . . . ck 〉, S ) and A′ ( A with size |A′| =

p < k, then

S ∪ A′ ∪ cp+1 |=up aj for all aj ∈ (A \ A′)

Proof We have that n = m × k, and we will prove the lemma by induction on m.

If m = 1, we have Card( 〈 a1, . . . ak 〉, k) = HSort( 〈a1, . . . , ak〉 ) and in this case

the theorem amounts to Lemma 6.

For the induction step (m > 1) we have:

Card( 〈 a1 . . . an 〉 , k ) = ( 〈 c1 . . . ck 〉, SD ∪ SD′ ∪ SM )

with Card( 〈a1 . . . ak 〉, k ) = ( 〈d1 . . . dk〉, SD ),

Card( 〈ak+1 . . . an〉, k ) = ( 〈d′1 . . . d′k〉, SD′ ) and

SMerge( 〈d1 . . . dk 〉, 〈d′1 . . . d′k 〉 ) = ( 〈c1 . . . ck+1〉, SM )

If we now consider the sets AD = A′ ∩ {a1, . . . , ak}, with size |AD | = pD, and AD′ =

A′ ∩ {ak+1, . . . , an}, with |AD′ | = pD′ , by Lemma 11 we know that AD ∪ SD |=up

d1, . . . , dpD
and AD′ ∪ SD′ |=up d′1, . . . , d′p

D′
. Due to these propagated literals and

knowing that p = pD + pD′ ≤ k and both pD < k and pD′ < k, we obtain SM ∪

{d1, . . . , dpD
, d′1, . . . , d′p

D′
, cp+1} |=up dpD+1, d′p

D′+1 by applying Lemma 8.

Finally these two unit propagations allow us to use the IH to infer that SD ∪ AD ∪

dpD+1 |=up aj for all aj ∈ ({a1 . . . ak}−AD) and also that SD′ ∪ AD′ ∪ d′p
D′+1 |=up

aj for all aj ∈ ({ak+1 . . . an} − AD′), which concludes the proof. ⊓⊔

5 Application to SAT Solving and Extensions

In this section we show how to apply the previous constructions in practice and we

further present some extensions:

• Use of Card in practice. Theorem 1 indicates how to apply the construction

Card in practice. Assume we are given a formula F to which we want to impose the

cardinality constraint a1 + . . . an ≤ p. We should first find k, the smallest power of two

with k > p and consider the construction Card(〈a1 . . . an+m〉, k) = ( 〈c1, . . . ck〉, S ).

Note that we may need to add m extra variables to the input sequence to obtain a

sequence of size multiple of k, but these variables are initially set to false and do not

enlarge the search space. Now, the problem amounts to checking the satisfiability of

F ∧ S ∧ cp+1 since, due to Theorem 1, as soon as p variables in 〈a1, . . . , an+m〉 are

set to true, the remaining ones will be unit propagated to false, hence disallowing any

model not satisfying the cardinality constraint.

Example 2 Let us illustrate how the previous procedure works for a1+a2+a3+a4 ≤ 1.

We want to remark that there are specific encodings for “at most one” constraints [11],

but we use this case here because of its simplicity. First of all we identify k =2 as

the smallest power of two greater than the right-hand side of the constraint. Since

the number of variables is already multiple of 2 there is no need to add extra input

variable and the construction to be built is Card(〈a1, a2, a3, a4〉, 2) = (〈c1, c2〉, S) where

we will impose c2 to be false. As it can be seen in the Figure 3, it consists of two

Half Sorting Networks and one Simplified Half Merging Network, which produce the

following clauses (in the first row we list the clauses produced by the Half Sorting

Networks and in the second row the ones produced by the Simplified Half Merging

Network, which consists of two smaller networks and three “linking” clauses):
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Fig. 3 Representation of Card(〈a1, a2, a3, a4〉, 2) with output 〈c1, c2〉.

