IntSat: From SAT to Integer Linear Programming

CPAIOR 2015 (invited talk)

Robert Nieuwenhuis

Barcelogic.com

Computer Science Department BarcelonaTech (UPC)

Barcelogic and UPC

Proposed travel arrangements (next time):

Proposed travel arrangements (next time):

	0-1 sc	olutions	${\mathbb Z}$ solutions		
	feasibility	optimizing	feasibility	optimizing	
clauses	SAT				
cardinality constr.					
linear constraints				ILP	

	0-1 sols		\mathbb{Z} sols		\mathbb{Q}/\mathbb{Z} sols	
	feas.	opt.	feas.	opt.	feas.	opt.
clauses	SAT					
cardinality constr.						
linear constraints				ILP		MIPs

SAT and ILP

- SAT and ILP
- Commercial ILP tools

- SAT and ILP
- Commercial ILP tools
- Between SAT and ILP

- SAT and ILP
- Commercial ILP tools
- Between SAT and ILP
- CDCL SAT solvers. Why do they work so well?

- SAT and ILP
- Commercial ILP tools
- Between SAT and ILP
- CDCL SAT solvers. Why do they work so well?
- What is SMT? Why does it work so well?

- SAT and ILP
- Commercial ILP tools
- Between SAT and ILP
- CDCL SAT solvers. Why do they work so well?
- What is SMT? Why does it work so well?
- ILP as an SMT problem. Hybrids: SMT + bottleneck encodings

- SAT and ILP
- Commercial ILP tools
- Between SAT and ILP
- CDCL SAT solvers. Why do they work so well?
- What is SMT? Why does it work so well?
- ILP as an SMT problem. Hybrids: SMT + bottleneck encodings
- Going beyond: Constraint Learning. (It can beat clause learning!)

- SAT and ILP
- Commercial ILP tools
- Between SAT and ILP
- · CDCL SAT solvers. Why do they work so well?
- What is SMT? Why does it work so well?
- ILP as an SMT problem. Hybrids: SMT + bottleneck encodings
- Going beyond: Constraint Learning. (It can beat clause learning!)
- Solving the rounding problem, 0-1 case, $\mathbb Z$ case

- SAT and ILP
- Commercial ILP tools
- Between SAT and ILP
- · CDCL SAT solvers. Why do they work so well?
- What is SMT? Why does it work so well?
- ILP as an SMT problem. Hybrids: SMT + bottleneck encodings
- Going beyond: Constraint Learning. (It can beat clause learning!)
- Solving the rounding problem, 0-1 case, $\mathbb Z$ case
- Cutsat and IntSat. Evaluation. Demo (if time).

- SAT and ILP
- Commercial ILP tools
- Between SAT and ILP
- CDCL SAT solvers. Why do they work so well?
- What is SMT? Why does it work so well?
- ILP as an SMT problem. Hybrids: SMT + bottleneck encodings
- Going beyond: Constraint Learning. (It can beat clause learning!)
- Solving the rounding problem, 0-1 case, $\mathbb Z$ case
- Cutsat and IntSat. Evaluation. Demo (if time).
- Simple completeness proofs for cutting planes

- SAT and ILP
- Commercial ILP tools
- Between SAT and ILP
- CDCL SAT solvers. Why do they work so well?
- What is SMT? Why does it work so well?
- ILP as an SMT problem. Hybrids: SMT + bottleneck encodings
- Going beyond: Constraint Learning. (It can beat clause learning!)
- Solving the rounding problem, 0-1 case, $\mathbb Z$ case
- Cutsat and IntSat. Evaluation. Demo (if time).
- Simple completeness proofs for cutting planes
- Remarks on proof systems

Find solutionSol: $\{x_1 \dots x_n\} \rightarrow \mathbb{Z}$ to:(or maximize)Minimize: $c_1 x_1 + \dots + c_n x_n$ (or maximize)Subject To: $c_{11} x_1 + \dots + c_{1n} x_n \leq c_{10}$ (or with $\geq, =, <, >$) $c_{m1} x_1 + \dots + c_{mn} x_n \leq c_{m0}$ c_{m0}

where all coefficients c_i in \mathbb{Z} .

SAT: particular case of ILP with 0-1 vars and constraint clauses:

$$x \vee \overline{y} \vee \overline{z} \equiv x + (1 - y) + (1 - z) \ge 1$$

CPLEX and Gurobi

- Commercial OR solvers, large, quite expensive.
- ILP based on LP relaxation + Simplex + branch-and-cut + combining a large variety of techniques: problem-specific cuts, specialized heuristics, presolving...
- Extremely mature technology. Bixby:

"From 1991 to 2012, saw 475,000 \times algorithmic speedup \times 2,000 \times hardware speedup."

