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e SAT and ILP

e Commercial ILP tools

e Between SAT and ILP

e CDCL SAT solvers. Why do they work so well?

e What is SMT? Why does it work so well?

e |LP as an SMT problem. Hybrids: SMT + bottleneck encodings
e Going beyond: Constraint Learning. (It can beat clause learning!)
e Solving the rounding problem, 0-1 case, Z case

e Cutsat and IntSat. Evaluation. Demo (if time).

e Simple completeness proofs for cutting planes

e Remarks on proof systems
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Integer Linear Programming (ILP)

Find solution Sol: {x1...xp} = Z to:

Minimize: Ci X1+...4+¢nXxp (or maximize)

Subject To: 11 X +...+CinXxa = Cro
(or with >, =, <, >)

IN

Cmt X1+ ...+ Cmn Xn Cmo

where all coefficients ¢; in Z.

SAT: particular case of ILP with 0-1 vars and constraint clauses:

xVyvz = x+(1—-y)+(1—2)>1
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CPLEX and Gurobi
: - P—

e Commercial OR solvers, large, quite expensive.

e |LP based on LP relaxation + Simplex + branch-and-cut +
combining a large variety of techniques: problem-specific cuts, specialized
heuristics, presolving...

e Extremely mature technology. Bixby:

“From 1991 to 2012, saw 475,000 x algorithmic speedup x
2,000x hardware speedup.”
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Between SAT and ILP

0-1 solutions Z solutions
feasibility optimizing feasibility | optimizing
clauses SAT
cardinality constr.
linear constr. | 0-1 ILP(P-B) | 0-1 ILP (P-B) ILP

Cardinality constraints:

X1+...+x, <k (orwith >, =, <, >)
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SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses
CDCL = Conflict-Driven Clause-Learning backtracking algorithm
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SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses
CDCL = Conflict-Driven Clause-Learning backtracking algorithm
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1v2, 3v4, 5V6, 6V5V2
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SAT and CDCL-based SAT Solvers
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SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 =  (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6vV5v2 =  (Decide)
123 1v2, 3v4, 5v6, 6V5v2 = (UnitPropagate)
1234 1v2, 3v4, 5v6, 6vV5v2 =  (Decide)
12345 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
123456 1v2, 3v4, 5V6, 6V5V2 CONFLICT!
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SAT and CDCL-based SAT Solvers
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SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses
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SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 =  (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6vV5v2 =  (Decide)
123 1v2, 3v4, 5v6, 6V5v2 = (UnitPropagate)
1234 1v2, 3v4, 5v6, 6vV5v2 =  (Decide)
12345 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
123456 1v2, 3v4, 5v6, 6V5V2 =  (Backirack)
12345 1v2, 3v4, 5V6, 6V5V2 solution found!

Robert Nieuwenhuis Barcelogic and UPC

CPAIOR'15

IntSat: From SAT to Integer Linear Programming



SAT and CDCL-based SAT Solvers

SAT = particular case of ILP: vars are 0-1, constraints are clauses

CDCL = Conflict-Driven Clause-Learning backtracking algorithm

Candidate Solution: Four clauses:

1v2, 3v4, 5v6, 6V5v2 =  (Decide)
1 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
12 1v2, 3v4, 5v6, 6vV5v2 =  (Decide)
123 1v2, 3v4, 5v6, 6V5v2 = (UnitPropagate)
1234 1v2, 3v4, 5v6, 6vV5v2 =  (Decide)
12345 1v2, 3v4, 5v6, 6V5V2 = (UnitPropagate)
123456 1v2, 3v4, 5v6, 6V5V2 =  (Backirack)
12345 1v2, 3v4, 5V6, 6V5V2 solution found!

Can do much better! Next: Backjump instead of Backtrack...
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Backtrack vs. Backjump

Same example. Remember: Backirack gave 123 4 5.

But: decision level 34 is irrelevant for the conflict 6\V5V2:
0 1v2, 3v4, 5v6, 6V5v2 =  (Decide)

123456 1v2, 3v4, 5v6, 6V5v2 = (Backjump)
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123456 1v2, 3v4, 5v6, 6V5v2 = (Backjump)
125 1v2, 3v4, 5V6, 6V5V2 =

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming



Backtrack vs. Backjump

Same example. Remember: Backirack gave 123 4 5.