8

<

:

a1 ∨ a2 ∨d2

a1 ∨d1

a2 ∨d1

8

<

:

a3 ∨ a4 ∨d′2
a3 ∨d′1
a4 ∨d′1

8

<

:

d1 ∨ d′1 ∨ s2

d1 ∨ s1

d′1 ∨ s1

8

<

:

d2 ∨ d′2 ∨ s4

d2 ∨ s3

d′2 ∨ s3

8

<

:

s2 ∨ s3 ∨ c3
s2 ∨ c2
s3 ∨ c2

If, in addition to set c2 to false, we set a3 to true, it is not difficult to see that unit

propagation sets a1, a2 and a4 to false, as expected. ⊓⊔

• Incremental strengthening. Another important feature of these encodings can

be exploited in applications where one needs to solve a sequence of problems that only

differ in that a cardinality constraint a1 + . . . + an ≤ p becomes increasingly stronger

by decreasing p to p′, as it happens in optimization problems. In this setting, we only

need to assert the corresponding literal cp′+1, and the search can be resumed keeping

all lemmas generated in the previous problems. Most state-of-the-art SAT solvers used

as black boxes provide a user interface for doing this.

•Constraints of the form a1+. . . an ≥ p. For these type of constraints, we should

first find k, the smallest power of two with k ≥ p. After that, we should consider a

new construction Card≥(〈a1, . . . , an+m〉, k) = (〈c1, . . . , ck〉, S), identical to Card(A,k),

except that its blocks HMerge and SMerge contain, in their basic case, the clauses

{a∨ b∨ c1, a∨ c2, b∨ c2} and, for the recursive case, the clause set S′ is built from

the clauses {di+1 ∨ c2i+1, ei ∨ c2i+1, di+1 ∨ ei ∨ c2i}. We have the following result:

Theorem 2 If Card≥ ( 〈a1 . . . an〉, k ) = (〈 c1 . . . ck 〉, S ) and A′ ( A with |A′| = n−p,

for some p ∈ N with 1 ≤ p ≤ k, then

S ∪ A′ ∪ cp |=up aj for all aj ∈ (A \ A′),

where A′ contains the negation of all variables of A′.

This theorem ensures that, if we set cp to true, as soon as n−p literals are set to false,

the remaining p will be set to true, hence forcing the constraint to be satisfied.

• Constraints of the form p ≤ a1 + . . . an ≤ q. For these constraints, of which

equality constraints a1 + . . . + an = p are a particular case, we should first find k,
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the smallest power of two such that k > q. Then, we will use another construction

Cardrng(〈a1, . . . , an+m〉, k) = (〈c1, . . . , ck〉, S), identical to Card(A,k), except that its

blocks HMerge and SMerge contain, in their basic and recursive cases, all 6 mentioned

clauses (the ones for Card and the ones for Card≥). This allows one to avoid encod-

ing the two constraints independently, which would roughly duplicate the number of

variables. For this construction, we have:

Theorem 3 Let Cardrng( 〈a1 . . . an〉, k ) = (〈 c1 . . . ck 〉, S ) and A′ ( A.

– If |A′| = n − p for some p ∈ N with 1 ≤ p ≤ k then

S ∪ A′ ∪ cp |=up aj for all aj ∈ (A \ A′),

– If |A′| = p for some p < k then

S ∪ A′ ∪ cp+1 |=up aj for all aj ∈ (A \ A′)

This theorem ensures that, if we set cp and cq+1, then (i) as soon as n−p variables

are set to false, the remaining ones will be set to true and (ii) as soon as q variables

are set to true, the remaining ones will be set to false, which forces the constraint to

be satisfied.

• Constraints a1+ . . .+an ≤ p with p > n
2 . Note that Cardinality Networks were

designed to improve upon Sorting Networks when n is much larger than p. If p > n
2 we

can use the fact that the constraint abov can be rewritten as (1−a1)+ . . .+(1−an) ≥

n − p. The latter constraint, where now n − p < n
2 , can be encoded using Cardinality

Networks by simply changing the input variables by their negations.

6 Related Work

Due to the practical importance of cardinality constraints, their encoding into SAT has

been subject of thorough study in the last few years. In the following we present the

most important contributions, and we describe, for each work, the idea on which the

encoding is based, its size and whether it preserves arc consistency or not.

In [15], Warners focused on the more general pseudo-Boolean case, where con-

straints are of the form a1x1 + . . . + anxn ≤ k, being the ai’s and the k integer

coefficients and the xi’s Boolean variables. The encoding is based on using adders for

numbers in binary representation. More concretely, first of all the left hand side of the

constraint is split into two halves, each of which is recursively treated to compute the

corresponding partial sum. After that, the two partial sums are added and the final

result is compared with k. For pseudo-Boolean constraints, the size of the encoding

depends on the coefficients ai, but for cardinality constraints it can be shown to use

O(n) clauses and variables, not being able to preserve arc consistency.