	0-1 sc	olutions	${\mathbb Z}$ solutions		
	feasibility	optimizing	feasibility	optimizing	
clauses	SAT				
cardinality constr.					
linear constr.	0-1 ILP(P-B) 0-1 ILP (P-B)			ILP	

Cardinality constraints:

 $x_1 + ... + x_n \le k$ (or with $\ge, =, <, >$)

- SAT = particular case of ILP: vars are 0-1, constraints are clauses
- CDCL = Conflict-Driven Clause-Learning backtracking algorithm

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Four clauses: $\overline{1}\lor 2$, $\overline{3}\lor 4$, $\overline{5}\lor \overline{6}$, $6\lor \overline{5}\lor \overline{2}$

Candidate Solution: Four clauses: $\overline{1}\vee 2, \ \overline{3}\vee 4, \ \overline{5}\vee\overline{6}, \ 6\vee\overline{5}\vee\overline{2} \Rightarrow$ (Decide) $\overline{1}\vee 2$, $\overline{3}\vee 4$, $\overline{5}\vee \overline{6}$, $6\vee \overline{5}\vee \overline{2} \Rightarrow$

1

Candidate Solution:

1

12

Four clauses:

Candidate Solution:	Four clauses:		
	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	$\overline{1} \vee 2$, $\overline{3} \vee 4$, $\overline{5} \vee \overline{6}$, $6 \vee \overline{5} \vee \overline{2}$	\Rightarrow	(UnitPropagate)
12	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark>	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1234	$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	. ,

Candidate Solution:	Four clauses:		
	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	$\overline{1} \vee 2$, $\overline{3} \vee 4$, $\overline{5} \vee \overline{6}$, $6 \vee \overline{5} \vee \overline{2}$	\Rightarrow	(UnitPropagate)
12	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark>	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
<mark>1</mark> 2 <mark>3</mark> 4	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
12345	$\overline{1}$ $\sqrt{2}$ $\overline{3}$ $\sqrt{4}$ $\overline{5}$ $\sqrt{6}$ 6 $\sqrt{5}$ $\sqrt{2}$	\Rightarrow	

Candidate Solution:	Four clauses:		
	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	$\overline{1} \vee 2, \ \overline{3} \vee 4, \ \overline{5} \vee \overline{6}, \ 6 \vee \overline{5} \vee \overline{2}$	\Rightarrow	(UnitPropagate)
12	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark>	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
<mark>1</mark> 2 <mark>3</mark> 4	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark> 4 5	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1 2 <mark>3</mark> 4 5 6	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$		

Candidate Solution:	Four clauses:		
	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	$\overline{1} \vee 2, \ \overline{3} \vee 4, \ \overline{5} \vee \overline{6}, \ 6 \vee \overline{5} \vee \overline{2}$	\Rightarrow	(UnitPropagate)
12	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark>	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1 2 <mark>3</mark> 4	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark> 4 5	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1 2 <mark>3</mark> 4 5 6	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$		CONFLICT!

Candidate Solution:	Four clauses:		
	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
12	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark>	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
<mark>1</mark> 2 <mark>3</mark> 4	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark> 4 5	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1 2 <mark>3</mark> 4 5 6	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ \underline{6} \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Backtrack)

Candidate Solution:	Four clauses:		
	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
12	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark>	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
<mark>1</mark> 2 <mark>3</mark> 4	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark> 4 5	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1 2 <mark>3</mark> 4 5 6	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Backtrack)
1 2 <mark>3</mark> 4 5	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$		

Candidate Solution:	Four clauses:		
	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
12	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark>	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
<mark>1</mark> 2 <mark>3</mark> 4	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark> 4 5	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1 2 <mark>3</mark> 4 <mark>5</mark> 6	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Backtrack)
1 2 <mark>3</mark> 4 5	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$		solution found!

Candidate Solution:	Four clauses:		
	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
12	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark>	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
<mark>1</mark> 2 <mark>3</mark> 4	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
1 2 <mark>3</mark> 4 5	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(UnitPropagate)
1 2 <mark>3</mark> 4 5 6	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Backtrack)
1 2 <mark>3</mark> 4 5	$\overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$		solution found!

Can do much better! Next: Backjump instead of Backtrack...

Same example. Remember: Backtrack gave $1 \ 2 \ 3 \ 4 \ \overline{5}$.

But: decision level 3 4 is irrelevant for the conflict $6\sqrt{5}\sqrt{2}$: \emptyset $\overline{1}\sqrt{2}$, $\overline{3}\sqrt{4}$, $\overline{5}\sqrt{6}$, $6\sqrt{5}\sqrt{2} \Rightarrow$ (Decide) \vdots \vdots \vdots $12345\overline{6}$ $\overline{1}\sqrt{2}$, $\overline{3}\sqrt{4}$, $\overline{5}\sqrt{6}$, $6\sqrt{5}\sqrt{2} \Rightarrow$ (Backjump) Same example. Remember: Backtrack gave $1 \ 2 \ 3 \ 4 \ \overline{5}$.

