
1

IntSat: From SAT to
Integer Linear Programming

CPAIOR 2015 (invited talk)

Robert Nieuwenhuis

Barcelogic.com - Computer Science Department
BarcelonaTech (UPC)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

2

Proposed travel arrangements (next time):

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

2

Proposed travel arrangements (next time):

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

3

Between SAT and ILP

0-1 solutions Z solutions
feasibility optimizing feasibility optimizing

clauses SAT
cardinality constr.
linear constraints ILP

0-1 sols Z sols Q/Z sols
feas. opt. feas. opt. feas. opt.

clauses SAT
cardinality constr.
linear constraints ILP MIPs

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

3

Between SAT and ILP

0-1 sols Z sols Q/Z sols
feas. opt. feas. opt. feas. opt.

clauses SAT
cardinality constr.
linear constraints ILP MIPs

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

4

Outline of this talk

• SAT and ILP

• Commercial ILP tools

• Between SAT and ILP

• CDCL SAT solvers. Why do they work so well?

• What is SMT? Why does it work so well?

• ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

• Going beyond: Constraint Learning. (It can beat clause learning!)

• Solving the rounding problem, 0-1 case, Z case

• Cutsat and IntSat. Evaluation. Demo (if time).

• Simple completeness proofs for cutting planes

• Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

4

Outline of this talk

• SAT and ILP

• Commercial ILP tools

• Between SAT and ILP

• CDCL SAT solvers. Why do they work so well?

• What is SMT? Why does it work so well?

• ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

• Going beyond: Constraint Learning. (It can beat clause learning!)

• Solving the rounding problem, 0-1 case, Z case

• Cutsat and IntSat. Evaluation. Demo (if time).

• Simple completeness proofs for cutting planes

• Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

4

Outline of this talk

• SAT and ILP

• Commercial ILP tools

• Between SAT and ILP

• CDCL SAT solvers. Why do they work so well?

• What is SMT? Why does it work so well?

• ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

• Going beyond: Constraint Learning. (It can beat clause learning!)

• Solving the rounding problem, 0-1 case, Z case

• Cutsat and IntSat. Evaluation. Demo (if time).

• Simple completeness proofs for cutting planes

• Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

4

Outline of this talk

• SAT and ILP

• Commercial ILP tools

• Between SAT and ILP

• CDCL SAT solvers. Why do they work so well?

• What is SMT? Why does it work so well?

• ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

• Going beyond: Constraint Learning. (It can beat clause learning!)

• Solving the rounding problem, 0-1 case, Z case

• Cutsat and IntSat. Evaluation. Demo (if time).

• Simple completeness proofs for cutting planes

• Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

4

Outline of this talk

• SAT and ILP

• Commercial ILP tools

• Between SAT and ILP

• CDCL SAT solvers. Why do they work so well?

• What is SMT? Why does it work so well?

• ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

• Going beyond: Constraint Learning. (It can beat clause learning!)

• Solving the rounding problem, 0-1 case, Z case

• Cutsat and IntSat. Evaluation. Demo (if time).

• Simple completeness proofs for cutting planes

• Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

4

Outline of this talk

• SAT and ILP

• Commercial ILP tools

• Between SAT and ILP

• CDCL SAT solvers. Why do they work so well?

• What is SMT? Why does it work so well?

• ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

• Going beyond: Constraint Learning. (It can beat clause learning!)

• Solving the rounding problem, 0-1 case, Z case

• Cutsat and IntSat. Evaluation. Demo (if time).

• Simple completeness proofs for cutting planes

• Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

4

Outline of this talk

• SAT and ILP

• Commercial ILP tools

• Between SAT and ILP

• CDCL SAT solvers. Why do they work so well?

• What is SMT? Why does it work so well?

• ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

• Going beyond: Constraint Learning. (It can beat clause learning!)

• Solving the rounding problem, 0-1 case, Z case

• Cutsat and IntSat. Evaluation. Demo (if time).

• Simple completeness proofs for cutting planes

• Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

4

Outline of this talk

• SAT and ILP

• Commercial ILP tools

• Between SAT and ILP

• CDCL SAT solvers. Why do they work so well?

• What is SMT? Why does it work so well?

• ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

• Going beyond: Constraint Learning. (It can beat clause learning!)

• Solving the rounding problem, 0-1 case, Z case

• Cutsat and IntSat. Evaluation. Demo (if time).