Bailleux and Boufkhad, in [2], presented an arc-consistent encoding of cardinality

constraints, using O(n log n) variables and O(n2) clauses. They describe their encoding

as consisting of a totalizer and a comparator. The totalizer can be seen as a binary

tree, where the leaves are the xi’s variables. Each intermediate node is labelled with a

number s and uses s auxiliary variables to represent, in unary, the sum of the leaves

of the corresponding subtree. Given such a node, its two children are labelled with

integers ⌊s/2⌋ and s − ⌊s/2⌋ and clauses are used to encode the relation between the
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children and parent variables. Since a unary representation of numbers is used, the

comparator is trivial and, moreover, it easily allows to encode constraints of the form

k1 ≤ x1 + . . . + xn ≤ k2, without resorting to two cardinality constraints.

A more applied work is the one of Büttner and Rintanen [14]. The work focuses

on planning as a satisfiability problem and the use of cardinality constraints is only

a secondary contribution. They suggest two encodings of cardinality constraints. The

first one is based on encoding an injective mapping between the true xi’s variables and

k elements. It uses O(nk) clauses and variables and is not arc-consistent. The other

encoding they present is a small modification of [2]. The idea is simple and similar to

the one we have used in our work: there is no need to count up to n, it is enough to

count up to k + 1, which can be used to reduce the number of variables used in each

node. Their analysis reveals a use of O(nk2) clauses, which is an improvement if k is

small enough.

In [13], Sinz proposed two different encodings, both based on counters. The first

encoding relies on a sequential counter where numbers are represented in unary. It

needs O(nk) clauses and variables and is arc-consistent. The second encoding is based

on a parallel counter, where numbers are represented in binary. The counter recursively

splits the input bits into two halves and counts the number in each half. Results are

added using a standard binary adder and a final comparator is used. Is uses O(n)

clauses and variables but it is not arc-consistent.

Yet another type of encoding was used in [3], where a BDD-like approach was

proposed for pseudo-Boolean constraints. The encoding is arc-consistent and can be

exponential in the worst case, but it only uses O(n2) clauses and variables when applied

to cardinality constraints and other particular cases. The idea is simple: given a pseudo-

Boolean constraint a1x1 + . . .+anxn ≤ k, the root of the node is labelled with variable

Dn,k, expressing the sum of the first n terms if no more then k. The two corresponding

children are Dn−1,k and Dn−1,k−an
, indicating the two cases that correspond to setting

xn to false and true, respectively. As expected, the necessary clauses are added to

express the relations between the variables and trivial cases are treated accordingly.

This construction restricted to cardinality constraints turns out to be polynomial due

to the high amount of sharing between nodes, a situation that does not always happen

in the pseudo-Boolean case.

Eén and Sörensson [8] presented three encodings for pseudo-Boolean constraints.

The first encoding is BDD-based, similar to [3]. It is exponential in the worst case and

preserves arc consistency. Their second encoding, based on adder-networks improves

the one of [15] in that it uses less adders, but it is still linear and does not preserve arc

consistency. Their third encoding is based on sorting networks, and, when restricted to

cardinality constraints, preserves arc consistency and requires O(n log2 n) clauses and

variables.

The work of [4] presents a polynomial and arc-consistent encoding of pseudo-

Boolean constraints. When restricted to cardinality constraints it is similar to [2],

but the latter is better in terms of size.

Finally, we want to remark the work of [1] on cardinality constraints. The authors

revisit the idea of using totalizers, and realize that totalizers require two parameters:

the encoding used (unary or binary) and the way the totalizers are grouped (e.g.

(a+b)+(c+d) or (((a+b)+c)+d) ). A thorough experimentation of several possibilities

is performed, to which they add two extra aspects: how to order the variables in the

totalizers and the use of hybrid encodings, based on using two encodings in parallel
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Sorting Network Cardinality Network
k=5 k=10 k=n/2

n vars clauses vars clauses vars clauses vars clauses

105 18 · 106 54 · 106 77 · 104 12 · 105 12 · 105 18 · 105 15 · 106 23 · 106

104 15 · 105 45 · 105 77 · 103 12 · 104 12 · 104 19 · 104 12 · 105 19 · 105

103 48150 144403 7713 12065 12223 18825 39919 59879
102 2970 8855 773 1205 1251 1917 2279 3419

Table 1 Comparison of Sorting and Cardinality Networks in terms of size for a constraint of
the form a1 + . . . + an ≤ k.

hoping that the SAT solver will focus on the most appropriate one for that particular

problem.