But: decision level 3 4 is irrelevant for the conflict $6\sqrt{5}\sqrt{2}$:

Ø		1 ∨2,	3 ∨4,	$\overline{5} \lor \overline{6},$	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
•	÷		:				
1 2 <mark>3</mark> 4 <mark>5</mark> 6		1 ∨2,	$\overline{3} \lor 4,$	$\overline{5} {\vee} \overline{6},$	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Backjump)
<mark>1</mark> 25		ī∨2,	3 ∨4,	$\overline{5} \lor \overline{6},$	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	

Same example. Remember: Backtrack gave $1 \ 2 \ 3 \ 4 \ \overline{5}$.

But: decision level 3 4 is irrelevant for the conflict $6\sqrt{5}\sqrt{2}$:

Ø		$\overline{1}$ \lor 2,	$\overline{3} \lor 4,$	$\overline{5} {\vee} \overline{6},$	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Decide)
÷	÷		÷				
1 2 <mark>3</mark> 4 <mark>5</mark> 6		$\overline{1} \lor 2,$	$\overline{3} ee 4,$	$\overline{5} {\vee} \overline{6},$	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	(Backjump)
125		1 ∨2,	3 ∨4,	$\overline{5} \lor \overline{6},$	$6 \lor \overline{5} \lor \overline{2}$	\Rightarrow	

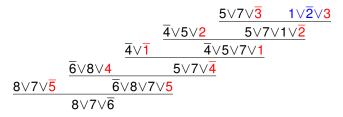
Backjump =

- **1** Conflict Analysis: "Find" a backjump clause $C \vee I$ (here, $\overline{2} \vee \overline{5}$)
 - that is a logical consequence of the clause set
 - that reveals a unit propagation of *I* at an earlier decision level *d* (i.e., where its part *C* is false)
- 2 Return to decision level *d* and do the propagation.

Conflict Analysis: find backjump clause

Example. Consider stack: $\dots 6 \dots \overline{7} \dots 9$ and clauses: $\overline{9} \sqrt{6} \sqrt{7} \sqrt{8}$, $8 \sqrt{7} \sqrt{5}$, $\overline{6} \sqrt{8} \sqrt{4}$, $\overline{4} \sqrt{1}$, $\overline{4} \sqrt{5} \sqrt{2}$, $5 \sqrt{7} \sqrt{3}$, $1 \sqrt{2} \sqrt{3}$ UnitPropagate gives $\dots 6 \dots \overline{7} \dots 9 \overline{8} \overline{5} 4 \overline{1} 2 \overline{3}$. Conflict w/ $1 \sqrt{2} \sqrt{3}$!

C.An. = do resolutions with reason clauses backwards from conflict:



until get clause with only 1 literal of last decision level. "1-UIP"

Yes, but why is CDCL really that good?

Three key ingredients (I think):

Yes, but why is CDCL really that good?

Three key ingredients (I think):

1 Learn at each conflict backjump clause as a lemma ("nogood"):

- makes UnitPropagate more powerful
- prevents EXP repeated work in future similar conflicts

Yes, but why is CDCL really that good?

Three key ingredients (I think):

1 Learn at each conflict backjump clause as a lemma ("nogood"):

- makes UnitPropagate more powerful
- prevents EXP repeated work in future similar conflicts

2 Decide on variables with many occurrences in Recent conflicts:

- Dynamic activity-based heuristics
- idea: work off, one by one, clusters of tightly related vars (try CDCL on two independent instances together...)

Three key ingredients (I think):

1 Learn at each conflict backjump clause as a lemma ("nogood"):

- makes UnitPropagate more powerful
- prevents EXP repeated work in future similar conflicts

2 Decide on variables with many occurrences in Recent conflicts:

- Dynamic activity-based heuristics
- idea: work off, one by one, clusters of tightly related vars (try CDCL on two independent instances together...)
- **3** Forget from time to time low-activity lemmas:
 - crucial to keep UnitPropagate fast and memory affordable
 - idea: lemmas from worked-off clusters no longer needed!

Decades of academic and industrial efforts

Lots of \$\$\$ from, e.g., EDA (Electronic Design Automation)

What's GOOD? Complete solvers:

- with impressive performance
- on real-world problems from many sources, with a
- single, fully automatic, push-button, var selection strategy.
- Hence modeling is essentially declarative.

What's BAD?