• Simple completeness proofs for cutting planes

• Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

4

Outline of this talk

• SAT and ILP

• Commercial ILP tools

• Between SAT and ILP

• CDCL SAT solvers. Why do they work so well?

• What is SMT? Why does it work so well?

• ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

• Going beyond: Constraint Learning. (It can beat clause learning!)

• Solving the rounding problem, 0-1 case, Z case

• Cutsat and IntSat. Evaluation. Demo (if time).

• Simple completeness proofs for cutting planes

• Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

4

Outline of this talk

• SAT and ILP

• Commercial ILP tools

• Between SAT and ILP

• CDCL SAT solvers. Why do they work so well?

• What is SMT? Why does it work so well?

• ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

• Going beyond: Constraint Learning. (It can beat clause learning!)

• Solving the rounding problem, 0-1 case, Z case

• Cutsat and IntSat. Evaluation. Demo (if time).

• Simple completeness proofs for cutting planes

• Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

4

Outline of this talk

• SAT and ILP

• Commercial ILP tools

• Between SAT and ILP

• CDCL SAT solvers. Why do they work so well?

• What is SMT? Why does it work so well?

• ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

• Going beyond: Constraint Learning. (It can beat clause learning!)

• Solving the rounding problem, 0-1 case, Z case

• Cutsat and IntSat. Evaluation. Demo (if time).

• Simple completeness proofs for cutting planes

• Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

5

Integer Linear Programming (ILP)

Find solution Sol : {x1 . . .xn}→ Z to:

Minimize: c1 x1 + . . .+ cn xn (or maximize)

Subject To: c11 x1 + . . .+ c1n xn ≤ c10

. (or with ≥, =, <, >)
cm1 x1 + . . .+ cmn xn ≤ cm0

where all coefficients ci in Z.

SAT: particular case of ILP with 0-1 vars and constraint clauses:

x∨y∨z ≡ x +(1− y)+(1− z)≥ 1

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

6

CPLEX and Gurobi

• Commercial OR solvers, large, quite expensive.

• ILP based on LP relaxation + Simplex + branch-and-cut +
combining a large variety of techniques: problem-specific cuts, specialized
heuristics, presolving...

• Extremely mature technology. Bixby:

“From 1991 to 2012, saw 475,000× algorithmic speedup ×
2,000× hardware speedup.”

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

7

Between SAT and ILP

0-1 solutions Z solutions
feasibility optimizing feasibility optimizing

clauses SAT
cardinality constr.

linear constr. 0-1 ILP(P-B) 0-1 ILP (P-B) ILP

Cardinality constraints:

x1 + . . .+ xn ≤ k (or with ≥, =, <, >)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution:

Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2

⇒ (Decide)
1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒

(UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒

(Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒

(UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒

(Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒

(UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2

⇒ (Backtrack)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 CONFLICT !

⇒ (Backtrack)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2

solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

8

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

1 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 1∨2, 3∨4, 5∨6, 6∨5∨2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

9

Backtrack vs. Backjump

Same example. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

/0 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)

1 2 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Backjump =
1 Conflict Analysis: “Find” a backjump clause C∨ l (here, 2∨5)

• that is a logical consequence of the clause set
• that reveals a unit propagation of l at an earlier decision level d (i.e., where

its part C is false)

2 Return to decision level d and do the propagation.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

9

Backtrack vs. Backjump

Same example. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

/0 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)
1 2 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Backjump =
1 Conflict Analysis: “Find” a backjump clause C∨ l (here, 2∨5)

• that is a logical consequence of the clause set
• that reveals a unit propagation of l at an earlier decision level d (i.e., where

its part C is false)

2 Return to decision level d and do the propagation.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

9

Backtrack vs. Backjump

Same example. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

/0 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)
1 2 5 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Backjump =
1 Conflict Analysis: “Find” a backjump clause C∨ l (here, 2∨5)

• that is a logical consequence of the clause set
• that reveals a unit propagation of l at an earlier decision level d (i.e., where

its part C is false)

2 Return to decision level d and do the propagation.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

10

Conflict Analysis: find backjump clause

Example. Consider stack: . . .6 . . .7 . . .9 and clauses:

9∨6∨7∨8, 8∨7∨5, 6∨8∨4, 4∨1, 4∨5∨2, 5∨7∨3, 1∨2∨3

UnitPropagate gives . . .6 . . .7 . . .9 8 5 4 1 2 3. Conflict w/ 1∨2∨3!