7 Experimental Evaluation

We start the evaluation of Cardinality Networks focusing on their size. In Table 1

we show, for a constraint a1 + . . . + an ≤ k, the number of variables and clauses2

in Cardinality Networks compared with the Sorting Networks of [5,8] (figures for our

Half Sorting Networks are as for Sorting Networks, except that the number of clauses is

halved). Cardinality Networks provide a huge advantage for small values of k, whereas

for k = n
2 (its worst case) there is still more than a factor-two advantage due to the

use of Half Sorting/Merging Networks instead of full ones.

We now also assess the practical performance of Cardinality Networks, that is, how

the encoding affects the performance of SAT solvers. We have compared them with

other well-known encodings present in the literature. The encodings we have chosen

are the Sorting Networks of [8] (Sort6 in the tables), Half Sorting Networks (Sort3) as

introduced in this paper, Cardinality Networks (Card3), Cardinality Networks using

all 6 clauses (Card6), the adder-based encoding (Adder) of [8] and the BDD-based

encoding (BDD) of [3]. We believe these encodings are representative of all different

approaches that have been used to tackle cardinality constraints. Other works, like the

adder-based encoding of [15], the BDD-based one of [8] or the work by Anbulagan

and Grastien [1], are small variations or combinations of the encodings we have chosen.

In addition, we have implemented an SMT-based approach to Cardinality Con-

straints. Roughly speaking, we have coupled a SAT solver with a theory solver that

deals with all cardinality constraints. As soon as some cardinality constraint is violated

by the current partial assignment, the SAT solver is forced to backtrack and, as soon

as the value of some variable can be propagated due to a constraint, this information

is passed to the SAT solver. That is, cardinality constraints are not translated into

SAT, but rather dealt with by a dedicated algorithm, very similar in nature to what

some pseudo-Boolean solvers do. For more information about SMT, we refer the reader

to [12].

The SAT solver we have used is Precosat [6], a very efficient and well-known CDCL

(Conflict-Driven Clause Learning) SAT solver. All experiments were conducted on a

2Ghz Linux Quad-Core AMD. We also made some experiments with SLS SAT solvers

2 Since for every ternary clause there are two binary clauses, the number of literals in the
encodings is 7

3
times the number of clauses.
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Speed-up factor of Card3 Slow-down factor of Card3
Encoding TO 4 2 1.5 TOT. 1.5 2 4 TO TOT.

Sort6 29 46 85 160 320 24 20 15 12 71

Sort3 5 40 38 42 125 23 23 3 9 58

Card6 26 13 59 78 176 19 29 14 17 79

Adder 177 50 45 33 305 29 11 8 1 49

BDD 70 104 57 54 285 9 8 5 18 40

SMT 168 54 14 7 243 7 24 215 12 258

Table 2 Comparison in terms of SAT solver runtime of the Cardinality Network encoding with
other encodings on the MSU4 suite. Numbers indicate number of families in which Cardinality
Networks showed the corresponding speed-up or slow-down factor w.r.t. the encoding indicated
in the row.

but their performance was not competitive on the benchmarks we have chosen. This

is not a big surprise since the encoding we have presented is designed to work well

on unit propagation-based systems. A possible line of research would be to construct

SLS-oriented SAT encodings of cardinality constraints.

MSU4 suite. The first set of benchmarks on which we have compared the different

encodings comes from the Partial Max-SAT division of the Third Max-SAT evalua-

tion3. The benchmarks are encodings of different problems: filter design, logic synthe-

sis, minimum-size test pattern generation, haplotype inference or maximum-quartet

consistency. In order to convert them into cardinality constraints we have implemented

the msu4 algorithm [10], which reduces a Max-SAT problem to a series of SAT prob-

lems with cardinality constraints. Hence, a single Max-SAT problem is converted into

a family of “SAT + cardinality constraints” problems, of which we only kept the ones

with non-trivial constraints (that is, that they cannot be converted into a single clause

or a set of unit literals). This way, out of the roughly 1600 Max-SAT problems we

obtained a set of 14000 benchmarks, each of which contains multiple “less or equal”

cardinality constraints.