- Low-level language
- Sometimes no adequate/compact encodings: arithmetic...
 0-1 cardinality [Constraints11], P-B [JAIR12], Z encodings...
- Answers "unsat" or model. Optimization not as well studied.

What is SAT Modulo Theories (SMT)?

Origin: Reasoning about equality, arithmetic, data structures such as arrays, etc., in Software/Hardware verification.

What is SMT?Deciding satisfiability of an (existential) SATformula with atoms over a background theory T

Example 1: *T* is Equality with Uninterpreted Functions (EUF): 3 clauses: $f(g(a)) \neq f(c) \lor g(a) = d$, g(a) = c, $c \neq d$

Example 2: several (how many?) combined theories: 2 clauses: A = write(B, i+1, x), $read(A, j+3) = y \lor f(i-1) \neq f(j+1)$

Typical verification examples, where SMT is method of choice.

Aka Lemmas on demand [dMR,2002].

Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

1. Send $\{\overline{1} \lor 2, 3, \overline{4}\}$ to SAT solver

Aka Lemmas on demand [dMR,2002].

Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

1. Send $\{\overline{1}\lor 2, 3, \overline{4}\}$ to SAT solver SAT solver returns model $[\overline{1}, 3, \overline{4}]$

Aka Lemmas on demand [dMR,2002].

Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

 Send { 1 ∨2, 3, 4 } to SAT solver SAT solver returns model [1, 3, 4] Theory solver says [1, 3, 4] is *T*-inconsistent

Aka Lemmas on demand [dMR,2002].

Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

 Send { 1 ∨ 2, 3, 4 } to SAT solver SAT solver returns model [1, 3, 4] Theory solver says [1, 3, 4] is *T*-inconsistent
 Send { 1 ∨ 2, 3, 4, 1 ∨ 3 ∨ 4 } to SAT solver

Aka Lemmas on demand [dMR,2002].

Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

 Send { 1 ∨ 2, 3, 4 } to SAT solver SAT solver returns model [1, 3, 4] Theory solver says [1, 3, 4] is *T*-inconsistent
 Send { 1 ∨ 2, 3, 4, 1 ∨ 3 ∨ 4 } to SAT solver SAT solver returns model [1, 2, 3, 4]

Aka Lemmas on demand [dMR,2002].

Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

 Send { 1 ∨2, 3, 4 } to SAT solver SAT solver returns model [1, 3, 4] Theory solver says [1, 3, 4] is *T*-inconsistent
 Send { 1 ∨2, 3, 4, 1 ∨3 ∨4 } to SAT solver SAT solver returns model [1, 2, 3, 4] Theory solver says [1, 2, 3, 4] is *T*-inconsistent

Aka Lemmas on demand [dMR,2002].

Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

 Send { 1√2, 3, 4 } to SAT solver SAT solver returns model [1, 3, 4] Theory solver says [1, 3, 4] is *T*-inconsistent
 Send { 1√2, 3, 4, 1√3√4 } to SAT solver SAT solver returns model [1, 2, 3, 4] Theory solver says [1, 2, 3, 4] is *T*-inconsistent
 Send {1√2, 3, 4, 1√3√4, 1√2√3√4 } to SAT solver

Aka Lemmas on demand [dMR,2002].

Same EUF example:

$$\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} \lor \underbrace{g(a) = d}_{2}, \qquad \underbrace{g(a) = c}_{3}, \qquad \underbrace{c \neq d}_{\overline{4}}$$

 Send { 1√2, 3, 4 } to SAT solver SAT solver returns model [1, 3, 4] Theory solver says [1, 3, 4] is *T*-inconsistent
 Send { 1√2, 3, 4, 1√3∨4 } to SAT solver SAT solver returns model [1, 2, 3, 4] Theory solver says [1, 2, 3, 4] is *T*-inconsistent
 Send {1√2, 3, 4, 1√3∨4, 1√2√3∨4 } to SAT solver SAT solver says UNSAT

Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

• Check *T*-consistency only of full propositional models

- Check *T*-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- Check *T*-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

• Given a T-inconsistent assignment M, add $\neg M$ as a clause

- Check *T*-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- Given a *T*-inconsistent assignment *M*, add $\neg M$ as a clause
- Given a *T*-inconsistent assignment *M*, find an explanation (a small *T*-inconsistent subset of *M*) and add it as a clause

- Check *T*-consistency only of full propositional models
- Check *T*-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause
- Given a *T*-inconsistent assignment *M*, find an explanation (a small *T*-inconsistent subset of *M*) and add it as a clause

• Upon a *T*-inconsistency, add clause and restart

- Check *T*-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- Given a *T*-inconsistent assignment *M*, add $\neg M$ as a clause
- Given a *T*-inconsistent assignment *M*, find an explanation (a small *T*-inconsistent subset of *M*) and add it as a clause

- Upon a *T*-inconsistency, add clause and restart
- Upon a *T*-inconsistency, do conflict analysis of the explanation and Backjump

Our DPLL(T) approach to SMT (JACM'06)

DPLL(T) = DPLL(X) engine + T-Solvers

- Modular and flexible: can plug in any *T*-Solvers into the DPLL(X) engine.
- *T***-Solvers specialized and fast in Theory Propagation:**
 - Propagate literals that are theory consequences
 - more pruning in improved lazy SMT
 - T-Solver also guides search, instead of only validating it
 - fully exploited in conflict analysis (non-trivial)
- DPLL(T) approach is being quite widely adopted (cf. Google).

