
Lógica en la Informática / Logic in Computer Science

Tuesday November 18th, 2014

Time: 1h345min. No books, lecture notes or formula sheets allowed.

1A) (1 pt) Let F and G be propositional formulas. Is it true that if F → G is a tautology and F is
satisfiable, then G is a tautology? Prove it using only the definition of propositional logic.

Solution: This is false. Counterexample: If F = G = p, then p → p, that is, ¬p ∨ p, is a tautology.
Morevover, p is satisfiable. But p is not a tautology.

1B) (1 pt) Let F and G be propositional formulas. Is it true that if F → G is satisfiable and F is
satisfiable, then G is satisfiable? Prove it using only the definition of propositional logic.

Solution: This is false. Counterexample: F = p and G = p∧¬p. Then F → G, which is ¬F ∨G, which
is ¬p∨(p∧¬p) is satisfiable: if we define I such that I(p) = 0, then I |= ¬p and hence I |= ¬p∨(p∧¬p).
Also F is satisfiable: if we define I such that I(p) = 1, then I |= p. But G is not satisfiable: there is
no I such that I |= p ∧ ¬p.

2) (2 pts) Let S be a set of propositional clauses and let C be a propositional clause l1 ∨ . . .∨ ln. We
want to use a SAT solver in order to know whether S |= C. One Erasmus student says: “That’s easy!
It is true if the SAT solver finds a model for S ∪ {¬l1, . . . ,¬ln}”. Is he right? Explain in detail why.

Solution: He is not right. We have S |= C iff S ∪ {¬C} is unsatisfiable. Since ¬C is ¬l1 ∧ . . . ∧ ¬ln,
we have S |= C iff S ∪ {¬l1, . . . ,¬ln} is unsatisfiable, i.e., if the SAT solver finds no model for
S ∪ {¬l1, . . . ,¬ln}, i.e., if the SAT solver returns “unsatisfiable”.

3) (2.5 pts) The engineers at Intel have two very large digital circuits C1 and C2, built with binary
and and or gates and unary not gates (inverters). Each one of them has n input wires w1...wn and
1 output wire w-out, and they want to know whether the two circuits are equivalent, that is, whether
they give the same output bit for every combination of n input bits. Each circuit is given in a simple
format with one line per gate and inner wires represented by numbers, for example:

w-out=and(w1,1)

1=or(2,3)

2=and(w2,3)

3=and(4,w4)

4=not(w3)

Note that circuits are not always trees (as formulas are). They can be directed acyclic graphs because
subcircuits can be shared, as it happens with wire 3 in the example. Explain in the simplest possible
way what you would do for using the picosat SAT solver to determine whether C1 and C2 are equivalent.

Solution: Assume F1 and F2 are propositional formulas. Then we know that F1 ≡ F2 iff (F1 ∧
¬F2)∨ (¬F1 ∧F2) is unsatisfiable. Let F be the formula (F1 ∧¬F2)∨ (¬F1 ∧F2). Then we can use the
Tseitin transformation to transform F into another formula in CNF (a set of clauses) S, such that F
and S are equisatisfiable (that is, F is satisfiable iff S is satisfiable). So F1 ≡ F2 iff picosat returns
“unsatisfiable” when given S as input. [Explain a bit further the Tseitin transformation: it introduces
a new auxiliary variable a for every logical connective. If the connective is an ∧, and the children have
variables b and c, then the three clauses {¬a∨ b, ¬a∨ c, a∨¬b∨¬c} are added. A unit clause, stating
that the variable at the root of the formula is true, is added as well. Etc.]

In this case, instead of having formulas F1 and F2, we have circuits C1 and C2 where the Tseitin
transformation would introduce a new variable ai for every internal wire i. But this is exactly the
same, since re-using subformulas such as the one for wire 3 does not matter: equisatisfiability holds
with a single copy of the subformula headed with a variable a3, as well as with two copies of the
subformula with two copies of the new variables a3, a

′

3, etc.

4) (3.5 pts) The Seat factory in Martorell has a single production line, on which every day N cars
are produced in a certain sequence (a linear order: one car after the other). Each car needs zero or
more special features (demanded by the buyer who has ordered the car: leather seats, sunroof, special
music equipment, special paint, etc.). In total there are 40 possible features, that are installed in the
car in 40 workshops located along the production line, and there are constraints saying things like:
“at most 3 out of every 7 consecutive cars can get a sunroof”. This is because these workshops only
have a limited work capacity: more sunroofs close together would slow down the production line. So
the information for a specific day, written in Prolog style, would look like this:

car(1,[3,5,8,10]). % car 1 needs features 3,5,8,10

...

car(N,[2,6,40]). % car N needs features 2,6,40

feature(1,5,10). % at most 5 cars with feature 1 in each consecutive 10 cars

...

feature(40,3,7). % at most 3 cars with feature 40 in each consecutive 7 cars

4A) Explain in detail how to use a SAT solver for deciding in which order we can produce the N

cars. Clearly indicate which variables you use and their precise meaning, and which properties you
impose using which clauses or which constraints (for cardinality or pseudo-Boolean constraints, it is
not necessary to write their encodings into clauses).

Solution:
Variables:

1. xi,j meaning “at position i in the sequence is car j”, for 1 ≤ i ≤ N and 1 ≤ j ≤ N .

2. fi,k meaning “at position i in the sequence is a car with feature k”, for 1 ≤ i ≤ N and 1 ≤ k ≤ 40.

Clauses/constraints:

1. At each position i is exactly one car: N constraints of the form xi,1 + . . .+ xi,N = 1 (one clause
for the ALO constraint; the AMO constraint can be encoded into clauses in different ways).

2. Each car j is at exactly one position: N constraints of the form x1,j+ . . .+xN,j = 1 (ALO+AMO
as before).

3. For each position i, and for each car j having feature k in its list of features, one binary clause
indicating that if at position i in the sequence is car j, then at position i is a car with feature k,
that is, ¬xi,j ∨ fi,k.

4. For each feature k allowing at most m cars out of each consecutive c cars, cardinality constraints
of the form fi,k + . . .+ fi+c−1,k ≤ m for every subsequence of positions of length c, that is,
between i and i+ c− 1 for some i with 1 ≤ i < N − c+ 1.

4B) Imagine the problem becomes too difficult for the SAT solver. Explain how you would exploit
the fact that there are groups of identical cars, i.e., cars needing the same subset of features.

Solution: In this case, xi,j can mean “at position i in the sequence is a car of group j”. The clauses
of type 1, 2 and 3 are adapted accordingly:

1. At each position i is exactly one car group: N constraints of the form xi,1 + . . . + xi,N = 1.

2. For each car group j of nj cars, we express that it is at exactly nj positions, with a
cardinality constraint x1,j + . . .+ xN,j = nj.

3. For each position i, and for each car group j having feature k in its list of features, one binary
clause indicating that if at position i in the sequence is a car of group j, then at position i is a
car with feature k, that is, ¬xi,j ∨ fi,k.

If groups are large, this considerably reduces the number of xi,j variables, as well as the number of
clauses of type 1, 2 and 3. Note that, given a model, we can obtain a correct car sequence by arbitrarily
assigning the cars of each group j into the nj positions available for that group.

