IntSat: From SAT to

Integer Linear Programming

CPAIOR 2015 (invited talk)

Robert Nieuwenhuis

Barcelogic.com - Computer Science Department
BarcelonaTech (UPC)

.
Barcelogic €) s

BARCELONATECH

We make efficiency simple for you

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Proposed travel arrangements (next time):

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Proposed travel arrangements (next time):

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Between SAT and ILP

0-1 solutions 7. solutions
feasibility | optimizing | feasibility | optimizing
clauses SAT
cardinality constr.
linear constraints ILP

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Between SAT and ILP

0-1 sols Z sols Q/Z sols
feas. | opt. | feas. | opt. ||| feas. | opt.
clauses | SAT
cardinality constr.
linear constraints ILP MIPs

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Outline of this talk

e SAT and ILP

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Outline of this talk

e SAT and ILP
e Commercial ILP tools

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Outline of this talk

e SAT and ILP
e Commercial ILP tools
e Between SAT and ILP

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Outline of this talk

SAT and ILP

e Commercial ILP tools

Between SAT and ILP

CDCL SAT solvers. Why do they work so well?

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Outline of this talk

SAT and ILP

e Commercial ILP tools

Between SAT and ILP

CDCL SAT solvers. Why do they work so well?
What is SMT? Why does it work so well?

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Outline of this talk

SAT and ILP

e Commercial ILP tools

Between SAT and ILP

CDCL SAT solvers. Why do they work so well?

What is SMT? Why does it work so well?

ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Outline of this talk

e SAT and ILP

e Commercial ILP tools

e Between SAT and ILP

e CDCL SAT solvers. Why do they work so well?

e What is SMT? Why does it work so well?

e |LP as an SMT problem. Hybrids: SMT + bottleneck encodings

e Going beyond: Constraint Learning. (It can beat clause learning!)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Outline of this talk

e SAT and ILP

e Commercial ILP tools

e Between SAT and ILP

e CDCL SAT solvers. Why do they work so well?

e What is SMT? Why does it work so well?

e |LP as an SMT problem. Hybrids: SMT + bottleneck encodings

e Going beyond: Constraint Learning. (It can beat clause learning!)
e Solving the rounding problem, 0-1 case, Z case

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Outline of this talk

e SAT and ILP

e Commercial ILP tools

e Between SAT and ILP

e CDCL SAT solvers. Why do they work so well?

e What is SMT? Why does it work so well?

e |LP as an SMT problem. Hybrids: SMT + bottleneck encodings

e Going beyond: Constraint Learning. (It can beat clause learning!)
e Solving the rounding problem, 0-1 case, Z case

e Cutsat and IntSat. Evaluation. Demo (if time).

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Outline of this talk

e SAT and ILP

e Commercial ILP tools

e Between SAT and ILP

e CDCL SAT solvers. Why do they work so well?

e What is SMT? Why does it work so well?

e |LP as an SMT problem. Hybrids: SMT + bottleneck encodings

e Going beyond: Constraint Learning. (It can beat clause learning!)
e Solving the rounding problem, 0-1 case, Z case

e Cutsat and IntSat. Evaluation. Demo (if time).

e Simple completeness proofs for cutting planes

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Outline of this talk

e SAT and ILP

e Commercial ILP tools

e Between SAT and ILP

e CDCL SAT solvers. Why do they work so well?

e What is SMT? Why does it work so well?

e |LP as an SMT problem. Hybrids: SMT + bottleneck encodings
e Going beyond: Constraint Learning. (It can beat clause learning!)
e Solving the rounding problem, 0-1 case, Z case

e Cutsat and IntSat. Evaluation. Demo (if time).

e Simple completeness proofs for cutting planes

e Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Integer Linear Programming (ILP)

Find solution Sol: {x1...xp} = Z to:

Minimize: Ci X1+...4+¢nXxp (or maximize)

Subject To: 11 X +...+CinXxa = Cro
(or with >, =, <, >)

IN

Cmt X1+ ...+ Cmn Xn Cmo

where all coefficients ¢; in Z.