Results are summarized in Table 2, which presents a comparison of Cardinality

Networks with respect to the other 5 different encodings and the SMT approach. All

instances coming from the same Partial Max-SAT problem were grouped and their

runtimes added. The time limit was set to 600 seconds per benchmark and a single

benchmark timing out was enough for considering the whole family to time out. Rows

represent different encodings, and columns indicate in how many families Cardinality

Networks exhibit the corresponding speed-up or slow-down factor. As an example, the

TO column in the Sort6 row indicates that in 29 benchmark families Sorting Networks

timed out whereas Cardinality Networks did not. The rightmost 12 in the same row

reports 12 families with opposite behavior: Cardinality Network timing out while Sort-

ing Network solving the whole family. The other columns have similar interpretations:

column labelled with a speed-up factor of 4 indicates that Cardinality Networks were

at least four times as fast, the column 2 that they were between 2 and 4 times as fast

and so on. Columns on the right part of the table indicate that Cardinality Networks

were four times as slow, between 2 and 4 times as slow, etc. The TOT. columns report

the total number of benchmarks in which there was some speed-up/slow-down factor.

Note that not all 1600 families are present in the table since families in which the

3 See http://www.maxsat.udl.cat/08/index.php?disp=submitted-benchmarks.
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two encodings had similar behavior (less than 1.5 speed-up/slow-down factor) or were

solved by both encodings in less than a few seconds have not been included.

If we consider the first three encodings of the table, which are all similar in spirit,

we can conclude that Cardinality Networks have better behavior overall by observing

that most of the families fall on the left-hand side of the table. We can also observe that

in this benchmark suite the use of three clauses instead of six has big impact, even

stronger than the improvement obtained by using Cardinality Networks instead of

Sorting Networks. Regarding the Adder and BDD-based encodings, they both perform

poorly, with BDD’s being slightly better. Finally, the SMT encoding is much worse if

we consider timeouts, but there are 215 benchmarks in which it is at least four times

faster than Cardinality Networks (indeed, in about 150 benchmarks it is at least 10

times faster). That seems to indicate that there are some problems in which encoding

cardinality constraints into SAT is the best choice, but for some other it is clearly

not. Knowing which case applies for each benchmark is a hard and interesting line of

research out of the scope of this work.

Discrete-event system diagnosis suite. The second set of benchmarks we have

used is the one introduced in [1] 4. These problems come from discrete-event system

(DES) diagnosis. A plant is modeled by a DES, a finite automaton whose transitions

are labelled by the events that occur when the transition is triggered. Some events are

observable, that is, an observation is emitted when they occur. The goal of the problem

is, knowing that there is a set of faulty events in the DES, found a trajectory on the

DES consistent with the observations that minimizes the number of faults.

The minimization problem can be solved by imposing that at most k faulty events

are used and solving a sequence of problems varying this k. As usual, harder problems

take place on the unsatisfiable region, and this is where we generated our cardinality

constraint benchmarks. As it happened with the Max-SAT problems, a single DES

problem produced a family of “SAT + cardinality constraints” problems. This way,

out of the the roughly 600 DES problems, we obtained a set of 6000 benchmarks, each

of which contained a single very large “less or equal” cardinality constraint.

Results are summarized in Table 3 where, again, benchmarks have been grouped

into families and the same time limit restrictions have been applied. In this case, it is

even clearer that Cardinality Networks perform much better. This is probably due to

the fact that the cardinality constraints in this suite have lots of variables and quite

a small integer, that is, large n and small k, which is precisely where our method

outperforms the others. A noteworthy comment is that Half Sorting Networks (i.e.

Sort3) behave much worse than other encodings, which is not what we expected.

After studying the problem in detail, we realized that the preprocessing phase that

most state-of-the-art SAT solvers apply turns out to be very costly. This preprocessing

phase is built inside Precosat, but some other SAT solver use the external preprocessor

Satelite [9]. On those problems, sometimes Satelite consumes all 600 seconds prepro-

cessing, whereas the instance can be solved in less than 5 seconds by an ordinary SAT

solver without preprocessing. This indicates that the heuristics that are used to decide

which preprocessing techniques to be used are not precise enough for these type of

problems.

The last row in Table 3 refers to the best encoding proposed by [1], the paper where

the benchmarks were suggested. This encoding is a combination of different techniques

4 We want to thank Alban Grastien for his assistance with the benchmarks.
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Speed-up factor of Card3 Slow-down factor of Card3
Encoding TO 4 2 1.5 TOT. 1.5 2 4 TO TOT.