C.An. = do resolutions with reason clauses backwards from conflict:

8∨7∨5
6∨8∨4

4∨1
4∨5∨2

5∨7∨3 1∨2∨3
5∨7∨1∨2

4∨5∨7∨1
5∨7∨4

6∨8∨7∨5
8∨7∨6

until get clause with only 1 literal of last decision level. “1-UIP”

Can use this backjump clause 8∨7∨6 to Backjump to . . .6 . . .7 8.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

11

Yes, but why is CDCL really that good?

Three key ingredients (I think):

1 Learn at each conflict backjump clause as a lemma (“nogood”):
• makes UnitPropagate more powerful
• prevents EXP repeated work in future similar conflicts

2 Decide on variables with many occurrences in Recent conflicts:
• Dynamic activity-based heuristics
• idea: work off, one by one, clusters of tightly related vars

(try CDCL on two independent instances together...)

3 Forget from time to time low-activity lemmas:
• crucial to keep UnitPropagate fast and memory affordable
• idea: lemmas from worked-off clusters no longer needed!

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

11

Yes, but why is CDCL really that good?

Three key ingredients (I think):

1 Learn at each conflict backjump clause as a lemma (“nogood”):
• makes UnitPropagate more powerful
• prevents EXP repeated work in future similar conflicts

2 Decide on variables with many occurrences in Recent conflicts:
• Dynamic activity-based heuristics
• idea: work off, one by one, clusters of tightly related vars

(try CDCL on two independent instances together...)

3 Forget from time to time low-activity lemmas:
• crucial to keep UnitPropagate fast and memory affordable
• idea: lemmas from worked-off clusters no longer needed!

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

11

Yes, but why is CDCL really that good?

Three key ingredients (I think):

1 Learn at each conflict backjump clause as a lemma (“nogood”):
• makes UnitPropagate more powerful
• prevents EXP repeated work in future similar conflicts

2 Decide on variables with many occurrences in Recent conflicts:
• Dynamic activity-based heuristics
• idea: work off, one by one, clusters of tightly related vars

(try CDCL on two independent instances together...)

3 Forget from time to time low-activity lemmas:
• crucial to keep UnitPropagate fast and memory affordable
• idea: lemmas from worked-off clusters no longer needed!

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

11

Yes, but why is CDCL really that good?

Three key ingredients (I think):

1 Learn at each conflict backjump clause as a lemma (“nogood”):
• makes UnitPropagate more powerful
• prevents EXP repeated work in future similar conflicts

2 Decide on variables with many occurrences in Recent conflicts:
• Dynamic activity-based heuristics
• idea: work off, one by one, clusters of tightly related vars

(try CDCL on two independent instances together...)

3 Forget from time to time low-activity lemmas:
• crucial to keep UnitPropagate fast and memory affordable
• idea: lemmas from worked-off clusters no longer needed!

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

12

Good vs Bad in CDCL SAT Solvers

Decades of academic and industrial efforts

Lots of $$$ from, e.g., EDA (Electronic Design Automation)

What’s GOOD? Complete solvers:

• with impressive performance

• on real-world problems from many sources, with a

• single, fully automatic, push-button, var selection strategy.

• Hence modeling is essentially declarative.

What’s BAD?

• Low-level language

• Sometimes no adequate/compact encodings: arithmetic...
0-1 cardinality [Constraints11], P-B [JAIR12], Z encodings...

• Answers “unsat” or model. Optimization not as well studied.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

13

What is SAT Modulo Theories (SMT)?

Origin: Reasoning about equality, arithmetic, data structures such
as arrays, etc., in Software/Hardware verification.

What is SMT? Deciding satisfiability of an (existential) SAT
formula with atoms over a background theory T

Example 1: T is Equality with Uninterpreted Functions (EUF):

3 clauses: f (g(a)) 6= f (c) ∨ g(a)=d , g(a)=c, c 6=d

Example 2: several (how many?) combined theories:

2 clauses: A=write(B, i+1,x), read(A, j+3)=y ∨ f (i−1) 6= f (j+1)

Typical verification examples, where SMT is method of choice.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

14

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)︸ ︷︷ ︸
1

∨ g(a)=d︸ ︷︷ ︸
2

, g(a)=c︸ ︷︷ ︸
3

, c 6=d︸ ︷︷ ︸
4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T -inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T -inconsistent

3. Send {1∨2, 3, 4, 1∨3∨4, 1∨2∨3∨4 } to SAT solver

SAT solver says UNSAT

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

14

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)︸ ︷︷ ︸
1

∨ g(a)=d︸ ︷︷ ︸
2

, g(a)=c︸ ︷︷ ︸
3

, c 6=d︸ ︷︷ ︸
4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T -inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T -inconsistent