SAT: particular case of ILP with 0-1 vars and constraint clauses:

xVyvz = x+(1—-y)+(1—2)>1

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

CPLEX and Gurobi
: - P—

e Commercial OR solvers, large, quite expensive.

e |LP based on LP relaxation + Simplex + branch-and-cut +
combining a large variety of techniques: problem-specific cuts, specialized
heuristics, presolving...

e Extremely mature technology. Bixby:

“From 1991 to 2012, saw 475,000 x algorithmic speedup x
2,000x hardware speedup.”

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Between SAT and ILP

0-1 solutions Z solutions
feasibility optimizing feasibility | optimizing
clauses SAT
cardinality constr.
linear constr. | 0-1 ILP(P-B) | 0-1 ILP (P-B) ILP

Cardinality constraints:

X1+...+x, <k (orwith >, =, <, >)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses
CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses
CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Four clauses:
1v2, 3v4, 5V6, 6V5V2

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 = (Decide)
1v2, 3v4, 5V6, 6V5V2 =

Robert Nieuwenhuis Barcelogic and UPC

CPAIOR'15

IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 = (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6V5vV2 =

Robert Nieuwenhuis Barcelogic and UPC

CPAIOR'15

IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses
CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:
1v2, 3v4, 5v6, 6V5v2 = (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
123 1v2, 3v4, 5V6, 6V5V2 =

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses
CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 = (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
123 1v2, 3v4, 5v6, 6V5v2 = (UnitPropagate)
1234 1v2, 3v4, 5v6, 6V5vV2 =

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses
CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 = (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
123 1v2, 3v4, 5v6, 6V5v2 = (UnitPropagate)
1234 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
12345 1v2, 3v4, 5V6, 6V5V2 =

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 = (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
123 1v2, 3v4, 5v6, 6V5v2 = (UnitPropagate)
1234 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
12345 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
123456 1v2, 3v4, 5V6, 6V5V2

Robert Nieuwenhuis Barcelogic and UPC

CPAIOR'15

IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 = (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
123 1v2, 3v4, 5v6, 6V5v2 = (UnitPropagate)
1234 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
12345 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
123456 1v2, 3v4, 5V6, 6V5V2 CONFLICT!

Robert Nieuwenhuis Barcelogic and UPC

CPAIOR'15

IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 = (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
123 1v2, 3v4, 5v6, 6V5v2 = (UnitPropagate)
1234 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
12345 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
123456 1v2, 3v4, 5v6, 6V5V2 = (Backirack)

Robert Nieuwenhuis Barcelogic and UPC

CPAIOR'15

IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 = (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
123 1v2, 3v4, 5v6, 6V5v2 = (UnitPropagate)
1234 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
12345 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
123456 1v2, 3v4, 5v6, 6V5V2 = (Backirack)
12345 1v2, 3v4, 5V6, 6V5V2

Robert Nieuwenhuis Barcelogic and UPC

CPAIOR'15

IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 = (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
123 1v2, 3v4, 5v6, 6V5v2 = (UnitPropagate)
1234 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
12345 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
123456 1v2, 3v4, 5v6, 6V5V2 = (Backirack)
12345 1v2, 3v4, 5V6, 6V5V2 solution found!

Robert Nieuwenhuis Barcelogic and UPC

CPAIOR'15

IntSat: From SAT to Integer Linear Programming

SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 = (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
123 1v2, 3v4, 5v6, 6V5v2 = (UnitPropagate)
1234 1v2, 3v4, 5v6, 6vV5v2 = (Decide)
12345 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
123456 1v2, 3v4, 5v6, 6V5V2 = (Backirack)
12345 1v2, 3v4, 5V6, 6V5V2 solution found!

Can do much better! Next: Backjump instead of Backtrack...