Need to do backward resolution with two kinds of clauses:

- UnitPropagate with clause C: resolve with C (as in SAT)
- T-Propagate of *lit* : resolve with (small) explanation
 - $I_1 \wedge \ldots \wedge I_n \rightarrow lit$

or, equivalently,

 $\bar{I}_1 \lor \ldots \lor \bar{I}_n \lor lit$ provided by *T*-Solver

How should it be implemented? (see again [JACM'06])

- UnitPropagate: store a pointer to clause C, as in SAT solvers
- T-Propagate: (pre-)compute explanations at each T-Propagate?
 - Better only on demand, during conflict analysis
 - typically only one Explain per ${\sim}250$ T-Propagates.
 - depends on T.

ILP as an SMT problem

- The theory is the set (conjunction) S of linear constraints
- Decide and UnitPropagate bounds *lb* ≤ *x* and *x* ≤ *ub*.
 T-Propagate bounds simply by bound propagation with *S*:
 E.g., { 0 ≤ *x*, 1 ≤ *y* } ∪ { *x* + *y* + 2*z* ≤ 2 } ⇒ *z* ≤ 0
 Explanation clause (disjunction of bounds): 0 ≤ *x* ∨ 1 ≤ *y* ∨ *z* ≤ 0
- If conflict: Analyze explanation clauses as in SAT.
 Backjump. Learn one new clause on bounds.
 Also: Forget, Restart, etc. Completeness is standard [JACM'06].
- NB: only new clauses are Learned. S does not change!

Also developed as Lazy Clause Generation (LCG) by Stuckey et al. Works very well on, e.g., scheduling, timetabling,...

Why does SMT work so well? Because

- most constraints are not bottlenecks: they only generate few (different) explanation clauses.
- SMT generates exactly these few clauses on demand.

However,... sometimes there are bottleneck constraints *C*:

- They generate an EXP number of explanation clauses. All of them together, (almost) full SAT encoding of *C*. And a very naive encoding!
- Compact encoding (w/aux.vars) of these C is needed.
- Idea: detect and encode such bottleneck C on the fly! [Abio,Stuckey CP12], further developed with us [CP13]

- SAT and ILP
- Commercial ILP tools
- Between SAT and ILP
- · CDCL SAT solvers. Why do they work so well?
- What is SMT? Why does it work so well?
- ILP as an SMT problem. Hybrids: SMT + bottleneck encodings
- \Rightarrow Going beyond: Constraint Learning. (It can beat clause learning!)
 - Solving the rounding problem, 0-1 case, $\ensuremath{\mathbb{Z}}$ case
 - Cutsat and IntSat. Evaluation. Demo (if time).
 - Simple completeness proofs for cutting planes
 - Remarks on proof systems

People have tried.... extend CDCL to ILP! Learn Constraints!

SAT		ILP	
clause	$I_1 \lor \ldots \lor I_n$	linear constraint	$a_1x_1+\cdots+a_nx_n\leq a_0$
0-1 variable	X	<i>integer</i> variable	X
positive literal	X	lower bound	a≤x
negative literal	\overline{X}	upper bound	x≤a
unit propagation		bound propagation	
decide any literal		decide any <i>bound</i>	
resolution inference	e	cut inference	

Cut, eliminating x from $4x + 4y + 2z \le 3$ and $-10x + y - z \le 0$:

$$\frac{5 \cdot (4x + 4y + 2z \le 3)}{2 \cdot (-10x + y - z \le 0) + 22y + 8z \le 15} = 11y + 4z \le 7$$

Learned cuts can be stronger than SMT clauses!