3. Send {1∨2, 3, 4, 1∨3∨4, 1∨2∨3∨4 } to SAT solver

SAT solver says UNSAT

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

14

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)︸ ︷︷ ︸
1

∨ g(a)=d︸ ︷︷ ︸
2

, g(a)=c︸ ︷︷ ︸
3

, c 6=d︸ ︷︷ ︸
4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T -inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T -inconsistent

3. Send {1∨2, 3, 4, 1∨3∨4, 1∨2∨3∨4 } to SAT solver

SAT solver says UNSAT

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

14

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)︸ ︷︷ ︸
1

∨ g(a)=d︸ ︷︷ ︸
2

, g(a)=c︸ ︷︷ ︸
3

, c 6=d︸ ︷︷ ︸
4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T -inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T -inconsistent

3. Send {1∨2, 3, 4, 1∨3∨4, 1∨2∨3∨4 } to SAT solver

SAT solver says UNSAT

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

14

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)︸ ︷︷ ︸
1

∨ g(a)=d︸ ︷︷ ︸
2

, g(a)=c︸ ︷︷ ︸
3

, c 6=d︸ ︷︷ ︸
4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T -inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T -inconsistent

3. Send {1∨2, 3, 4, 1∨3∨4, 1∨2∨3∨4 } to SAT solver

SAT solver says UNSAT

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

14

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)︸ ︷︷ ︸
1

∨ g(a)=d︸ ︷︷ ︸
2

, g(a)=c︸ ︷︷ ︸
3

, c 6=d︸ ︷︷ ︸
4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T -inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T -inconsistent

3. Send {1∨2, 3, 4, 1∨3∨4, 1∨2∨3∨4 } to SAT solver

SAT solver says UNSAT

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

14

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)︸ ︷︷ ︸
1

∨ g(a)=d︸ ︷︷ ︸
2

, g(a)=c︸ ︷︷ ︸
3

, c 6=d︸ ︷︷ ︸
4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T -inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T -inconsistent

3. Send {1∨2, 3, 4, 1∨3∨4, 1∨2∨3∨4 } to SAT solver

SAT solver says UNSAT

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

14

The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f (g(a)) 6= f (c)︸ ︷︷ ︸
1

∨ g(a)=d︸ ︷︷ ︸
2

, g(a)=c︸ ︷︷ ︸
3

, c 6=d︸ ︷︷ ︸
4

1. Send { 1∨2, 3, 4 } to SAT solver

SAT solver returns model [1, 3, 4]

Theory solver says [1, 3, 4] is T -inconsistent

2. Send { 1∨2, 3, 4, 1∨3∨4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T -inconsistent

3. Send {1∨2, 3, 4, 1∨3∨4, 1∨2∨3∨4 } to SAT solver

SAT solver says UNSAT

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

15

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

• Check T -consistency only of full propositional models

• Check T -consistency only of full propositional models

• Check T -consistency of partial assignment while being built

• Given a T -inconsistent assignment M, add ¬M as a clause

• Given a T -inconsistent assignment M, find an explanation
(a small T -inconsistent subset of M) and add it as a clause

• Upon a T -inconsistency, add clause and restart

• Upon a T -inconsistency, do conflict analysis of the explanation and
Backjump

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

15

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

• Check T -consistency only of full propositional models

• Check T -consistency of partial assignment while being built

• Given a T -inconsistent assignment M, add ¬M as a clause

• Given a T -inconsistent assignment M, find an explanation
(a small T -inconsistent subset of M) and add it as a clause

• Upon a T -inconsistency, add clause and restart

• Upon a T -inconsistency, do conflict analysis of the explanation and
Backjump

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

15

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

• Check T -consistency only of full propositional models

• Check T -consistency of partial assignment while being built

• Given a T -inconsistent assignment M, add ¬M as a clause

• Given a T -inconsistent assignment M, add ¬M as a clause

• Given a T -inconsistent assignment M, find an explanation
(a small T -inconsistent subset of M) and add it as a clause

• Upon a T -inconsistency, add clause and restart

• Upon a T -inconsistency, do conflict analysis of the explanation and
Backjump

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

15

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

• Check T -consistency only of full propositional models

• Check T -consistency of partial assignment while being built

• Given a T -inconsistent assignment M, add ¬M as a clause

• Given a T -inconsistent assignment M, find an explanation
(a small T -inconsistent subset of M) and add it as a clause