But: decision level 34 is irrelevant for the conflict 6\V5V2:
0 1v2, 3v4, 5v6, 6V5v2 =  (Decide)

123456 1v2, 3v4, 5v6, 6V5v2 = (Backjump)
125 1v2, 3v4, 5V6, 6V5V2 =
Backjump =

@ Conflict Analysis: “Find” a backjump clause CV/ (here, 2V/5)

e thatis a logical consequence of the clause set

o that reveals a unit propagation of / at an earlier decision level d (i.e., where
its part C is false)

® Return to decision level d and do the propagation.
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Conflict Analysis: find backjump clause

Example. Consider stack: ...6...7...9 and clauses:
9V6V7V8, 8V7V5, 6V8V4, 4V1, 4V5v2, 5V7V3, 1v2V3
UnitPropagate gives ...6...7...9854123. Conflict w/ 1v2V3!

C.An. = do resolutions with reason clauses backwards from conflict:

5V7V3 1Vv2V3

4V5V2 5V7V1Vv2
4v1 4\/5V7V1
6V8V4 5V7V4
8Vv7Vv5 6V8V7V5

8V7V6

until get clause with only 1 literal of last decision level. “1-UIP”
Can use this backjump clause 8V7V6 to Backjumpto ...6...78.
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Yes, but why is CDCL really good?

Three key ingredients (| think):
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e makes UnitPropagate more powerful
e prevents EXP repeated work in future similar conflicts
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e prevents EXP repeated work in future similar conflicts

® Decide on variables with many occurrences in Recent conflicts:
e Dynamic activity-based heuristics
e idea: work off, one by one, clusters of tightly related vars
(try CDCL on two independent instances together...)
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Yes, but why is CDCL really good?

Three key ingredients (| think):

@ Learn at each conflict backjump clause as a lemma (“nogood”):

e makes UnitPropagate more powerful
e prevents EXP repeated work in future similar conflicts

® Decide on variables with many occurrences in Recent conflicts:

e Dynamic activity-based heuristics
e idea: work off, one by one, clusters of tightly related vars
(try CDCL on two independent instances together...)

@ Forget from time to time low-activity lemmas:

e crucial to keep UnitPropagate fast and memory affordable
e idea: lemmas from worked-off clusters no longer needed!
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Good vs Bad in CDCL SAT Solvers

Decades of academic and industrial efforts

Lots of $$$ from, e.g., EDA (Electronic Design Automation)
What's GOOD? Complete solvers:
e with impressive performance
e on real-world problems from many sources, with a
e single, fully automatic, push-button, var selection strategy.
e Hence modeling is essentially declarative.
What's BAD?
e Low-level language

e Sometimes no adequate/compact encodings: arithmetic...
0-1 cardinality [Constraints11], P-B[JAIR12], Z encodings...

e Answers “unsat” or model. Optimization not as well studied.
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What is SAT Modulo Theories (SMT)?

Origin: Reasoning about equality, arithmetic, data structures such
as arrays, etc., in Software/Hardware verification.

What is SMT? Deciding satisfiability of an (existential) SAT
formula with atoms over a background theory T

Example 1: T is Equality with Uninterpreted Functions (EUF):
3 clauses: f(g(a))#f(c) Vv g(a)=d, g(a)=c, c#d

Example 2: several (how many?) combined theories:
2clauses: A=write(B,i+1,x), read(A,j+3)=y V f(i—1)#f(j+1)

Typical verification examples, where SMT is method of choice.
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The approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f(g(a))#f(c) v g(a)=d,  g(a)=c,  c#d

1. Send {1v2, 3, 4} to SAT solver
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Aka Lemmas on demand [dMR,2002]. Same EUF example:

f(g(a))#f(c) v g(a)=d,  g(a)=c,  c#d

1. Send {1v2, 3, 4} to SAT solver

SAT solver returns model [ 1, 3, 4 |

Theory solver says [ 1, 3, 4]is T-inconsistent
2. Send {1v2, 3, 4, 1V3V4 } to SAT solver
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The approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f(g(a))#f(c) v g(a)=d,  g(a)=c,  c#d