Robert Nieuwenhuis Barcelogic and UPC

CPAIOR'15

IntSat: From SAT to Integer Linear Programming

Backtrack vs. Backjump

Same example. Remember: Backirack gave 123 4 5.

But: decision level 34 is irrelevant for the conflict 6\V5V2:
0 1v2, 3v4, 5v6, 6V5v2 = (Decide)

123456 1v2, 3v4, 5v6, 6V5v2 = (Backjump)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Backtrack vs. Backjump

Same example. Remember: Backirack gave 123 4 5.

But: decision level 34 is irrelevant for the conflict 6\V5V2:
0 1v2, 3v4, 5v6, 6V5v2 = (Decide)

123456 1v2, 3v4, 5v6, 6V5v2 = (Backjump)
125 1v2, 3v4, 5V6, 6V5V2 =

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Backtrack vs. Backjump

Same example. Remember: Backirack gave 123 4 5.

But: decision level 34 is irrelevant for the conflict 6\V5V2:
0 1v2, 3v4, 5v6, 6V5v2 = (Decide)

123456 1v2, 3v4, 5v6, 6V5v2 = (Backjump)
125 1v2, 3v4, 5V6, 6V5V2 =
Backjump =

@ Conflict Analysis: “Find” a backjump clause CV/ (here, 2V/5)

e thatis a logical consequence of the clause set

o that reveals a unit propagation of / at an earlier decision level d (i.e., where
its part C is false)

® Return to decision level d and do the propagation.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15

IntSat: From SAT to Integer Linear Programming

Conflict Analysis: find backjump clause

Example. Consider stack: ...6...7...9 and clauses:
9V6V7V8, 8V7V5, 6V8V4, 4V1, 4V5v2, 5V7V3, 1v2V3
UnitPropagate gives ...6...7...9854123. Conflict w/ 1v2V3!

C.An. = do resolutions with reason clauses backwards from conflict:

5V7V3 1Vv2V3

4V5V2 5V7V1Vv2
4v1 4\/5V7V1
6V8V4 5V7V4
8Vv7Vv5 6V8V7V5

8V7V6

until get clause with only 1 literal of last decision level. “1-UIP”
Can use this backjump clause 8V7V6 to Backjumpto ...6...78.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Yes, but why is CDCL really good?

Three key ingredients (| think):

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Yes, but why is CDCL really good?

Three key ingredients (| think):

@ Learn at each conflict backjump clause as a lemma (“nogood”):

e makes UnitPropagate more powerful
e prevents EXP repeated work in future similar conflicts

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Yes, but why is CDCL really good?

Three key ingredients (| think):

@ Learn at each conflict backjump clause as a lemma (“nogood”):

e makes UnitPropagate more powerful
e prevents EXP repeated work in future similar conflicts

® Decide on variables with many occurrences in Recent conflicts:
e Dynamic activity-based heuristics
e idea: work off, one by one, clusters of tightly related vars
(try CDCL on two independent instances together...)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Yes, but why is CDCL really good?

Three key ingredients (| think):

@ Learn at each conflict backjump clause as a lemma (“nogood”):

e makes UnitPropagate more powerful
e prevents EXP repeated work in future similar conflicts

® Decide on variables with many occurrences in Recent conflicts:

e Dynamic activity-based heuristics
e idea: work off, one by one, clusters of tightly related vars
(try CDCL on two independent instances together...)

@ Forget from time to time low-activity lemmas:

e crucial to keep UnitPropagate fast and memory affordable
e idea: lemmas from worked-off clusters no longer needed!

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Good vs Bad in CDCL SAT Solvers

Decades of academic and industrial efforts

Lots of $$$ from, e.g., EDA (Electronic Design Automation)
What's GOOD? Complete solvers:
e with impressive performance
e on real-world problems from many sources, with a
e single, fully automatic, push-button, var selection strategy.
e Hence modeling is essentially declarative.
What's BAD?
e Low-level language

e Sometimes no adequate/compact encodings: arithmetic...
0-1 cardinality [Constraints11], P-B[JAIR12], Z encodings...

e Answers “unsat” or model. Optimization not as well studied.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

What is SAT Modulo Theories (SMT)?