• Upon a T -inconsistency, add clause and restart

• Upon a T -inconsistency, do conflict analysis of the explanation and
Backjump

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

15

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

• Check T -consistency only of full propositional models

• Check T -consistency of partial assignment while being built

• Given a T -inconsistent assignment M, add ¬M as a clause

• Given a T -inconsistent assignment M, find an explanation
(a small T -inconsistent subset of M) and add it as a clause

• Upon a T -inconsistency, add clause and restart

• Upon a T -inconsistency, add clause and restart

• Upon a T -inconsistency, do conflict analysis of the explanation and
Backjump

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

15

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

• Check T -consistency only of full propositional models

• Check T -consistency of partial assignment while being built

• Given a T -inconsistent assignment M, add ¬M as a clause

• Given a T -inconsistent assignment M, find an explanation
(a small T -inconsistent subset of M) and add it as a clause

• Upon a T -inconsistency, add clause and restart

• Upon a T -inconsistency, do conflict analysis of the explanation and
Backjump

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

16

Our DPLL(T) approach to SMT (JACM’06)

DPLL(T) = DPLL(X) engine + T -Solvers

• Modular and flexible: can plug in any T -Solvers into the DPLL(X) engine.

• T -Solvers specialized and fast in Theory Propagation:

• Propagate literals that are theory consequences

• more pruning in improved lazy SMT

• T -Solver also guides search, instead of only validating it

• fully exploited in conflict analysis (non-trivial)

• DPLL(T) approach is being quite widely adopted (cf. Google).

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

17

Conflict analysis in DPLL(T)

Need to do backward resolution with two kinds of clauses:

• UnitPropagate with clause C: resolve with C (as in SAT)

• T-Propagate of lit : resolve with (small) explanation
l1∧ . . .∧ ln→ lit

or, equivalently,
l1∨ . . .∨ ln ∨ lit provided by T -Solver

How should it be implemented? (see again [JACM’06])

• UnitPropagate: store a pointer to clause C, as in SAT solvers

• T-Propagate: (pre-)compute explanations at each T-Propagate?
– Better only on demand, during conflict analysis
– typically only one Explain per ∼250 T-Propagates.
– depends on T .

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

18

ILP as an SMT problem

• The theory is the set (conjunction) S of linear constraints

• Decide and UnitPropagate bounds lb≤x and x≤ub.

T-Propagate bounds simply by bound propagation with S:

E.g., { 0≤x , 1≤y } ∪ { x + y +2z ≤ 2 } =⇒ z≤0

Explanation clause (disjunction of bounds): 0 6≤x ∨ 1 6≤y ∨ z≤0

• If conflict: Analyze explanation clauses as in SAT.
Backjump. Learn one new clause on bounds.
Also: Forget, Restart, etc. Completeness is standard [JACM’06].

• NB: only new clauses are Learned. S does not change!

Also developed as Lazy Clause Generation (LCG) by Stuckey et al.
Works very well on, e.g., scheduling, timetabling,...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

19

Hybrids of SMT + “bottleneck encoding”

Why does SMT work so well? Because

• most constraints are not bottlenecks:
they only generate few (different) explanation clauses.

• SMT generates exactly these few clauses on demand.

However,... sometimes there are bottleneck constraints C:

• They generate an EXP number of explanation clauses.
All of them together, (almost) full SAT encoding of C.
And a very naive encoding!

• Compact encoding (w/aux.vars) of these C is needed.

• Idea: detect and encode such bottleneck C on the fly!
[Abio,Stuckey CP12], further developed with us [CP13]

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

20

Outline of this talk

• SAT and ILP

• Commercial ILP tools

• Between SAT and ILP

• CDCL SAT solvers. Why do they work so well?

• What is SMT? Why does it work so well?

• ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

⇒ Going beyond: Constraint Learning. (It can beat clause learning!)

• Solving the rounding problem, 0-1 case, Z case

• Cutsat and IntSat. Evaluation. Demo (if time).

• Simple completeness proofs for cutting planes

• Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

21

People have tried.... extend CDCL to ILP! Learn Constraints!