0-1 example:	C_3 conflict!		
0-1 example.	1 <i>≤u</i>	<i>C</i> ₂	
$C_1: \qquad x+y-z \leq 1$	1 <i>≤z</i>	<i>C</i> ₁	
C_1 : $x + y - z \le 1$ C_2 : $-2x + 3y + z - u \le 1$	1 <i>≤y</i>	decision	
$\begin{array}{cccc} C_2 & -2x + 3y + 2 - u & \leq & 1 \\ C_3 & 2x - 3y + z + u & \leq & 0 \end{array} \qquad \begin{bmatrix} & & & \\ & & \\ & & \\ & & \\ \end{array}$	1 <i>≤x</i>	decision	Stack \uparrow
$\mathbf{U}_3. \mathbf{Z}_{\mathbf{X}} = \mathbf{U}_{\mathbf{Y}} + \mathbf{Z} + \mathbf{U}_{\mathbf{X}} \leq \mathbf{U}$	bound	reason	

resolution(
$$C_2, C_3$$
) =
$$\frac{1 \not\leq y \lor 1 \not\leq z \lor 1 \leq u \qquad 1 \not\leq x \lor 1 \not\leq z \lor 1 \not\leq u}{1 \not\leq x \lor 1 \not\leq y \lor 1 \not\leq z}$$
which is: $x \leq 0 \lor y \leq 0 \lor z \leq 0 \equiv x + y + z \leq 2$
$$\operatorname{cut}(C_2, C_3) = \frac{-2x + 3y + z - u \leq 1 \qquad 2x - 3y + z + u \leq 0}{2z \leq 1}$$

which is: $z \leq 0$

The rounding problem (even in 0-1 case):

 $C_1: x+y-2z \le 1$ $C_2: x+y+2z \le 3$

C_2 conflict!		
1 <i>≤z</i>	<i>C</i> ₁	
$1 \le y$	decision	
$1 \le x$	decision	
bound	reason	

by rounding $\lceil 1/2 \rceil \le z$

$$\operatorname{cut}(C_1, C_2) = \frac{x + y - 2z \le 1 \quad x + y + 2z \le 3}{2x + 2y \le 4}$$

which is: $x+y \leq 2$

Now conflict analysis is finished:

for $x + y \le 2$ only one bound $(1 \le y)$ at this dl is relevant.

And we are stuck: $x + y \le 2$ is too weak to force a backjump. In fact it is a useless tautology in this 0-1 case. Can always go the pure SMT way:

• Some Pseudo-Boolean (0-1 ILP) solvers only learn clauses. These are in fact SMT solvers.

But can be smarter:

• Do this only at confl.analysis steps with rounding pb! Then, since any clause on 0-1 bounds is expressible as a constraint,

can cut at this step with $x + y - z \le 1$ ($\equiv 1 \not\le x \lor 1 \not\le y \lor 1 \le z$).

- Coeff(z) = ±1: no rounding pb; can always backjump.
- Even better, use cardinality explanations: [Dixon,Chai...]

See [handbook RousselEtal'09] + refs. for much more on P-B solving

Robert Nieuwenhuis

- Very nice result [Jovanović, De Moura '11].
- Decisions must make a var equal to its upper/lower bound.
- Then, during conflict analysis, for each propagated *x*, one can compute a tight reason, i.e., with Coeff(*x*) = ±1.
 This process uses a number of non-variable eliminating cuts.
- As before: then no rounding pb; can always backjump.

This learning scheme is similar to the all-decisions SAT one, which performs much worse than 1UIP in SAT (and also in ILP).

The IntSat Method for ILP in \mathbb{Z} [CP14]

- IntSat admits arbitrary new bounds as decisions.
- After each conflict it can always backjump and learn new a constraint.
- It guides the search exactly as 1UIP in CDCL.
- Idea: Dual conflict analysis: cuts+SMT.
 If no Backjump from cuts, do SMT one.
 Learn no clause on bounds, except if convertible into a constraint (new!)

Technical details:

- If set of bounds R in stack + constraint C propagate bound B,
 B is pushed on stack w/ reason constraint C and reason set R.
- Conflict an. and cuts guided by Conflicting Set (CS) of bounds:
 - Invariant: $CS \subseteq$ stack, and $CS \cup S$ is infeasible.
 - Each confl.an. step: Replace topmost bound of *CS* by its reason set and attempt the corresponding cut.

Example

C_1 :	-2x + 3y	$\begin{array}{rrrr} -3z &\leq & 1 \\ +2z &\leq & -2 \\ +2z &\leq & -1 \end{array}$	and initial bounds:	$-2 \le z$ $1 \le y$ $-2 \le x$	$y \leq 4$
Stack:	-		$\begin{array}{c cccc} C_{0}: & x - 3y - 3z \leq 1 \\ \hline C_{0}: & x - 3y - 3z \leq 1 \\ \hline decision \\ \hline C_{1}: & -2x + 3y + 2z \leq 2 \\ \hline decision \\ \hline C_{1}: & -2x + 3y + 2z \leq 2 \\ \hline C_{1}: & -2x + 3y + 2z \leq 2 \\ \hline C_{1}: & -2x + 3y + 2z \leq 2 \\ \hline initial \\ \hline \dots \\ \hline reason constraint \\ \end{array}$	<u> </u>	