Origin: Reasoning about equality, arithmetic, data structures such
as arrays, etc., in Software/Hardware verification.

What is SMT? Deciding satisfiability of an (existential) SAT
formula with atoms over a background theory T

Example 1: T is Equality with Uninterpreted Functions (EUF):
3 clauses: f(g(a))#f(c) Vv g(a)=d, g(a)=c, c#d

Example 2: several (how many?) combined theories:
2clauses: A=write(B,i+1,x), read(A,j+3)=y V f(i—1)#f(j+1)

Typical verification examples, where SMT is method of choice.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

The approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f(g(a))#f(c) v g(a)=d, g(a)=c, c#d

1. Send {1v2, 3, 4} to SAT solver

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

The approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f(g(a))#f(c) v g(a)=d, g(a)=c, c#d

1. Send {1v2, 3, 4} to SAT solver
SAT solver returns model [1, 3, 4 |

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

The approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f(g(a))#f(c) v g(a)=d, g(a)=c, c#d

1. Send {1v2, 3, 4} to SAT solver
SAT solver returns model [1, 3, 4 |
Theory solver says [1, 3, 4]is T-inconsistent

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

The approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f(g(a))#f(c) v g(a)=d, g(a)=c, c#d

1. Send {1v2, 3, 4} to SAT solver

SAT solver returns model [1, 3, 4 |

Theory solver says [1, 3, 4]is T-inconsistent
2. Send {1v2, 3, 4, 1V3V4 } to SAT solver

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

The approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f(g(a))#f(c) v g(a)=d, g(a)=c, c#d

1. Send {1v2, 3, 4} to SAT solver
SAT solver returns model [1, 3, 4 |
Theory solver says [1, 3, 4]is T-inconsistent
2. Send {1v2, 3, 4, 1V3V4 } to SAT solver
SAT solver returns model [1, 2, 3, 4]

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

The approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f(g(a))#f(c) v g(a)=d, g(a)=c, c#d

1. Send {1v2, 3, 4} to SAT solver

SAT solver returns model [1, 3, 4 |

Theory solver says [1, 3, 4]is T-inconsistent
2. Send {1v2, 3, 4, 1V3V4 } to SAT solver

SAT solver returns model [1, 2, 3, 4]

Theory solver says [1, 2, 3, 4] is T-inconsistent

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

The approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f(g(a))#f(c) v g(a)=d, g(a)=c, c#d

1. Send {1v2, 3, 4} to SAT solver
SAT solver returns model [1, 3, 4 |
Theory solver says [1, 3, 4]is T-inconsistent
2. Send {1v2, 3, 4, 1V3V4 } to SAT solver
SAT solver returns model [1, 2, 3, 4]
Theory solver says [1, 2, 3, 4] is T-inconsistent
3. Send {1v2, 3, 4, 1v3Vv4, 1V2V3V4 } to SAT solver

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

The approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f(g(a))#f(c) v g(a)=d, g(a)=c, c#d

1. Send {1v2, 3, 4} to SAT solver
SAT solver returns model [1, 3, 4 |
Theory solver says [1, 3, 4]is T-inconsistent
2. Send {1v2, 3, 4, 1V3V4 } to SAT solver
SAT solver returns model [1, 2, 3, 4]
Theory solver says [1, 2, 3, 4] is T-inconsistent
3. Send {1v2, 3, 4, 1v3Vv4, 1V2V3V4 } to SAT solver
SAT solver says UNSAT

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

e Check T-consistency only of full propositional models

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

e Check T-consistency of partial assignment while being built

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

e Check T-consistency of partial assignment while being built

e Given a T-inconsistent assignment M, add =M as a clause

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, add clause and restart

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, do conflict analysis of the explanation and
Backjump