SAT ILP
clause l1∨ . . .∨ ln linear constraint a1x1 + · · ·+anxn ≤ a0

0-1 variable x integer variable x
positive literal x lower bound a≤x
negative literal x upper bound x≤a

unit propagation bound propagation
decide any literal decide any bound

resolution inference cut inference

Cut, eliminating x from 4x +4y +2z ≤ 3 and −10x + y− z ≤ 0:

5 · (4x + 4y + 2z ≤ 3)
2 · (−10x + y − z ≤ 0) +

22y + 8z ≤ 15 = 11y +4z ≤ 7

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

22

Learned cuts can be stronger than SMT clauses!

0-1 example:

C1 : x + y− z ≤ 1
C2 : −2x +3y + z−u ≤ 1
C3 : 2x−3y + z +u ≤ 0

C3 conflict!
1≤u C2

1≤z C1

1≤y decision
1≤x decision Stack ↑
bound reason

resolution(C2,C3) =
1 6≤y ∨1 6≤z ∨1≤u 1 6≤x ∨1 6≤z ∨1 6≤u

1 6≤x ∨1 6≤y ∨1 6≤z

which is: x≤0∨ y≤0∨ z≤0 ≡ x + y + z ≤ 2

cut(C2,C3) =
−2x +3y + z−u ≤ 1 2x−3y + z +u ≤ 0

2z ≤ 1

which is: z≤0

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

23

The rounding problem (even in 0-1 case):

C1 : x + y−2z ≤ 1
C2 : x + y +2z ≤ 3

C2 conflict!
1≤z C1 by rounding d1/2e≤z
1≤y decision
1≤x decision
bound reason

cut(C1,C2) =
x + y−2z ≤ 1 x + y +2z ≤ 3

2x +2y ≤ 4

which is: x + y ≤ 2

Now conflict analysis is finished:
for x + y ≤ 2 only one bound (1≤y) at this dl is relevant.

And we are stuck: x + y ≤ 2 is too weak to force a backjump.

In fact it is a useless tautology in this 0-1 case.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

24

Solving the rounding pb in the 0-1 case

Can always go the pure SMT way:

• Some Pseudo-Boolean (0-1 ILP) solvers only learn clauses.
These are in fact SMT solvers.

But can be smarter:

• Do this only at confl.analysis steps with rounding pb! Then, since

any clause on 0-1 bounds is expressible as a constraint,

can cut at this step with x + y− z ≤ 1 (≡ 1 6≤x ∨1 6≤y ∨1≤z).

• Coeff(z) =±1: no rounding pb; can always backjump.

• Even better, use cardinality explanations: [Dixon,Chai...]

See [handbook RousselEtal’09] + refs. for much more on P-B solving

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

25

Solving the rounding pb; Z case: Cutsat

• Very nice result [Jovanović, De Moura ’11].

• Decisions must make a var equal to its upper/lower bound.

• Then, during conflict analysis, for each propagated x , one can
compute a tight reason, i.e., with Coeff(x) =±1.
This process uses a number of non-variable eliminating cuts.

• As before: then no rounding pb; can always backjump.

This learning scheme is similar to the all-decisions SAT one, which performs
much worse than 1UIP in SAT (and also in ILP).

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

26

The IntSat Method for ILP in Z [CP14]

• IntSat admits arbitrary new bounds as decisions.
• After each conflict it can always backjump and learn new a constraint.
• It guides the search exactly as 1UIP in CDCL.

• Idea: Dual conflict analysis: cuts+SMT.
If no Backjump from cuts, do SMT one.

Learn no clause on bounds, except if convertible into a constraint (new!)

Technical details:

• If set of bounds R in stack + constraint C propagate bound B,
B is pushed on stack w/ reason constraint C and reason set R.

• Conflict an. and cuts guided by Conflicting Set (CS) of bounds:
• Invariant: CS ⊆ stack, and CS∪S is infeasible.
• Each confl.an. step: Replace topmost bound of CS by its reason set and

attempt the corresponding cut.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

27

Example

C0 : x −3y −3z ≤ 1
C1 : −2x +3y +2z ≤ −2
C2 : 3x −3y +2z ≤ −1

and initial bounds:
−2≤z z≤2
1≤y y≤4
−2≤x x≤3

Stack:

2≤y { 1≤x , z≤−2 } C0 : x−3y−3z ≤ 1
x≤1 { y≤2, z≤−2 } C0 : x−3y−3z ≤ 1

z≤−2 decision
z≤−1 { x≤2, 1≤y } C1 : −2x +3y +2z ≤−2
x≤2 decision
z≤0 { x≤3, 1≤y } C1 : −2x +3y +2z ≤−2
y≤2 { x≤3, −2≤z } C1 : −2x +3y +2z ≤−2
1≤x { 1≤y , −2≤z } C1 : −2x +3y +2z ≤−2
−2≤z initial
.

bound reason set reason constraint

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

28

Example (II)

We had:

2≤y { 1≤x , z≤−2 } C0 : x−3y−3z ≤ 1
x≤1 { y≤2, z≤−2 } C0 : x−3y−3z ≤ 1

z≤−2 decision
z≤−1 { x≤2, 1≤y } C1 : −2x +3y +2z ≤−2
x≤2 decision
z≤0 { x≤3, 1≤y } C1 : −2x +3y +2z ≤−2
y≤2 { x≤3, −2≤z } C1 : −2x +3y +2z ≤−2
1≤x { 1≤y , −2≤z } C1 : −2x +3y +2z ≤−2
−2≤z initial
.

bound reason set reason constraint
Now, conflict C1, with initial CS { −2≤z, x≤1, 2≤y }.
Replacing 2≤y by its r.set, CS = { −2≤z, 1≤x , z≤−2, x≤1 }.
Cut eliminating y between C1 and C0 gives C3 : − x− z ≤−1.
Early backjump due to z≤−1: add 2≤x at dl 1 and learn C3.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

29

Example (III)

New bound 2≤x at dl 1 triggers two more propagations:

2≤y { 2≤x , z≤−1 } C0 : x−3y−3z ≤ 1
−1≤z { x≤2 } C3 : − x− z ≤−1
2≤x { z≤−1 } C3 : − x− z ≤−1

z≤−1 { x≤2, 1≤y } C1 : −2x +3y +2z ≤−2
x≤2 decision
z≤0 { x≤3, 1≤y } C1 : −2x +3y +2z ≤−2
y≤2 { x≤3, −2≤z } C1 : −2x +3y +2z ≤−2
1≤x { 1≤y , −2≤z } C1 : −2x +3y +2z ≤−2
−2≤z initial

Again conflict C1. CS = { x≤2, −1≤z, 2≤y }. 4-step conflict an.:

1. Replace 2≤y . CS = { x≤2, z≤−1, 2≤x , −1≤z }.
Cut(C0,C1) gives C : − x− z ≤−1 as before.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

30

Example (finished!)

2. Replace −1≤z. CS = { x≤2, z≤−1, 2≤x }
No cut is made (since z is negative in both C and C3).

3. Replace 2≤x . CS = { x≤2, z≤−1 }; no cut (same for x).

4. Replace z≤−1. CS = { 1≤y , x≤2 }.
Cut gives −4x +3y ≤−4; early bckjmp adding 2≤x at dl 0?
But C.An. is also finished (only one bound of this dl in CS): can backjump
to dl 0 adding x 6≤2, i.e., 3≤x (stronger!).

After one further propagation (−1≤z), the procedure returns “infeasible” since
conflict C2 appears at dl 0.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

31

Optimization

Unlike SAT, here linear constraints are first-class citizens (belong to the core
language).

So can optimize doing simple branch and bound:

To minimize a1x1 + . . .+anxn (= maximize −a1x1− . . .−anxn)

• First find arbitrary solution S0

• Repeat after each new solution Si :
– add constraint a1x1 + . . .+anxn < cost(Si)
– re-run

Until infeasible.

Bound propagation from these successively stronger constraints prunes a lot.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

32

Theorem

• IntSat always finds the optimal solution (if any).

• If moreover variables are upper and lower bounded,
• IntSat always terminates
• it returns “infeasible” iff input is infeasible.

(See [CP’14] for details)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

33

Implementation

Proof of concept: small naive toy C++ program. Some ideas:

• Vars and coefficients are just 4-byte ints
• cuts giving coefficients > 230 are simply discarded
• so no overflow if intermediate computations in 264 ints.

• O(1)-time access to current upper (lower) bound for var:
• bounds for x in stack have ptr to previous bound for x
• maintain pointer to topmost (i.e., strongest) one

• Cache-efficient counter-based bound propagation:
• occurs lists for each var (and sign)
• only need to access actual constraint if its filter value becomes positive

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

34

CPLEX and Gurobi

• Commercial OR solvers, huge and expensive.

• Based on LP relaxation + Simplex + branch-and-cut.

• Combine a large variety of techniques:
problem-specific cuts, specialized heuristics, presolving...

• Extremely mature technology. Bixby [5]:

“From 1991 to 2012, saw 475,000× algorithmic speedup + 2,000×
hardware speedup.”