Example (II)

	2 <i>≤y</i>	$\{1 \le x, z \le -2\}$ C ₀	$x - 3y - 3z \le 1$
	<i>x</i> ≤1	$\{ y \leq 2, z \leq -2 \} $ C	$x - 3y - 3z \le 1$
	<i>z</i> ≤−2	decision	
	<i>z</i> ≤−1	$\{x \leq 2, 1 \leq y\}$ C	$: -2x+3y+2z \le -2$
We had:	<i>x</i> ≤2	decision	
	<i>z</i> ≤0	$\{x \leq 3, 1 \leq y\}$ C	$: -2x+3y+2z \le -2$
	y≤2	$\{x \leq 3, -2 \leq z\}$ C	$: -2x+3y+2z \le -2$
	1 ≤ <i>x</i>	$\{1 \leq y, -2 \leq z\}$ C	$: -2x+3y+2z \le -2$
	$-2 \le z$	i	nitial
	bound	reason set	reason constraint
Now, conflict C_1 , with initial $CS \{ -2 \le z, x \le 1, 2 \le y \}$.			
Replacing $2 \le y$ by its r.set, $CS = \{-2 \le z, 1 \le x, z \le -2, x \le 1\}$.			
Cut eliminating y between C_1 and C_0 gives C_3 : $-x-z \le -1$.			

Early backjump due to $z \le -1$: add $2 \le x$ at dl 1 and learn C_3 .

Example (III)

New bound $2 \le x$ at dl 1 triggers two more propagations:

2 <i>≤y</i>	$\{2 \le x, z \le -1\}$	$C_0: x-3y-3z \le 1$
$-1 \leq z$	{ <i>x</i> ≤ 2 }	$C_3: -x-z \leq -1$
2 <i>≤x</i>	$\{ z \leq -1 \}$	$C_3: -x-z \leq -1$
<i>z</i> ≤−1	$\{x\leq 2, 1\leq y\}$	$C_1: -2x+3y+2z \leq -2$
x≤2		decision
<i>z</i> ≤0	$\{x \leq 3, 1 \leq y\}$	$C_1: -2x+3y+2z \leq -2$
y≤2	$\{x \leq 3, -2 \leq z\}$	$C_1: -2x+3y+2z \leq -2$
$1 \le x$	$\{1 \leq y, -2 \leq z\}$	$C_1: -2x+3y+2z \leq -2$
$-2 \leq z$		initial

Again conflict C_1 . $CS = \{ x \le 2, -1 \le z, 2 \le y \}$. 4-step conflict an.:

1. Replace $2 \le y$. $CS = \{x \le 2, z \le -1, 2 \le x, -1 \le z\}$. Cut (C_0, C_1) gives $C: -x - z \le -1$ as before.

Example (finished!)

- 2. Replace $-1 \le z$. $CS = \{x \le 2, z \le -1, 2 \le x\}$ No cut is made (since *z* is negative in both *C* and *C*₃).
- 3. Replace $2 \le x$. $CS = \{x \le 2, z \le -1\}$; no cut (same for *x*).
- 4. Replace $z \le -1$. $CS = \{ 1 \le y, x \le 2 \}$. Cut gives $-4x + 3y \le -4$; early bckjmp adding $2 \le x$ at dl 0? But C.An. is also finished (only one bound of this dl in *CS*): can backjump to dl 0 adding $x \ne 2$, i.e., $3 \le x$ (stronger!).

After one further propagation $(-1 \le z)$, the procedure returns "infeasible" since conflict C_2 appears at dl 0.

Unlike SAT, here linear constraints are first-class citizens (belong to the core language).

So can optimize doing simple branch and bound:

To minimize $a_1x_1 + \ldots + a_nx_n$ (= maximize $-a_1x_1 - \ldots - a_nx_n$)

- First find arbitrary solution S₀
- Repeat after each new solution S_i:
 - add constraint $a_1x_1 + \ldots + a_nx_n < cost(S_i)$
 - re-run

Until infeasible.

Bound propagation from these successively stronger constraints prunes a lot.

- IntSat always finds the optimal solution (if any).
- If moreover variables are upper and lower bounded,
 - IntSat always terminates
 - it returns "infeasible" iff input is infeasible.