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Our DPLL(T) approach to SMT (JacMm0s)

DPLL(T) = DPLL(X) engine + T-Solvers

e Modular and flexible: can plug in any T-Solvers into the DPLL(X) engine.

e T-Solvers specialized and fast in Theory Propagation:

e Propagate literals that are theory consequences
e more pruning in improved lazy SMT
e T-Solver also guides search, instead of only validating it

e fully exploited in conflict analysis (non-trivial)

e DPLL(T) approach is being quite widely adopted (cf. Google).

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Conflict analysis in DPLL(T)

Need to do backward resolution with two kinds of clauses:

e UnitPropagate with clause C: resolve with C (as in SAT)

e T-Propagate of lit: resolve with (small) explanation
WA N — it
or, equivalently,
I41V...VI, V lit provided by T-Solver

How should it be implemented? (see again [JACM’06])
e UnitPropagate: store a pointer to clause C, as in SAT solvers
e T-Propagate: (pre-)compute explanations at each T-Propagate?
— Better only on demand, during conflict analysis
— typically only one Explain per ~250 T-Propagates.
—dependson T.

CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Robert Nieuwenhuis Barcelogic and UPC

ILP as an SMT problem

e The theory is the set (conjunction) S of linear constraints

e Decide and UnitPropagate bounds Ib< x and x < ub.
T-Propagate bounds simply by bound propagation with S:
E.g. {0<x, 1<y} U{x+y+2z<2} = z<0
Explanation clause (disjunction of bounds): 0<x V 1<y VvV z<0

e |f conflict: Analyze explanation clauses as in SAT.
Backjump. Learn one new clause on bounds.
Also: Forget, Restart, etc. Completeness is standard [JACM'06].

e NB: only new clauses are Learned. S does not change!

Also developed as Lazy Clause Generation (LCG) by Stuckey et al.
Works very well on, e.g., scheduling, timetabling,...

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Hybrids of SMT + “bottleneck encoding”

Why does SMT work so well? Because
e most constraints are not bottlenecks:
they only generate few (different) explanation clauses.
e SMT generates exactly these few clauses on demand.

However,... sometimes there are bottleneck constraints C:

e They generate an EXP number of explanation clauses.
All of them together, (almost) full SAT encoding of C.
And a very naive encoding!

e Compact encoding (w/aux.vars) of these C is needed.

e Idea: detect and encode such bottleneck C on the fly!
[Abio,Stuckey CP12], further developed with us [CP13]

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Outline of this talk

e SAT and ILP

e Commercial ILP tools

e Between SAT and ILP

e CDCL SAT solvers. Why do they work so well?

e What is SMT? Why does it work so well?

e |LP as an SMT problem. Hybrids: SMT + bottleneck encodings
=- Going beyond: Constraint Learning. (It can beat clause learning!)

e Solving the rounding problem, 0-1 case, Z case

e Cutsat and IntSat. Evaluation. Demo (if time).

e Simple completeness proofs for cutting planes

e Remarks on proof systems

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

People have tried.... extend CDCL to ILP! Learn Constraints!

SAT ILP
clause liv...vi, linear constraint aixy+ -+ anxp < ao
0-1 variable X integer variable X
positive literal X lower bound a<x
negative literal X upper bound x<a
unit propagation bound propagation
decide any literal decide any bound
resolution inference cutinference

Cut, eliminating x from 4x+44y+4+2z<3 and —10x+y—z<0:

5. (4x + 4y + 2z < 3)
2.(—10x + y — z < 0) +
22y + 8z < 15 = 11y+4z<7

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Learned cuts can be stronger than SMT clauses!