Sort6 0 216 187 26 429 5 0 0 12 17

Sort3 166 309 4 5 484 0 0 0 0 0

Card6 2 0 95 227 324 0 0 0 3 3

Adder 14 0 23 119 156 10 4 0 0 14

BDD 97 379 14 0 490 0 0 0 0 0

SMT 321 53 20 16 410 11 4 0 0 15

SARA’09 0 0 35 30 65 19 26 2 27 74

Table 3 Comparison in terms of SAT solver runtime of the Cardinality Network encoding
with other encodings on the discrete-event system diagnosis suite. Numbers indicate number
of families in which Cardinality Networks showed the corresponding speed-up or slow-down
factor w.r.t. the encoding indicated in the row.

in which variables are ordered semantically, that is, using information about their

meaning in the original problem. Although our encoding times out more often than

theirs, the comparison indicates that Cardinality Networks are competitive, specially

if we take into account that only in about 140 out of the 600 families there was a

significant difference between the two encodings. We see these results as a strong point

in favor of Cardinality Networks since we are comparing with an encoding that was

“tuned” to obtain the best behavior on these problems. Our encoding, on the other

side, is general and not designed toward this concrete type of problems.

Tomography suite. The last set of benchmarks we have used is the one introduced

in [2] 5. The idea is to first generate an N × N grid in which some cells are filled and

some others are not. These problem consists in finding out which are the filled cells

using only the information of how many filled cells there are in each row, column and

diagonal. For that purpose, variables xij are used to indicate whether cell (i, j) is filled

and several “exactly” cardinality constraints are used to impose how many filled cells

there are in each row, column and diagonal.

For each size N ×N , we generated 100 random grids and ran all encodings and the

SMT approach on them, computing the average time. Note that in “exactly” constraints

one is forced to add all 6 clauses in both Sorting and Cardinality Networks, and hence

the 3-clause versions do not appear in the experiments. Again, a time limit of 600

seconds per benchmark was used.

Results are summarized in Table 4. The first obvious conclusion we can draw is

that BDDs are by far the best encoding. The SMT approach is also very promising but

does not scale so well. Regarding the other encodings, adders scale worse than other

encodings and results are inconclusive as to whether Sorting or Cardinality Networks

perform better.

All in all, the results in the different suites indicate that Cardinality Networks

improve upon previously known encodings. They performance is very good and, more

importantly, it is by far the most robust one. As expected, on some particular problems

there are encodings that behave better than Cardinality Networks and hence, for prac-

tical purposes it is important to use libraries that allow one to choose among different

encoding possibilities.

5 We want to thank Yacine Boufkhad for kindly providing us with the benchmark generator.



24

Size of grid Sort6 Card6 Adder BDD SMT

15x15 0.49 0.3 0.2 0.16 0.09
16x16 0.57 0.35 0.1 0.21 0.02
17x17 0.47 0.69 0.33 0.24 0.02
18x18 2.17 2.11 0.67 0.28 0.26
19x19 3.26 2.4 3.75 0.33 0.37
20x20 1.79 1.37 0.81 0.36 0.03
21x21 1.52 2.13 2.55 0.42 0.66
22x22 14.69 8.06 5.56 0.49 0.61
23x23 6.35 3.36 8.85 0.57 0.84
24x24 16.81 4.2 24.06 0.63 1.21
25x25 6.7 12.43 32.4 0.73 1.33
26x26 11.64 6.23 28.67 0.83 1.45
27x27 13.3 9.87 35.92 0.91 2.50
28x28 8.64 33.32 59.3 1 2.52
29x29 20.09 16.37 79.77 1.1 5.36
30x30 34.41 64.26 TO 1.18 14.72

Table 4 Comparison in terms of SAT solver runtime of various encodings on the tomography
suite. Numbers indicate average time in seconds.

8 Conclusions and Further Work

SAT solvers can be used off the shelf, giving high performance push-button tools, i.e.,

tools that require no tuning for variable or value selection heuristics. In order to exploit

these features optimally, it is important to develop a catalogue of encodings for the

most common general-purpose constraints, in such a way that the SAT solver’s unit

propagation can efficiently preserve arc consistency.

Our approach is based on precise (recursive) definitions of the generated clause sets

and on inductive proofs for the arc consistency properties, combined with a careful

quantitative and experimental analysis.

We believe that in a similar way it will be possible to go beyond, re-visiting pseudo-

Boolean constraints and other important constraints that are well known in the Con-

straint Programming community.
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