(See [CP'14] for details)

Proof of concept: small naive toy C++ program. Some ideas:

- Vars and coefficients are just 4-byte ints
 - cuts giving coefficients $> 2^{30}$ are simply discarded
 - so no overflow if intermediate computations in 2^{64} ints.
- O(1)-time access to current upper (lower) bound for var:
 - bounds for x in stack have ptr to previous bound for x
 - maintain pointer to topmost (i.e., strongest) one
- Cache-efficient counter-based bound propagation:
 - occurs lists for each var (and sign)
 - only need to access actual constraint if its filter value becomes positive

CPLEX and Gurobi

- Commercial OR solvers, huge and expensive.
- Based on LP relaxation + Simplex + branch-and-cut.
- Combine a large variety of techniques: problem-specific cuts, specialized heuristics, presolving...
- Extremely mature technology. Bixby [5]:

"From 1991 to 2012, saw 475,000 \times algorithmic speedup + 2,000 \times hardware speedup."

• We compare here with their latest versions (on 4 cores)

naive little C++ program (1 core)

naive little C++ program (1 core)

- First completely different technique that shows some competitiveness.
- Even on MIPLIB, according to miplib.zib.de, OR's "standard test set", including "hard" and "open" problems, up to over 150,000 constraints and 100,000 variables.
- Even with this small "toy" implementation.
 Lots of room for improvement (conceptual & implementation)

IntSat "toy" (1-core) vs newest CPLEX and Gurobi (4-core)

- 1. Random optimization instances:
 - 600 vars, 750 constraints, 10s time limit
 - IntSat overall better than CPLEX, slightly worse than Gurobi.
- 2. MIPLIB (600 s; for all but 7 instances no solver proves optimality)
 - All 19 MIPLIB's bounded pure ILP instances, incl. "hard" & "open" ones, up to over 150,000 constraints, 100,000 vars.
 - (toy-) IntSat frequently
 - is fastest proving feasibility
 - finds good (or optimal) solutions faster than C&G
 - in particular for some of the largest instances.

- Implementation-wise:
 - special treatments for binary variables
 - special treatments for specific kinds of constraints
 - efficient early backjumps [solved?]
 - ..
- Conceptual improvements:
 - decision heuristics
 - restarts and cleanups
 - optimization ("first-succeed", initial solutions,...)
 - pre- and in-processing: extremely effective in SAT, nothing done here yet
 - MIPs
 - ...

DEMOS

Simple completeness proofs

- Theory of (0-1) ILP historically based on LP in Q. Completeness in, e.g., Schrijver'98, uses many results from previous 300+ pages.
- Moreover, standard cutting planes rules are difficult to control:

Combine :
$$\frac{p \ge c \quad q \ge d}{np + mq \ge nc + md} \quad \text{where} \quad n, m \in \mathbb{N}$$

Divide :
$$\frac{a_n x_n + \ldots + a_1 x_1 \ge c}{\lceil a_n/d \rceil x_n + \ldots + \lceil a_1/d \rceil x_1 \ge \lceil c/d \rceil}$$
 where $d \in \mathbb{N}^+$

• We have new self-contained proofs, 0-1 and $\mathbb Z$ cases, where:

- Combine factors *n*, *m* always fully determined, so that the maximal var is either eliminated or increased by a precise amount
- · Combine on maximal vars only, one of them always with coefficient 1
- Divide only if d is the coefficient of the maximal var and $d|a_i$ for all i

Proof sketch for full ILP case.

Let *S* over $x_1 \dots x_n$ be bounded, closed under Combine, Divide, no contrad.

Build solution M_i for each $S_i \subseteq S$ with vars in $x_1 \dots x_i$ only, by induction on *i*.

Base case i = 0: trivial since *S* has no contradictions (and S_0 has no vars). Ind. step i > 0: extend M_{i-1} to M_i by defining $M_i(x_i) = \max\{ c - M_{i-1}(p) \mid x_i + p \ge c \text{ in } S_i \}$

Now prove $M_i \models C$ for all C in $S_i \setminus S_{i-1}$. Here C can be:

- A) $x_i + p \ge c$. Then $M_i \models C$ by construction of M_i .
- B) $-ax_i + p \ge c$ with a > 0. Now $M_i(x_i)$ is due to some $x_i + q \ge d$ in S_i . Combine them eliminating x_i (note: x_i is maximal in both premises). The conclusion is in S_{i-1} and entails by IH that $M_i \models C$.
- C) $ax_i + p \ge c$ with a > 1.
 - C1) If a|p do Divide and reduce to case A).
 - C2) Otherwise, Combine on bx_j , maximal var x_j in p with $a \not\mid b$.

- More restrictive proof systems: less work, easier to automatize
- trade-off: such systems tend to be less "efficient" in terms of proof length.
 0-1: only need var.-eliminating Combine or w/ bounds 0 ≤ x and x ≤ 1.
 this does not look any stronger than resolution
 but full Combine does have short proofs for pigeon hole problem.
- Does this have any practical consequences for CDCL-based ILP provers?
- If so, are there any "controllable" appropriate intermediate systems?

- Probably no single technique will dominate.
- But these methods (such as IntSat) may become one standard tool in the toolbox.

Thank you!