Cs conflict!
-1 le:
0-1 example <u &
<
Ci: x+y—z < 1 1sz] &
Co: —2x+3y+z—u < 1 1<y | decision
9 ¢ < 0 1<x | decision | Stack 1

Cs: 2x—=3y+z+u

bound reason

1LyviLzvi<u 1I<xV1LzV1<Lu

resolution(Cs, C3) = 1<xV1LyViLz

which is: x<0Vy<ovz<0 = x+4+y+z<2

—2x+3y+z—u<A1 2x—38y+z+u<0
2z <1

cut(C2, Cg) =

which is: z<0

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

The rounding problem (even in 0-1 case):

C> conflict!
1<z Cy by rounding [1/2] <z
Ci: x+y—2z<1 1<y | decision
Co: x+y+2z<3 1<x | decision

bound reason

xX+y—2z<1 X+y+2z<3
2x+2y <4

which is: x+y<2

cut(C1 s Cg) =

Now conflict analysis is finished:
for x +y < 2 only one bound (1 < y) at this dl is relevant.

And we are stuck: x+y < 2 is too weak to force a backjump.

In fact it is a useless tautology in this 0-1 case.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Solving the rounding pb in the 0-1 case

Can always go the pure SMT way:

e Some Pseudo-Boolean (0-1 ILP) solvers only learn clauses.
These are in fact SMT solvers.

But can be smarter:
e Do this only at confl.analysis steps with rounding pb! Then, since
any clause on 0-1 bounds is expressible as a constraint,
cancutatthisstepwith x+y—z<1 (= 1<xVIiLyVvi<z).
e Coeff(z) = +1: no rounding pb; can always backjump.
e Even better, use cardinality explanations: [Dixon,Chai...]

See [handbook RousselEtal’'09] + refs. for much more on P-B solving

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Solving the rounding pb; Z case: Cutsat

e Very nice result [Jovanovi¢, De Moura '11].
e Decisions must make a var equal to its upper/lower bound.

e Then, during conflict analysis, for each propagated x, one can
compute a tight reason, i.e., with Coeff(x) = £1.
This process uses a number of non-variable eliminating cuts.

e As before: then no rounding pb; can always backjump.

This learning scheme is similar to the all-decisions SAT one, which performs
much worse than 1UIP in SAT (and also in ILP).

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

The IntSat Method for ILP in Z [CP14]

e IntSat admits arbitrary new bounds as decisions.
e After each conflict it can always backjump and learn new a constraint.
e |t guides the search exactly as 1UIP in CDCL.

o |ldea: Dual conflict analysis: cuts+SMT.
If no Backjump from cuts, do SMT one.
Learn no clause on bounds, except if convertible into a constraint (new!)

Technical details:

e |f set of bounds R in stack + constraint C propagate bound B,
B is pushed on stack w/ reason constraint C and reason set R.
e Conflict an. and cuts guided by Conflicting Set (CS) of bounds:
e |nvariant: CS C stack, and CSU S is infeasible.
e Each confl.an. step: Replace topmost bound of CS by its reason set and
attempt the corresponding cut.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Co : x —3y -3z < 1 —2<z z<L2
Ci: —2x +3y 42z < =2 and initial bounds: 1<y y<4
Co: 3x -3y 42z < —1 —2<x x<3

2<y |{1<x,z<-2} | Cp: x—3y—3z<1
x<1 |{y<2,z<-2}| Cp: x—3y—3z<1

z< -2 decision
z<—1| {x<2,1<y} [Ci: —2x+3y+2z< -2
x<2 decision

Stack:

z<0 {x<3,1<y} | Cy: —2x+3y+2z<-2
y<2 | {x<8,-2<z}| Ci: —2x+3yt2z<-2

1<x |{1<y, —2<z} | Cy: —2x+3y+2z<-2
—2<z initial
bound reason set reason constraint

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Example (Il)