1. Send {1v2, 3, 4} to SAT solver
SAT solver returns model [ 1, 3, 4 |
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The approach to SMT

Aka Lemmas on demand [dMR,2002]. Same EUF example:

f(g(a))#f(c) v g(a)=d,  g(a)=c,  c#d

1. Send {1v2, 3, 4} to SAT solver
SAT solver returns model [ 1, 3, 4 |
Theory solver says [ 1, 3, 4]is T-inconsistent
2. Send {1v2, 3, 4, 1V3V4 } to SAT solver
SAT solver returns model [ 1, 2, 3, 4]
Theory solver says [ 1, 2, 3, 4] is T-inconsistent
3. Send {1v2, 3, 4, 1v3Vv4, 1V2V3V4 } to SAT solver
SAT solver says UNSAT
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Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

e Check T-consistency only of full propositional models
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Since state-of-the-art SAT solvers are all DPLL-based...

e Check T-consistency of partial assignment while being built
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Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

e Check T-consistency of partial assignment while being built

e Given a T-inconsistent assignment M, add =M as a clause
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Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause
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Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, add clause and restart
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Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause

Upon a T-inconsistency, do conflict analysis of the explanation and
Backjump
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Our DPLL(T) approach to SMT  (JacMm0s)

DPLL(T) = DPLL(X) engine + T-Solvers

e Modular and flexible: can plug in any T-Solvers into the DPLL(X) engine.

e T-Solvers specialized and fast in Theory Propagation:

e Propagate literals that are theory consequences
e more pruning in improved lazy SMT
e T-Solver also guides search, instead of only validating it

e fully exploited in conflict analysis (non-trivial)

e DPLL(T) approach is being quite widely adopted (cf. Google).
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Conflict analysis in DPLL(T)

Need to do backward resolution with two kinds of clauses:

e UnitPropagate with clause C: resolve with C (as in SAT)

e T-Propagate of lit: resolve with (small) explanation
WA N — it
or, equivalently,
I41V...VI, V lit provided by T-Solver

How should it be implemented? (see again [JACM’06])
e UnitPropagate: store a pointer to clause C, as in SAT solvers
e T-Propagate: (pre-)compute explanations at each T-Propagate?
— Better only on demand, during conflict analysis
— typically only one Explain per ~250 T-Propagates.
—dependson T.

CPAIOR'15 IntSat: From SAT to Integer Linear Programming
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ILP as an SMT problem

e The theory is the set (conjunction) S of linear constraints

e Decide and UnitPropagate bounds Ib< x and x < ub.
T-Propagate bounds simply by bound propagation with S:
E.g. {0<x, 1<y} U{x+y+2z<2} = z<0
Explanation clause (disjunction of bounds): 0<x V 1<y VvV z<0

e |f conflict: Analyze explanation clauses as in SAT.
Backjump. Learn one new clause on bounds.
Also: Forget, Restart, etc. Completeness is standard [JACM'06].

e NB: only new clauses are Learned. S does not change!

Also developed as Lazy Clause Generation (LCG) by Stuckey et al.
Works very well on, e.g., scheduling, timetabling,...
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Hybrids of SMT + “bottleneck encoding”

Why does SMT work so well? Because
e most constraints are not bottlenecks:
they only generate few (different) explanation clauses.
e SMT generates exactly these few clauses on demand.

However,... sometimes there are bottleneck constraints C:

e They generate an EXP number of explanation clauses.
All of them together, (almost) full SAT encoding of C.
And a very naive encoding!

e Compact encoding (w/aux.vars) of these C is needed.

e Idea: detect and encode such bottleneck C on the fly!
[Abio,Stuckey CP12], further developed with us [CP13]
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Outline of this talk

e SAT and ILP

e Commercial ILP tools

e Between SAT and ILP

e CDCL SAT solvers. Why do they work so well?

e What is SMT? Why does it work so well?

e |LP as an SMT problem. Hybrids: SMT + bottleneck encodings
=- Going beyond: Constraint Learning. (It can beat clause learning!)

e Solving the rounding problem, 0-1 case, Z case

e Cutsat and IntSat. Evaluation. Demo (if time).

e Simple completeness proofs for cutting planes

e Remarks on proof systems
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People have tried.... extend CDCL to ILP! Learn Constraints!