• We compare here with their latest versions (on 4 cores)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

35

IntSat

naive little C++ program (1 core)

• First completely different technique that shows some competitiveness.

• Even on MIPLIB, according to miplib.zib.de, OR’s ”standard test
set”, including “hard” and “open” problems, up to over 150,000 constraints
and 100,000 variables.

• Even with this small “toy” implementation.
Lots of room for improvement (conceptual & implementation)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

35

IntSat

naive little C++ program (1 core)

• First completely different technique that shows some competitiveness.

• Even on MIPLIB, according to miplib.zib.de, OR’s ”standard test
set”, including “hard” and “open” problems, up to over 150,000 constraints
and 100,000 variables.

• Even with this small “toy” implementation.
Lots of room for improvement (conceptual & implementation)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

36

IntSat experiments, see [CP14]

IntSat “toy” (1-core) vs newest CPLEX and Gurobi (4-core)

1. Random optimization instances:

• 600 vars, 750 constraints, 10s time limit

• IntSat overall better than CPLEX, slightly worse than Gurobi.

2. MIPLIB (600 s; for all but 7 instances no solver proves optimality)

• All 19 MIPLIB’s bounded pure ILP instances, incl. “hard” & “open” ones,
up to over 150,000 constraints, 100,000 vars.

• (toy-) IntSat frequently
• is fastest proving feasibility
• finds good (or optimal) solutions faster than C&G

in particular for some of the largest instances.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

37

Lots of improvements to explore

• Implementation-wise:
• special treatments for binary variables
• special treatments for specific kinds of constraints
• efficient early backjumps [solved?]
• ...

• Conceptual improvements:
• decision heuristics
• restarts and cleanups
• optimization (“first-succeed”, initial solutions,...)
• pre- and in-processing: extremely effective in SAT, nothing done here yet
• MIPs
• ...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

38

DEMOS

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

39

Simple completeness proofs (joint work with Marc Bezem)

• Theory of (0-1) ILP historically based on LP in Q. Completeness in, e.g.,
Schrijver’98, uses many results from previous 300+ pages.

• Moreover, standard cutting planes rules are difficult to control:

Combine :
p ≥ c q ≥ d

np+mq ≥ nc+md
where n,m ∈ N

Divide :
anxn + . . .+a1x1 ≥ c

dan/dexn + . . .+ da1/dex1 ≥ dc/de where d ∈ N+

• We have new self-contained proofs, 0-1 and Z cases, where:

• Combine factors n,m always fully determined, so that the maximal var is
either eliminated or increased by a precise amount

• Combine on maximal vars only, one of them always with coefficient 1
• Divide only if d is the coefficient of the maximal var and d |ai for all i

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

40

Proof sketch for full ILP case.

Let S over x1 . . .xn be bounded, closed under Combine, Divide, no contrad.

Build solution Mi for each Si ⊆ S with vars in x1 . . .xi only, by induction on i .

Base case i = 0: trivial since S has no contradictions (and S0 has no vars).
Ind. step i > 0: extend Mi−1 to Mi by defining

Mi(xi) = max{ c−Mi−1(p) | xi +p ≥ c in Si }

Now prove Mi |= C for all C in Si \Si−1. Here C can be:

A) xi +p ≥ c. Then Mi |= C by construction of Mi .

B) −axi +p ≥ c with a > 0. Now Mi(xi) is due to some xi +q ≥ d in Si .
Combine them eliminating xi (note: xi is maximal in both premises).
The conclusion is in Si−1 and entails by IH that Mi |= C.

C) axi +p ≥ c with a > 1.
C1) If a|p do Divide and reduce to case A).
C2) Otherwise, Combine on b xj , maximal var xj in p with a 6 | b.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

41

Remarks on the proof systems

• More restrictive proof systems: less work, easier to automatize

• trade-off: such systems tend to be less “efficient” in terms of proof length.

0-1: only need var.-eliminating Combine or w/ bounds 0≤ x and x ≤ 1.

this does not look any stronger than resolution

but full Combine does have short proofs for pigeon hole problem.

• Does this have any practical consequences for CDCL-based ILP provers?

• If so, are there any “controllable” appropriate intermediate systems?

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

42

CDCL-based methods for ILP. Conclusions

• Probably no single technique will dominate.

• But these methods (such as IntSat) may become one standard tool in the
toolbox.

Thank you!

Robert Nieuwenhuis Barcelogic and UPC CPAIOR’15 IntSat: From SAT to Integer Linear Programming