Co: x—38y—3z<1

2<y | {1<x,z<-2}

x<1 | {y<2,z<-2}|Co: x—3y—38z<1

z< -2 decision

z<—-1] {x<2,1<y} [Ci: —2x+8y+2z< -2
x<2 decision

We had:

z<0 | {x<8,1<y} [Ci: —2x+3y+2z<-2
y<2 | {x<3,-2<z}|Ci: —2x+3y+2z<-2
1<x |{1<y, 2<z}|Ci: —2x+3y+2z<-2
—2<z initial

bound reason set reason constraint
Now, conflict Cy, with initial CS{ —2<z, x<1, 2<y}.
Replacing 2<y byitsrset, CS={ —2<z, 1<x, z<-2, x<1 }.
Cut eliminating y between C; and Cy gives C3: —x—z < —1.
Early backjump dueto z<—1: add2<x atdl 1 and learn Cs.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Example (lll)

New bound 2 < x at dl 1 triggers two more propagations:

2<y | {2<x,z<-1} Co: x—3y—3z<1

-1<z {x<2} C3: —x—z< -1
2<x {z<-1} Cy: —x—z<—1
z<—1] {x<2,1<y} | C: —2x+3y+2z< -2
x<2 decision

z<0 {x<3,1<y} | Cy: —2x+3y+2z<-2
y<2 | {x<3,—2<z}|Ci: —2x+8y+2z<-2
1<x | {1<y, —2<z}|Ci: —2x+3y+2z<-2
—2<z initial

Again conflict C;. CS={x<2, —1<z, 2<y }. 4-step conflict an.:

1. Replace 2<y. CS={x<2, z<-1, 2<x, —1<z}.
Cut(Co, Cy) gives C: — x—z < —1 as before.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Example (finished!)

2. Replace —1<z. CS={x<2, z<—-1, 2<x}
No cut is made (since z is negative in both C and Cj).

3. Replace 2<x. CS={x<2, z<—1 };no cut (same for x).

4. Replace z<—1. CS={1<y, x<2}.
Cut gives —4x+ 3y < —4; early bckjmp adding 2< x at dl 0?
But C.An. is also finished (only one bound of this dl in CS): can backjump
to dl 0 adding x £2, i.e., 3 < x (stronger!).

After one further propagation (—1 < z), the procedure returns “infeasible” since
conflict C, appears at dl 0.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Optimization

Unlike SAT, here linear constraints are first-class citizens (belong to the core
language).

So can optimize doing simple branch and bound:

To minimize ayxy +...4+ apXx, (= maximize —ayxy —...—anpXp)
e First find arbitrary solution Sy

e Repeat after each new solution S;:
—add constraint a;xy + ...+ anx, < cost(S;)
—re-run
Until infeasible.

Bound propagation from these successively stronger constraints prunes a lot.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

e IntSat always finds the optimal solution (if any).
e If moreover variables are upper and lower bounded,

e IntSat always terminates
e it returns “infeasible” iff input is infeasible.

(See [CP’14] for details)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Implementation

Proof of concept: small naive toy C++ program. Some ideas:

e Vars and coefficients are just 4-byte ints

e cuts giving coefficients > 2%° are simply discarded
e s0 no overflow if intermediate computations in 264 ints.

e O(1)-time access to current upper (lower) bound for var:

e bounds for x in stack have ptr to previous bound for x
e maintain pointer to topmost (i.e., strongest) one

e Cache-efficient counter-based bound propagation:

e occurs lists for each var (and sign)
e only need to access actual constraint if its filter value becomes positive

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

CPLEX and Gurobi

e Commercial OR solvers, huge and expensive.

Based on LP relaxation + Simplex + branch-and-cut.

Combine a large variety of techniques:
problem-specific cuts, specialized heuristics, presolving...