SAT ILP
clause liv...vi, linear constraint  aixy+ -+ anxp < ao
0-1 variable X integer variable X
positive literal X lower bound a<x
negative literal X upper bound x<a
unit propagation bound propagation
decide any literal decide any bound
resolution inference cutinference

Cut, eliminating x from 4x+44y+4+2z<3 and —10x+y—z<0:

5. ( 4x + 4y + 2z < 3 )
2.( —10x + y — z < 0 ) +
22y + 8z < 15 = 11y+4z<7
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Learned cuts can be stronger than SMT clauses!

Cs conflict!
-1 le:
0-1 example <u &
<
Ci: x+y—z < 1 1sz] &
Co: —2x+3y+z—u < 1 1<y | decision
9 ¢ < 0 1<x | decision | Stack 1

Cs: 2x—=3y+z+u

bound reason

1LyviLzvi<u 1I<xV1LzV1<Lu

resolution(Cs, C3) = 1<xV1LyViLz

which is: x<0Vy<ovz<0 = x+4+y+z<2

—2x+3y+z—u<A1 2x—38y+z+u<0
2z <1

cut( C2, Cg) =

which is: z<0
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The rounding problem (even in 0-1 case):

C> conflict!
1<z Cy by rounding [1/2] <z
Ci: x+y—2z<1 1<y | decision
Co: x+y+2z<3 1<x | decision

bound reason

xX+y—2z<1 X+y+2z<3
2x+2y <4

which is: x+y<2

cut( C1 s Cg) =

Now conflict analysis is finished:
for x +y < 2 only one bound (1 < y) at this dl is relevant.

And we are stuck: x+y < 2 is too weak to force a backjump.

In fact it is a useless tautology in this 0-1 case.
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Solving the rounding pb in the 0-1 case

Can always go the pure SMT way:

e Some Pseudo-Boolean (0-1 ILP) solvers only learn clauses.
These are in fact SMT solvers.

But can be smarter:
e Do this only at confl.analysis steps with rounding pb! Then, since
any clause on 0-1 bounds is expressible as a constraint,
cancutatthisstepwith x+y—z<1 (= 1<xVIiLyVvi<z).
e Coeff(z) = +1: no rounding pb; can always backjump.
e Even better, use cardinality explanations: [Dixon,Chai...]

See [handbook RousselEtal’'09] + refs. for much more on P-B solving

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming



Solving the rounding pb; Z case: Cutsat

e Very nice result [Jovanovi¢, De Moura '11].
e Decisions must make a var equal to its upper/lower bound.

e Then, during conflict analysis, for each propagated x, one can
compute a tight reason, i.e., with Coeff(x) = £1.
This process uses a number of non-variable eliminating cuts.

e As before: then no rounding pb; can always backjump.

This learning scheme is similar to the all-decisions SAT one, which performs
much worse than 1UIP in SAT (and also in ILP).
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The IntSat Method for ILP in Z [CP14]

e IntSat admits arbitrary new bounds as decisions.
e After each conflict it can always backjump and learn new a constraint.
e |t guides the search exactly as 1UIP in CDCL.

o |ldea: Dual conflict analysis: cuts+SMT.
If no Backjump from cuts, do SMT one.
Learn no clause on bounds, except if convertible into a constraint (new!)

Technical details:

e |f set of bounds R in stack + constraint C propagate bound B,
B is pushed on stack w/ reason constraint C and reason set R.
e Conflict an. and cuts guided by Conflicting Set (CS) of bounds:
e |nvariant: CS C stack, and CSU S is infeasible.
e Each confl.an. step: Replace topmost bound of CS by its reason set and
attempt the corresponding cut.
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Co : x —3y -3z < 1 —2<z z<L2
Ci: —2x +3y 42z < =2 and initial bounds: 1<y y<4
Co: 3x -3y 42z < —1 —2<x x<3

2<y |{1<x,z<-2} | Cp: x—3y—3z<1
x<1 |{y<2,z<-2}| Cp: x—3y—3z<1

z< -2 decision
z<—1| {x<2,1<y} [ Ci: —2x+3y+2z< -2
x<2 decision

Stack:

z<0 {x<3,1<y} | Cy: —2x+3y+2z<-2
y<2 | {x<8,-2<z}| Ci: —2x+3yt2z<-2

1<x |{1<y, —2<z} | Cy: —2x+3y+2z<-2
—2<z initial
bound reason set reason constraint
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Example (Il)

Co: x—38y—3z<1

2<y | {1<x,z<-2}

x<1 | {y<2,z<-2}|Co: x—3y—38z<1

z< -2 decision

z<—-1] {x<2,1<y} [Ci: —2x+8y+2z< -2
x<2 decision

We had:

z<0 | {x<8,1<y} [Ci: —2x+3y+2z<-2
y<2 | {x<3,-2<z}|Ci: —2x+3y+2z<-2
1<x |{1<y, 2<z}|Ci: —2x+3y+2z<-2
—2<z initial

bound reason set reason constraint
Now, conflict Cy, with initial CS{ —2<z, x<1, 2<y}.
Replacing 2<y byitsrset, CS={ —2<z, 1<x, z<-2, x<1 }.
Cut eliminating y between C; and Cy gives C3: —x—z < —1.
Early backjump dueto z<—1: add2<x atdl 1 and learn Cs.
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Example (lll)

New bound 2 < x at dl 1 triggers two more propagations:

2<y | {2<x,z<-1} Co: x—3y—3z<1

-1<z {x<2} C3: —x—z< -1
2<x {z<-1} Cy: —x—z<—1
z<—1] {x<2,1<y} | C: —2x+3y+2z< -2
x<2 decision

z<0 {x<3,1<y} | Cy: —2x+3y+2z<-2
y<2 | {x<3,—2<z}|Ci: —2x+8y+2z<-2
1<x | {1<y, —2<z}|Ci: —2x+3y+2z<-2
—2<z initial

Again conflict C;. CS={x<2, —1<z, 2<y }. 4-step conflict an.:

1. Replace 2<y. CS={x<2, z<-1, 2<x, —1<z}.
Cut(Co, Cy) gives C: — x—z < —1 as before.
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Example (finished!)

2. Replace —1<z. CS={x<2, z<—-1, 2<x}
No cut is made (since z is negative in both C and Cj).

3. Replace 2<x. CS={x<2, z<—1 };no cut (same for x).

4. Replace z<—1. CS={1<y, x<2}.
Cut gives —4x+ 3y < —4; early bckjmp adding 2< x at dl 0?
But C.An. is also finished (only one bound of this dl in CS): can backjump
to dl 0 adding x £2, i.e., 3 < x (stronger!).

After one further propagation (—1 < z), the procedure returns “infeasible” since
conflict C, appears at dl 0.
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Optimization

Unlike SAT, here linear constraints are first-class citizens (belong to the core
language).

So can optimize doing simple branch and bound:

To minimize ayxy +...4+ apXx, (= maximize —ayxy —...—anpXp)
e First find arbitrary solution Sy

e Repeat after each new solution S;:
—add constraint a;xy + ...+ anx, < cost(S;)
—re-run
Until infeasible.

Bound propagation from these successively stronger constraints prunes a lot.
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e IntSat always finds the optimal solution (if any).
e If moreover variables are upper and lower bounded,

e IntSat always terminates
e it returns “infeasible” iff input is infeasible.

(See [CP’14] for details)
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Implementation

Proof of concept: small naive toy C++ program. Some ideas:

e Vars and coefficients are just 4-byte ints

e cuts giving coefficients > 2%° are simply discarded
e s0 no overflow if intermediate computations in 264 ints.

e O(1)-time access to current upper (lower) bound for var:

e bounds for x in stack have ptr to previous bound for x
e maintain pointer to topmost (i.e., strongest) one

e Cache-efficient counter-based bound propagation:

e occurs lists for each var (and sign)
e only need to access actual constraint if its filter value becomes positive
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CPLEX and Gurobi

e Commercial OR solvers, huge and expensive.

Based on LP relaxation + Simplex + branch-and-cut.

Combine a large variety of techniques:
problem-specific cuts, specialized heuristics, presolving...

Extremely mature technology. Bixby [5]:

“From 1991 to 2012, saw 475,000 x algorithmic speedup + 2,000 x
hardware speedup.”

e We compare here with their latest versions (on 4 cores)
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IntSat

naive little C++ program (1 core)
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IntSat

naive little C++ program (1 core)

e First completely different technique that shows some competitiveness.

e Even on MIPLIB, accordingto miplib.zib.de, OR'’s “standard test
set”, including “hard” and “open” problems, up to over 150,000 constraints
and 100,000 variables.

e Even with this small “toy” implementation.
Lots of room for improvement (conceptual & implementation)

Robert Nieuwenhuis Barcelogic and UPC CPAIOR'15 IntSat: From SAT to Integer Linear Programming



IntSat experiments, see [CP14]

IntSat “toy” (1-core) vs newest CPLEX and Gurobi (4-core)

1. Random optimization instances:
e 600 vars, 750 constraints, 10s time limit
e IntSat overall better than CPLEX, slightly worse than Gurobi.

2. MIPLIB (600 s; for all but 7 instances no solver proves optimality)
e All 19 MIPLIB’s bounded pure ILP instances, incl. “hard” & “open” ones,
up to over 150,000 constraints, 100,000 vars.

e (toy-) IntSat frequently

e is fastest proving feasibility
e finds good (or optimal) solutions faster than C&G

in particular for some of the largest instances.
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Lots of improvements to explore

e Implementation-wise:

e special treatments for binary variables
special treatments for specific kinds of constraints
efficient early backjumps [solved?]

e Conceptual improvements:

e decision heuristics

e restarts and cleanups

e optimization (“first-succeed”, initial solutions,...)

e pre- and in-processing: extremely effective in SAT, nothing done here yet
e MIPs

[ ]
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DEMOS
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Simple completeness proofs (joint work with Marc Bezem)

e Theory of (0-1) ILP historically based on LP in Q. Completeness in, e.g.,
Schrijver'98, uses many results from previous 300+ pages.

e Moreover, standard cutting planes rules are difficult to control:

> >
Combine : p=0 g=d where n,meN
np+ mq > nc+ md
>
Divide : Gt T a4 = C where d €N+t

[an/d] X0+ ..+ [a1/d]x > [¢/d]

e We have new self-contained proofs, 0-1 and Z cases, where:

e Combine factors n, m always fully determined, so that the maximal var is
either eliminated or increased by a precise amount

e Combine on maximal vars only, one of them always with coefficient 1

e Divide only if d is the coefficient of the maximal var and d|a; for all /
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Proof sketch for full ILP case.

Let S over x; ... x, be bounded, closed under Combine, Divide, no contrad.
Build solution M; for each S; C S with vars in x; ... x; only, by induction on J.
Base case i = 0: trivial since S has no contradictions (and Sy has no vars).
Ind. step i > 0: extend M;_; to M; by defining

Mi(x;) = max{ c—Mi_1(p) | xi+p>cin S; }

Now prove M; = Cforall Cin S;\ S;_y. Here C can be:

A) xi+p>c. Then M; |= C by construction of M.

B) —ax;+ p > cwith a> 0. Now M;(x;) is due to some x;+q > din S;.
Combine them eliminating x; (note: x; is maximal in both premises).
The conclusion is in S;_4 and entails by IH that M; |= C.

C) axi;+p>cwitha>1.

C1) If a|p do Divide and reduce to case A).
C2) Otherwise, Combine on bx;, maximal var x; in p with a J b.
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Remarks on the proof systems

More restrictive proof systems: less work, easier to automatize

trade-off: such systems tend to be less “efficient” in terms of proof length.

0-1: only need var.-eliminating Combine or w/ bounds 0 < x and x < 1.
this does not look any stronger than resolution
but full Combine does have short proofs for pigeon hole problem.

Does this have any practical consequences for CDCL-based ILP provers?

If so, are there any “controllable” appropriate intermediate systems?
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CDCL-based methods for ILP. Conclusions

e Probably no single technique will dominate.

e But these methods (such as IntSat) may become one standard tool in the
toolbox.

Thank you!
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