Extremely mature technology. Bixby [5]:

“From 1991 to 2012, saw 475,000 x algorithmic speedup + 2,000 x
hardware speedup.”

e We compare here with their latest versions (on 4 cores)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

IntSat

naive little C++ program (1 core)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

IntSat

naive little C++ program (1 core)

e First completely different technique that shows some competitiveness.

e Even on MIPLIB, accordingto miplib.zib.de, OR'’s “standard test
set”, including “hard” and “open” problems, up to over 150,000 constraints
and 100,000 variables.

e Even with this small “toy” implementation.
Lots of room for improvement (conceptual & implementation)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

IntSat experiments, see [CP14]

IntSat “toy” (1-core) vs newest CPLEX and Gurobi (4-core)

1. Random optimization instances:
e 600 vars, 750 constraints, 10s time limit
e IntSat overall better than CPLEX, slightly worse than Gurobi.

2. MIPLIB (600 s; for all but 7 instances no solver proves optimality)
e All 19 MIPLIB’s bounded pure ILP instances, incl. “hard” & “open” ones,
up to over 150,000 constraints, 100,000 vars.

e (toy-) IntSat frequently

e is fastest proving feasibility
e finds good (or optimal) solutions faster than C&G

in particular for some of the largest instances.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

Lots of improvements to explore

e Implementation-wise:

e special treatments for binary variables
special treatments for specific kinds of constraints
efficient early backjumps [solved?]

e Conceptual improvements:

e decision heuristics

e restarts and cleanups

e optimization (“first-succeed”, initial solutions,...)

e pre- and in-processing: extremely effective in SAT, nothing done here yet
e MIPs

[]

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

DEMOS

Nieuwenhuis Barcelogic and UPC IntSat: From SAT to Integer Linear Pro

Simple completeness proofs (joint work with Marc Bezem)

e Theory of (0-1) ILP historically based on LP in Q. Completeness in, e.g.,
Schrijver'98, uses many results from previous 300+ pages.

e Moreover, standard cutting planes rules are difficult to control:

> >
Combine : p=0 g=d where n,meN
np+ mq > nc+ md
>
Divide : Gt T a4 = C where d €N+t

[an/d] X0+ ..+ [a1/d]x > [¢/d]

e We have new self-contained proofs, 0-1 and Z cases, where:

e Combine factors n, m always fully determined, so that the maximal var is
either eliminated or increased by a precise amount

e Combine on maximal vars only, one of them always with coefficient 1

e Divide only if d is the coefficient of the maximal var and d|a; for all /

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15

IntSat: From SAT to Integer Linear Programming

Proof sketch for full ILP case.

Let S over x; ... x, be bounded, closed under Combine, Divide, no contrad.
Build solution M; for each S; C S with vars in x; ... x; only, by induction on J.
Base case i = 0: trivial since S has no contradictions (and Sy has no vars).
Ind. step i > 0: extend M;_; to M; by defining

Mi(x;) = max{ c—Mi_1(p) | xi+p>cin S; }

Now prove M; = Cforall Cin S;\ S;_y. Here C can be:

A) xi+p>c. Then M; |= C by construction of M.

B) —ax;+ p > cwith a> 0. Now M;(x;) is due to some x;+q > din S;.
Combine them eliminating x; (note: x; is maximal in both premises).
The conclusion is in S;_4 and entails by IH that M; |= C.

C) axi;+p>cwitha>1.

C1) If a|p do Divide and reduce to case A).
C2) Otherwise, Combine on bx;, maximal var x; in p with a J b.

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15

IntSat: From SAT to Integer Linear Programming

Remarks on the proof systems

More restrictive proof systems: less work, easier to automatize

trade-off: such systems tend to be less “efficient” in terms of proof length.

0-1: only need var.-eliminating Combine or w/ bounds 0 < x and x < 1.
this does not look any stronger than resolution
but full Combine does have short proofs for pigeon hole problem.

Does this have any practical consequences for CDCL-based ILP provers?

If so, are there any “controllable” appropriate intermediate systems?

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

CDCL-based methods for ILP. Conclusions

e Probably no single technique will dominate.

e But these methods (such as IntSat) may become one standard tool in the
toolbox.

Thank you!

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming

