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The algebra of many-valued quantities.
Yon
Rosalind Cecily Young in Cambridge (England).

The following theory is one that I have recently adopted for the
better treatment of theories involving limits?), where it has growm increas-
ingly inconvenient to have to consider separately the upper or lower or
other individual values of & numerical limit which is not unique?), for want

1) A preliminary treatment was embodied in my Dissertation for the Ph. D.,
Cambridge, “Foundations for the generalisation of the Theory of Stieltjes Integration etc.
An n-dimensional treatment” (1929) and indicates the main features of the theory.
Refinements introduced into the present exposition may be summarised as follows.

1. In the concept of many-valuedness, a symbol a (now a gquantity), instead of
being identified with a set (of values), is now conceived as having any one of a given
set of values collectively considered,—in contradistinction to the idea of a variable,
which assumes individually considered wvalues in & given range which is generally
fixed.—The exact nature of the concept, as of any mathematical entity, is best
understood from the uses to which the concept is put, and in this case these are
quite different from manipulations of sets.

2. By the introduction of the quantity having no values, i, the new nought
(without prejudice to the “zero” (0) of our ordinary numberscheme), several simpli-
fications are rendered possible; and snfer alia

8. the definition of & link of two quantities (having the values common to both)
a8 precisely complementary to that of their union (whioh has all the values of either);
and the purer oonception of the process of levelling (suppressing all values numeri-
cally > K).

4. The explicit definition of an infinitesimal also simplifies the exposition.

5. I absolutely exolude any referenco to “infinite values”, pending the precise
definition and theory of such values, which will form the subject of a later paper.
In accordance with this, the treatment of limits is that of finite limits throughout,
i e. concerns exclusively the finite values of limite, which may or may no¢ constitute
the complete limsts. On this point, the present treatment is a good deal more precise
than the original one.

- %) The general idea of considering ali the limits, and not merely upper and lower
limits, seems to have been firs; utilized by W. H. Young in 1908: “Sulle due funzioni
a pid valori costituite dai limiti d’ una funzione di variabile reale a destra ed a
sinistra di cissoun punto”, Rend. Acoc. Lincei (5) 17, 582—87.
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of accurate rules for their collective manipulation®). Applications of the
theory will be published elsewhere; the theory, however, seems to be of
sufficient interest in itself. As an illustration of the efficiency of the new
instrument, the rules given by Theorem V (p. 283), and more generally by
Theorems VI and VII, should be compared, also for elegance and precision,
with the current inequalities (which they of course include):
lim a,,+ lim b, < lim (a,+b,) < lim @, + i b, < @ (a,+b,)
ey "> o — m-» o “mrow m

m-—> oo m-» o
< Im a, + Im b,
m-r m-» o
and the corresponding ones for products.

1. Many - valuedness.

When a symbol a, b, , (), etc. represents any one of a given set
of numbers, we say that it represents, or is, a (finite) quantity, and the
given numbers are called its values.

In the particular case when there is only ome number given, the
quantity is said to be one-valued and is identified with the given number.

The necessary pendent of the notion of a quantity with more than
one value is that of a quantity without any values; this then has to be
classed with many-valued quantities in the same way as the null-set has to
be classed with sets generally. We shall call it nought*) and denote it by

é.
A quantity with at least one value is therefore said to be nom-nought.

A quantity with a bounded set of values only is said to be strictly
finste. A quantity with positive values only is said to be positive, ard if
its values have a positive lower bound it is more specifically described as
strictly positive. Similarly, a quantity with negative values only is said to
be negative, and if its values have a negative upper bound, it is said to
be strictly negative.

A quantity none of whose values is 0, is said to be definite. If it does
not have values as nesr as we please to 0, it is said to be strictly definite.

If any of these properties belongs to a given one-valued quantity, it
belongs to it of course strictly.

*) Such relations as appear in the paper of W.H. Young just quoted, e. g.
Fr(P)<n, Hp(P)Zn, Gr(P)+E<F (P)<Hg(P)-k,

for his many-valued (right- and left-hand limiting) functions, tacitly assume some rudi-

ments of an algebra of many-valued quantities, though the relations in this case being

of so simple a nature, there was no inconvenience or ambiguity in introducing them.
¢) The ordinary 0 is called zero.
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2. Relations.
Two quantities ¢ and b are said to be equal, and we write
a=2>b,
if the set of values of a and that of b are identical; i e. if every value
i versa,
o “: ;u;::i‘:;; t:zf i: ::i(tii vtcl::mbe included in another b, and b is said to
include a, and we write sCh @ b,
if every value of @ is a value of b (but not necessarily the converse). In
particular, for every quantity a,
odCa.
For one-valued quantities, inclusion reduces of course to egu?.lity..
A quantity a is said to be less than another b, and b is ssid to be
greater than a, and we write
a<b oo b>a,
if each value of @ is less than one of b and each value of b s greater

i i be 6.)

than one of a. (In particular neither @ nor b may

The relation is said to be strict if it also holds betwee'n the upper
bounds and between the lower bounds of the two sets of values; i. e. provided
neither these upper bounds nor these lower bounds are e‘qual. o

A quantity a is said to be superior to b, and b is sal'd to be zinferior
to a, and (for reasons which will at once appear) we write

afLd o bta, /

whenever either some value of a is greater than eaxfh value ?f b, or some
value of b is less than each value of a. (In particular, neither a nor b

may be 6.) ' ‘ o
To express the fact that @ is not superior to b, and b not ¢nferior

to a, we write therefore
° alb or b=a.

This means then that either @ or b is 6, or each value of @ is < some
value of b, and each value of b is = some value of a.
Similarly, a is not less than b, and b not greater than a, and we

ite
therefore wri akb o bia,

if either @ or b is 6, or some value of @ is > all values of b, or some

value of b is < all values of a. o i alont
For one-valued quantities, “less than” and “inferior to” are equivalen

phrases.
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If a is less than b, it is @ fortiors not superior to b; which is equi-
valent to saying that if a is superior to b, it is fortior: net less then b;
symbolically:

a<b implies a<bd; aLbd implies a<b.

Two strictly finite quantities cannot be both less than and greater

than one another; i. e.
a<b implies a3} b.

But they may very well be both superior and inferior to one another;

the necessary and sufficient condition for

aLl and apd
to hold simultaneously is indeed merely that either a has all its values
less than one, and grester than another, value of b, or b has all its values
less than one, and greater than another, value of @. In particular, we

cannot then have a =b; i e. a many-valued quantity a cannot be superior
or inferior to itself, so that we have always

ala and a>a.

A given quantity ¢ may moreover be neither superior nor inferior to
another given quantity b, i. e.

a<b and a>b

may hold simultaneously without a and b being equal; a necessary snd
sufficient condition for this (if we omit the trivial case @ =4 or b=y¢)
i8 in fact that the set of values of a and the set of values of b should
(without coinciding) have the same upper bound, included in both or in
neither of the two sets, and the same lower bound, also included in both
or in neither of the two sets.

If a is included in b, it cannot be sirictly greater or less than b.

But it may still be either not superior or not inferior to b, or both;
indeed & necessary and sufficient condition for

"aCb and a<d
to hold simultaneously is merely that the values of b are those of a together
possibly with others not less than these; and that for
aCb and a>b
to hold simultaneously is that the values of b are those of a, together

possibly with others not greater than these.

Again, if g is included in b, it may also be either superior or inferior
to b, or both; in fact, for

aCb and agfd
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to hold simultaneously, it is necessary and sufficient that, besides lt:.ll th]e;
values of @, the quantity b should have at least one value less than al

these; and for aCb and akb

to hold simultaneously, it is necessary and sufficient that, besides all ﬂ;;l‘::ues
of a, the quantity b should have at least one value greater than ege.

3. Associated quantities.

Associated with any non-nought quantity @, we define, as far
existent (finite)
a) the upper value

a

or upper bound of all the values of a;

the lower value a

or lower bound of all the values of a;

the breadih fmz—s
or span of the set of values of a;
b) the -} part ‘
a+

i8 1 iti d otherwise having as its
ti ual to a when this is positive, an . _
:il::smalitalee%ositive values of @ and the value 0; (when a is one-valued
a, is thus the larger of & and 0);

the — part a

equal to ¢ when this is negative, and otherwise having- allhthet}x:egl:::
values of @ and the value 0; (if @ is one-valued, @_ is thus the
of a and 0);

¢) the absolute magnstude lal

or quantity having as its values the moduli of the values of a;

d) the opposite —a

ith th
whose values are numerically the same as those of a, but with the
opposite signs;
e) the snverse .
@
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(defined only when g is definite) whose values are the inverse % of the
values « of a;

£) limiting values, or numerical limits of sequences of values of the
quantity a;
the (finite) frame

[¢]

or quantity having as its values all the values and all the limiting values

of a; thus a one-valued quantity, and generally any quentity with only
a finite number of values, is its own frame.

A quantity which is its own frame is said to be closed (finitely). 1f

it is also strictly finite, it is said more specifically to be completely closed.
This means that it has a closad set of values.

A quantity which is its own opposite is said to be symmetrical. The
only one-valued symmetrical quantity is 0.

A quantity which is its own inverse is said to be reciprocal. The
only one-valued reciprocal quantity is 1.
The opposite of — g is clearly a; so is the inverse of %.

Each of the other associated quantities of @ is the associated quantity
of same name of iteelf. E. g

@=(7; (a+)+=a+; l(la’)]=la’
In particular, the frame of @ is always closed (finitely).
As regards the associated quantities of different names of each

associated quantity of @, we have the following relations, whose proof is
immediate.

Upper and lower values.
(@), = m’ (@).= (GT)’ (a), = (a,),

(—a)=—(a), (—a)=—(a);

. Ildl
|a|= larger of { and
T

and hence also
ﬂlal ——<—ﬂa‘
-+ and — parts,
(—a)+ == (a-—)» (—a.)_z - (a+);

Absolute magnitude.

[a). <[a] [ =[]
|=al=lel, |[a]|=[a]]-

Mathematische Annalen. 10i. 18
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Frame.
=—[al |
Interpreting the relations between two quantities in terms of their
associated quantities, we have

A. alb
is equivalent to CaC—b,
and to

1 1
A

when both’ these inverses are defined
It implies moreover

laICIbI, a, Cb,, a_cCb_, E(@,

and

dézﬂ ggé’ ﬂuéﬂb'
B. a<b
is equivalent to Ca>—b,
and to ; ;
R}

when a, b are positive. o .
Moreover, if it holds strictly, it is equivalent to

a<b, a<b,
hence to
[e] <[3]-
C. aslb
is equivalent to Caz b,
and to
1 1
2%
when a, b are positive.
+ moli
A1§o it implies i<b, a<b

and is equivalent to this pair of relations if b includes its upper and a

its lower value.
It implies further

and

Ed
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D. By taking complementaries of the above propositions, we obtain
those relative to the other two types of relation.
We shall define all the associated quantities of nought as again

nought. 1. e.

= - 1
6=0=4

, =0, — 0 = ¢; 5,—:6;
l6|=0; [6]=0;
6, =0, 0_=9.

4. Operations.
The sum

a+b
of two non-nought quantities @ and b is defined as the non-nought quantity
having all, and only, the values which are sums of a valie of @ and a
value of b. The sum
a+b+c
of three non-nought quantities, @, b and ¢ is defined as the non-nought
quantity having all, and only, the values which are sums of a value of q,
one of b and one of ¢. And so for any number of quantities.
Similarly the difference
' a—b
is defined as having all, and only, the values which are obtained by sub-
tracting a value of b from a vslue of @, and is clearly the same as the
sum of ¢ and — b,
The product
a-b
of two non-nought quantities a and b is similarly defined as having all, and
only, the values which are products of a value of a by one of b. And cor-
respondingly the product of any number of non-nought quantities is defined.
With the corresponding definition, the ratio

a

b
of @ by b, defined only when 0 is definite, is seen to be the product
1
of @ and B
The associative ard commutative laws for addition, subtraction and

multiplication in ordinary algebra obviously continue to hold, without any
formal change; the monotony laws

“a<<b mplies

(e4c)<(b+c)”

ac<be

and

“a < b inplies when ¢ is positive”,

18%
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and the corresponding ones with < instead of <, are similarly unaltered.
The new relation of inclusion furnishes us with a new type of law

“q C b implies (a4 ¢)(b+e¢)”

. “alb ac C be”,

called the inclusion laws for addition and multiplication.
Furthermore, we note that

if ¢ 18 strictly finite,

and
implies

c+dCc implies d=0;
if ¢ is strictly finite and sirictly posstive or negative,
cdCc tmplies d=1.
For if
c+dCe,

and y be any value of c, ¢ any value of d, » + 6 is also a value of ¢,
and so are y + 26, y + 34, and generally y + N, for every integer N:
go that if ¢ is strictly finite, 6 is necessarily 0.
Similarly if
cd Cc,
and y be any value of ¢, ¢ any value of d, then yJ, yé® and generally
y6%, are also values of c, for every integer N; so that if ¢ is strictly
finite, | 6| is necessarily <1, and if ¢ is strictly positive or strictly nega-
tive, | 8| is necessarily >1. Hence ¢.e. d,
It is essential also to note that although
a—a>0
always, (a — a) is only =0 if a is one-valued. From this and the above,
we conclude at once that '
a+bCc impliee alc—b,
but for strictly finite c, the converse requires b to be one-valued.

The remark that a —a = 0 requires a to be one-valued is a parti-
cular case of the following:

A sum of given quantities is one-valued (if and) only if each of the
given gquantities is one-valued.

For if one of the quantities is not one-valued, and we choose any
fixed value of each of the others, every value of the first quantity neces-
sarily gives rise by addition with these to a different value of the sum.

Similarly,

A product of given quantities is one-valued (if and) only #f each of
the given quantities ¢ one-valued, unless indeed one of these quantilies
s the number 0, when the product is also 0.
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For if one of the quantities is not one-valued, and none of the cthers
18 the number 0, we can choose & non-nul value of each of these, which
when multiplied together with different values of the first quantity, neces-
sarily gives rise to different values of the product.

The distributive law for eddition and multiplication takes the form

(e +b)eCacH be,

hence more generally
(a+d)(c+d)ac+bc+ad+ bd.

If ¢ is one-valued, or if @ or b is 0, the former relation of inclusion
obviously reduces to an equality. In other cases it may or may not reduce
to equality. Thus if ¢ has the two values 0 and 1, those of (a - b)c
are the values of (@ + b) and the value 0, while those of (ac -+ bc) are
those of @, of b, of {a 4 b), and 0; but in this case we have certainly

(a+bd)c=ac+be
if both @ and b include the value 0; since

ala-+b
if b includes the value 0, and
L bCa+d
if @ includes the value 0. cot
Note. As-a particular corollary of this proposition, we note that for
every a:

a,+ta_Da;

’Ijhese relations are obvious, and reduce indeed to equalities, if a is posi-
tive or negative. In every other case, both a, and a_ include the value 0
fmd hence are included in their sum; and both a " and —a_ are includeci
in theirs. Since every value of @ is one of a, or of a_, and every value
of |a| is one of a, or of —a_, the truth of the two relations folows.

For the associated quantiiies of sums and products we have the
following rules:

Upper and lower values®):

a,—a_Dlal.

and generally

%) Subject to-existence (finite).
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As particular useful deductions, we note
a—a=pf, a—a=-—§,
ﬂu+b= :3a+ﬁb;

ﬂ(au) = ﬂ(lﬂlM) = 1(1] : ﬂb'
Absolute magnitude.
la+b|<lal+[b; |a—b|2|la|—[b]]; lab]=]a] 0]
There are formally precisely the same rules as for one-valued quantities
and follow from these.
+ and — parts.
(a’+b)+§a++b+;
e +d)_2a +b_;
(equality occurs when a and b are both positive, or both negative).
The second relation obviously reduces to the first when we substitute

—a for @ and — b for b i it.
To prove the first, we note that a value oi

(a+0),
is either 1. the sum of a positive value of @ and a positive value of b,
i.e. a value of (a, +b,); or 2. it is the sum of a positive value of a
and a non-positive one of b, i e. is < a value of a 43 or 3. the sum of
a non-positive value of a and a positive one of b, i.e. is < a value of b,;
or 4. it is 0 with (@, +&,)> 0. In each of these cases it is & fortiori
< a value of (a, +b,). Thus each value of the left-hand side is actually
< some value of the right-hand side.
Conversely, a value of
a, + b+

is either 1. the sum of a positive value of a and a positive value of b,
hence a positive value of (a--b),; or 2. it is a positive value of a, and
b includes some value < 0, hence (a - b), and so (a + b),, include some
value < that positive value of @; or 3. it is a positive value of b, and
(@ +b), includes similarly some value < it; or 4. it is 0, and both
a and b include non-positive values, hence also (a4 b),>0. In each of
these cases, some value of (a 4 b), is < the assumed value ofa, 4 b,.
And each value of the right-hand side is thus also some value of the

left. Q.e.d.
Frame.
-+
= [e]-[2)-
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The definitions are extended to ¢ by writing

O0=—_-=a;
) s

at+o6=a—d=a; a-
and generally following the principle that in all calculations with sums,
differences, products and ratios, 6 has no effect, and may be removed,

introduced and transfered at will.

5. New oporations.
We define the union
avb
of two quantities ¢ and b as the quantity having all, and only, the values
of a and the values of b.
We define the link
aQb
of two quantities @ and b as the quantity having all, and only, the values
common to both @ and b. If such values do not exist, the link of a and b

is nought.
The definitions are extended to nought by
({avd)=a,
aoéo=g,
. We have

(ave)=(aQa)=a;
(@ Qb)Cadl(avb).
The definitions are immediately extended to more than two quantities
a and b, so that we may speak of the union and the link of any number
of many-valued quantities.
The new operations are obviously commutative and associative in the
ordinary sense. Moreover their combination with one another is distributive
in the ordinary sense, i. e.

(6w b) Qe =(afec) v (bQc)
As regards their combination with former operatlons, we have
(@avbd)+c=(a+c)v(b+ec),
(avb)-c=(ac)v(be);
(@Qb)+e¢ C(a+e)Q(b+e),
(aQd]-c C (ac)Q(be);
(@+b8)v(c+d) C (ave)+(bud),
(ab)w(cd) < (ave)(bud);
(a+8)Q(c+d) > (aQe)+ (bQ4d).
(a0)Q(ed) > (aQe)-(bQe).
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We have also obviously ths énclusion laws®): if a Cb, then, for every c,
(@ave)C(bwe), (aQe)(bQe).

As regards the associated quantities of links and unions, we have

the rules:
Upper and lower values.

a v b = larger of

aﬂbgd‘_\:l—i,
aQb>avbd
Absolute magnitude.
lavb|=|a|w|b],
la Q d] Cla] Q18]
Opposite.
—(@avd)=(—a)v(—b), —(aQb)=(—a)Q(-b).
Inverse. . _— . _12_1_
awb a”b’ Gt aXry’
-+ and — parts.
(aub)+=a+vb+; (avb)_’:a_ub_.
Frame. '

o i <[l [ag¥<[alse]-

6. Special many-valued quantities.

The symmetrical sub-unit

of many-valued quantities is the quentity having all, and only, the values
between —1 and 1 both inclusive.
We have clearly

0= —0 (symmetry),
6-0=0

d
* 0+0=20.

%) As regards the monotony law, this only holds for a union, in the form:

i f ery ¢,
if a £ b, then, for every (6w 6)< (b o).

>
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If ¢ is any number, the product
60
has all, and only, the values hetween 1 8 inclusive, thus representing in
fact the closed interval of endpoints — 4, 4 on the number-axis,
For any many-vslued a, the sum
a+ 60

has all, and only, the values each of which differs from some value of q
by not more than |§]. It includes in particular all the values and all the
limiting values of @ (the latter provided 4 is not 0); i. e. for every posilive

number 9,
a+ 460 >[a].
Moreover, we have
a 400 C[a]+ 4.
An snfinitesimal
e

is any positive many-valued quantity whose lower value is 0. The letter
€

will represent any value of such an infinitesimal, and is thus, in the usual
language of analysis, an “arbitrarily small number”. Thus also the ex-
pression

el
Tepresents an “arbitrarily small” interval of centre 0, and
a4 ¢l

an “arbitrarily close neighbourhood” of the set of values of a.
Accordingly we see at once ‘that

c(@

cCa-+ el
(for every value ¢ of an infinitesimal).
For any given a, if K be a sufficiently large positive number, the link

a) K6
of @ and KO certainly has a value. We denote it also by

al;.

tf, and only if,
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i i ink of a given many-
The process itself, namely of forming the lin . .
valued quzI:ntity and of the special K0, will be described as levelling the

given quantity. .
By the distributive law for links of sums,

E‘x+§lx<::l(a +0) 2K’

A kind of converse is provided by the following useful property:
If a horizontal or vertical pair?) of the four relations
a< K, b< K,
—a< K, —-b<K,

t8 known to hold, then :
@x< azx+ Elsx'

By interchanging @ snd —b, we can always reduce any of the sup-

irs to include
posed pairs o< K.

As the required relation is then transformed into itsel.f (by -takin_g opper
sites), it suffices to consider this case. It then stands in conjunction with

either

—a< K or b<K.

Now every value § of b whick, with some value « of a, gives a sum
included in K0, so that in particular
o + /3 g —K )

Bz —2K,

must satisfy

smcel;b y—hgi}l;e,sfveal::v: fn‘ﬁlarly (or by writing —a for a, —b for b)
BL2K.

Hence both in this case and in the case b < K, we have necessarily
BC2K0.

In the former case, as we have already

aC KBC2K1,
this proves the required relation. In the latter case, in which the hype-

theses are symmetrical in @ and b, we see by interchanging @ and b that

7) L o. either a and b are both <K or are < —K, or one of them at least
between -+ K.
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also every value « of @ which, with some value B of b, gives a sum in-
cluded in K6, must necessarily satisfy

« 2 K0,

and the required relation is sgain established. This completes the proof.
By the distributive law for links of products,

1, 0w,

A kind of converse is again provided by the proposition:
1f a vertical or horizontal pair of the relations

aC KO, bCKo,
1 ' 1
2 (KO, - K6,

@KC EL'; Hm'

The proof runs exactly parallel to the preceding one Since inter-

is known to hold, then

changing ¢ and »})—, and taking inverses, simply transforms the required

relation into itself, we may suppose
1 -
- C KO
to be one of the assumed relations. In that case, every value f of b for

which, with some value « of a,

«-BCKO

must satisfy

BCK®0.
And either directly, if @ C K0 is the other assumed relation, or by inter-
changing a and b if %( K0 is the other assumed relation, we must also have

e« C K.
Hence q.e. d.

7. Limits.

Our mode of extending to “many-valued” quantities the operations
of ordinary algebra applies, mutatis mutandis, to the process of passage
to the limit.

A. Successtons.
A succession

a, 2y, ..., 0

my s
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of quantities is said to have as its finste limst, denoted by

( lim )a,,I R

m-> o
the quantity @ having all, and only, the values which are finite numerical
(upper, lower or intermedisry) limits, in the ordinary sense, of successions
whose m'h term is a value of a,. This definition is quite unambiguous
and always yields a quantity a, which may, however, in particular cases,

reduce to 6.
If every succession whose m' term is a value of @, is bounded

(i. e. no such succession has an infinite upper or lower limit in the ordi-
nary sense), the finite limit of the succession

Ay, Gyyeeey Qs - -
is called its complete lfmit, and is denoted by

lim a .
m—>o M

A complete limit cannot be nought, and is always strictly finite.
Theorem I. A value ¢ belongs to
() o
if, and only if, it belongs to
a,+ 6

m=m,(a,z).

This follows at once from the definition of a numerical limit in the
ordinary sense. It may also be taken as the definition of the finite limit,
and then includes as a particular case that of a unique numerical limit
in the ordinary sense.

Theorem II. If a 18 the complete limst of a succession of quantities
then

a,Ca-+0¢ for al m >N, )

For a value ,, of a, not included in a -+ O¢ is one differing by more
than ¢ from every value of a. If such a value exists for a sequence of
indices m,, each numerical limit of the succession {ay,} differs from every
value of a (by not less than &), whereas since a is the complete limit of
a,,, it must exist (finite) and belong to a by definition.

From Theorem I, we may at once deduce that

The finite limit of a succession of quantities s always closed finitely.
A complete limst 18 therefore completely closed.

Let a be the finite limit of a succession

for a sequence of tndices

a,,,

a‘,a,,l..,am,...

-
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and let « be any limiting value of a. The statement is that ¢ is a
value of a.

By its definition as a limiting value of @, the number « belongs " -

(). :
m > o,
where the numbers ¢ are values of a. Hence by Theorem I,
o Ca, 062
for a sequence of indices < o0l
k=Fk/(a,c).
Also, as values of (Jl_r’nm) a,,, the numbers «,, again by Theorem I, belong to
a, 1 0¢/2

each for a sequence of indices

m=m;(a,,e).

Hence, for this sequence of indices m,

o+ 02 Ca, 4 0e.
eCa,+ 0

for the double sequence of indices m = m,, («

th e =m;; (e, &) =m; (&, 4 ¢), and a
fortiori the condition of Theorem I is fulﬁlléd for «. I-’Ien'::‘é‘q).’ e.) d

The following properties are immediate:

It follows that

If gy=a,=...=0q,=...=q, (mlimw)am=@.
If @,£b, for each m, (hm )amS(lim )b .
m-—> o = \m>ow '"
If a,>b, for each m, (Hm)am)(lim)b.
m-»m m-»>c0] ™

" Also

()= fm )
As a part':icular case of the third property, obtained from it by teking
b=¢ for all indices except m,, m,, ..., We may state:
For every sequence of indices m,,
(i) @m, C (U ) @

>

As a consequence of the fourth of the above i
uence properties, we may also
speak of the finite limit of a succession whose first p terms are m)),t all
properly defined, writing
/e .
() om = (Jim_) @

thef] as the definition of the left-hand side. This is convenient e. g. when
taking inverses (see below).
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The upper and lower values of ("}l_l’nm> a,, when defined (finite) will
be denoted for simplicity by

(lim) a,,
m » oo
inite limits of a, (m— oo). If the
and called the wupper and lower finite -
limit is complete, both are of course defined, and we then denote them by

lim a,,
m—» oo

im a
w>o M

and call them the upper and lower limits. We have obviously, in the
latter case,

14__11]'1 am= ]l_l'I_l qm’

im a,= lim @
1 " m? m-¥» o m-»

m-—» oo m-»co

and in general one or other of

)= ()

-( lim

m-» oo

(lim)a, = (lim}a,
m-» co m-—» o

holds provided only the right-hand side of it is defined. It is at once

obvious that if (and only i) both right-hand sides are defined, the limit
is complete.
Again, we have

lim

lim la, |; Jim

| () o] = (2

(i), = (Jim) (@i (i )an) = (Jim) (a)-

To see this, we have cnly to remark firstly that « is a pos?itfive value
)a. if, and only if it is a limit of a succession of positive values
m oo

Iim)a =(

*(m-nn "

) (= a)-
And

of ( lim

m -» 0 .
¢y, of @p,; so that the positive values of

((Jim )@, and (Jilnw)(am)Jf
m-» o

are certainly the same; next as regards the value 0, . .

I) if a value of ( )am as a limit of positive values «,,, 1t again
belongs to both; . .

II) if & value of ( Iim )am as a limit of negative values «,,, it be-

m > oo

longs to (am), and hence to ("],ij’“w)(a,..)w while it also belongs to
(( lim )am) ;
\\m > 0 + ' .
III) if a value of (( Tim am) but not of (ﬂlllnw) a,, then the latter
m -» 00 +

has negative values, and hence so has a, for a sequer;ce of indices m,,
i i lim\(a,),.
so that again (a,,), includes 0, and so does (m‘m)( )

lim

m-» o

-
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This completes the proof of the first equality; the second follows by
writing — a for a, by the relation for opposites just before.
We have also, as an immediate deduction from Theorem I,

(i) o = () o] = (i) o]
since Ca,+0eC +fe.
Finally, .
(T ja, = () o
m—> o

provided only the left-hand side is defined.

B. Double successions.
A double succession

2T Quay - ooy Ay oy ooe
Ay Aygy ooy @y s -+ -
a,

10 Tugs oons Byps e s
of quantities is said to have as its finite double limst

lim )a
(“’;ﬂ)-bm kym >

the quantity @ having all, and only, the values which are finite numerical
(upper, lower, or intermediary) double limits in the ordinary sense, of
double successions having as term of index (k,m) a value of @, .- When
all such double successions are bounded, the finite double limit ig also
called the complete double limit, and denoted by

lim

a .
(k, m) > co k,m

If, in this definition, we take only one type of repeated (and not
all the double) numerical limits, we obtain a quantity included in the
finite double limit which we call a finite repeated limit of the double
succession. The twin type of repeated numerical limits then give anotler
finite repeated limit of the double succession. It is at once clear that
the two repeated limits may be obtained as.

(i) (i yanm) and - (lim ) (im0
respectively, and we denote them by
(kl—lP«ln 1;!i~I§Ico

respectively; omitting the brackets when the limits are complete.

) [ T ( Iim lim

)a’lc,m
m-ro ko
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We have, as remarked,

(lim lim )ak,,,. - ( lim lim )a,,,m( (( lim )a‘.,,,,.

k>0 m-»>o m-» o k>0 k,m) >

We have the analogues of Theorems I and II:

Theorem III. A value « belongs to

((m,lv})r—{w) @,
if, and only if, it belongs to
a,,,m+ fe
Jor a sequence of indices
m=my(e,e), n=nye,c¢)

(both tending of course to co with ).
Theorem IV. If a is the complete double limit of a double succession
of quaniities a,, ., then

a,,Ca+0¢ for all m >N, and all n>N,.

All the other properties of the finite limit of a succession hold in the
exactly parallel form for finite double limits of double successions, and
we use the corresponding notation

( lim )am . 8nd ( lim )a, .
\(m, ) >0 * (m, 1) > ’

to denote the upper and lower values of the finite double limit, or upper
and lower finite double limits, when existent (finite), omitting the brackets
when dealing with a complete limit,

C. Nple successions.

In like manner, we define and discuss the finite Nople limst of an
Nple succession of quantisies
L)
where (m) stands for N indices m,, m,,..., m,, each of which assumes
‘all integral values. We denote the finite Nple limit by

() om
omitting the brackets when the limit is complete; call its upper and lower
values, as far as defined, the upper and lower finite Nple ltmits and
denote them by

lim )a ( lim )a,,;
() Femr Toae M

and have all the parallel properties holding indiscriminately. We havs
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* also the various repeated limits, all included in the double one,

( lim Lm ... lim )a(_,,,

mi>0 myr0 My

where m{, m3, ..., mj i8 any permutation of the indices (m,, m, ..., my)=(m).
And we have zartially repeated limits :

... Im \a
((m),-»w (m)y—> (m),+m) (m) 2

where (m),, (m),, ..., (m), represent mutually exclusive groups of the
indices (m), together comprising all the indices (m).

8. Distributive laws for limits.

Denoting as agreed by
L (tm), (n)
the aggregate of all indices
my, mz, ..., My, Ny, Ng, seey Ny,
of

(m) = (ml! ms, ..., mM)
and

(n) = (ni) Ng, ..., nN)y
we have obviously (provided, in the first two relations, neither of the
finite limits on the left hand side is ¢; but without restriction in the last):
((J)I-Tw) % - (d)iinm) On = (i, i ) (Gm + bw)

{m—>co (n)>»o
(X) (("!)12100) a("') ) ((J)i—lllm) b(") = ((,J,i.?w (,,]ji_l,nm) (a'(M) ’ b(n))’

() () b = ) )

These relations follow at once from the fact that s finite Lmit is
closed finitely, i. e. coincides with its frame, and the fact that the finite
limit of & succession of terms all equal to @ is @, (or the parallel facts
for Nple successions).

As all the operations are commutative, the limits on the rigkt-hand
sides may also be replaced by those of the twin type

((nl)i—lbnm w}li-l%nm) ’
80 that in these csses, i e. for (M + N)ple successions whose term of
index ((m), (n)) is always either the sum, or the product, or the union,
of the term a,,, of a Mple succession and the term b, of a Nple suc-
cession, the two finite partially repeated limits
(T @) (hm, Jim)

are equal.

Mathematische Annalen. 104, 19
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The corresponding formula for links is
( lim lim )(a(,,) Qb)) C (( lim )a(m, Q (ml)i_lem) by

(m)> o (B)>o® (m)-> o

< ( Jim,, ) (3 8 ) v {( Jim, ) R (Jim) B}

(m)-» ) (n)>co0
where ¢, has all and only the values of g, not belonging to (("1.1_111 )b(,‘).
It is because the latter link is not always ¢ that we do not in general

get equality.
In the case of unions and links we can at once complete the result,

by shewing that
(«m),l(i»fg-m) (3w~ Bw) = ((n})iﬂlm) Fom ((Ai’»nw) b
(«m).l(ifg}-m) (@ & bw) < (("}Elm) % R ((nl)i—qlw) b

These relations are simply expressicns of the fact that a succession of
numbers taken from two given successions of numbers has for its numerical
limits exclusively limits of these two successions; and if each number of
the first succession belongs to both the given successions, each of its limits
is a limit of both given successions. These facts are equivalent, indeed
to the statement that the left-hand sides of the above equalities are included
in’ the right. The converse, in the case of unions, we already know by (X).

We note that
(dizm,) 3l =[a]-
This is obtained by writing

2,=a, b,=n0
in the general formula for links, and observing that
(lim ) n0
n->om

has all possible values, so that its link with any quantity is again that
quantity. Another particular case to note is )

i | — lim @
((ml)u-lblm)a(") g m>o m]

except for possible values + K of the left-hand side, not necessarily
belonging to the right.

The case of sums and products is however more subtle. This is at
once clear if we think of a succession of quantities @, whose finite limit
is 6 (a8 for instance when a, =m), and take b, = —a,. The sum
a,, + b, then includes the value 0 for every m — n, and hence its finite
double limit includes the value 0, whereas (,..11139 )am-}— ('}i_inw)bn is o.

Similarly, if, for the same a,,, we take b, = —, the product @, -b, includes
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the value 1 for every m =n, and hence so does its finite double limit
whereas (mli-l’nw)am-(nl_i’n:o) b,=d-0=¢.%) ,
We may however at once prove the
Theorem V. For any Mple and any Nple succession, of terms a
and b, respectively, whose limits are complete, -

lim a = 1 1
((,,,),‘,,,,_,,,,( o Bew) (,,},lﬁ',‘a,“(m)'f‘ (,,l,‘_?,,b(u)’

«m),l(l:lx)l—»m(a‘”" * bw) =(m1)i-lea"") ’ u-])i-IPaabO'V
o This is a consequence of Theorem II for successions with complete finite
limits, if we confine ourselves to the case M=N=1 (the proof being
precisely parallel in the general case). In fact, by this theorem, we cer-
tainly have for all m > N,, and all n > N,,

(x) amC"}i_x,nwam—l-Ge, an,}iin b, + 0¢;
hence by addition and passage to.the limit,
(m,l.i‘fl_l.m(a'" +b, <».]-1Eo a, + ,}1_1.11“ b, + 20e,

since both limits on the right-hand side are closed; and for this same
reason, the latter relation is equivalent (cp.p.273) to
i (a,+0,)C lim q,+ lim b,
which is the addition form of the theorem.
Similarly, by multiplication and passage to the limit from (x)
W (o B)C Ji 0 i, + A0,
where
A= lim a, + lim b, 4+ 0¢

m->o

%) Here the complicstion is not,—as in the corresponding two relations (X),—
removed by merely stipulating that neither ( lim )a,, nor (lim \&§, is 4.
) o m > (n—» m) "
For instance, if, in the two examples of the text, we replace
b, by (b, vd)

for eao}l m, n then by the relation (X) for unions, and the distributive laws for
the union of sums or products, tke finite limits on the one side are in both

cases E and Izl, while those on the other include

ou and lu

respectively, — which by choice of ¢ and d can easily be made to differ from

(2] wna [2)

19*
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is strictly finite, and so Ae is always an infinitesimal. This is thus again
equivalent to
lim
(m, n)-> 0

which is the product form of the theorem.

(a,-b,) = lim g, lim b,
m-—r 7>

To generalise Theorem V as far as possible, we use the process of
levelling, and its properties noted on pp.274, 275.
Given any Mple and any Nple succession, of terms g, and b,

respectively, those of terms
@x’ Ex
respectively have complete limits, and hence, by the theorem,.
((m).l(iff)l)l—no {@x + b(") } = (ml)l—IPw Gm +(n])l—lzlm Ex’
((m).l(i'g)1->w{aEx ' Ex =_(n})121m@x ) (nl)l-lfw @x'
The right-hand sides, which are included in

(i) % ,,+ () Oew . () Gom

(y)

v. ((nl)iglw) b':")

respectively, are therefore included in
®) () e ()0 () e () Y
respectively. And under the conditions of p.274 and p. 275 respectively
the two {} brackets on the left in (y) include

() + biy) LE’ (G * I’(.QIKl
respectively, and so the two limits on the left in (y) include, except for
possible values +2K, +K?,

(((m),l(lif)x)l-bm) (a("') + b(n)) ’K’ (((M)-](lﬂl)l)l"w) (a('n) ) b(n)) K

respectively; by passage to the limit for K — oo, these become
lim

(o, o) (B bk (iR ) (e Bom):

Now the assumed conditions, if they hold for some K, hold a fortiori for
all larger K. Hence we deduce that the latter limits are included in, ani
hence, by (X), equal to, the corresponding expressions (z).

The assumed conditions are, respectively, that a horizontal or verticl
pair of the four relations

Fm) < K,
—Om < K,

by < K,
— by < K,
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(for the addition form) or of the four relations

a,,C K6, b, C K0,
1 1
K<K0’ KCKB,

(for the product form),—should be known to hold for each pair of
indices (m), (n). This reduces to assuming that one the same such pair
of relations should hold for all (m), (n); for the assumptions require that
if any one relation does mot held for all values of the index, the diagonally
opposite relation should hold for all values of the index; e. g. in the
first case
@ § K for some (m) implies — b, < K for all (n);

— 8wy & K for some (m) implies b, < K for all (n);

so that the only possibilities are

—K<a, < K for all (m);

or a,, < K, b,y < K for all (m),(n);
or —a,y <K, =¥, <K forall (m),(n);
or — K <b,, < K for all (n).

Similarly in the second case. :

- As we are dealing with limits, which are unchanged when we neglect
a finite number of the terms, it suffices to assume the respective conditions
fulfilled for all sufficiently large m and n. Thus finally we obtain the
following statements.

Theorem VI. If a horizontal or vertical pair of the four limils

(ol ) F (i Y B
(lim )b

(m) > co (n > =m?

exist (finite), then
(o ) @ Bi) = () Gy + ( Jim ) By

Theorem VIL. If a horizental or vertical pair of the Jour limils

lim ¢ i

m-> M (n}l-inm b(")’
lim —, im —L,

(m) > o G (m-» by,

exist complete, then

() (om0 = (A1) (i) B
This is the best possible statement we can get for the distributive

laws for finite limits combined by addition or multiplication, the complete
generalisation requiring in fact the theory of infinities.
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9. General limiting processes.

With regard to the limits defined and discussed so far, it should be
noted that the set of values of

(Jim ) ac,

(M) >
is not the unique limiting set, in the sense of the theory of sets, of the

set of values of ‘@), nor even of that of %). In general, of course,
these sets will have no unique limiting set, but only upper and lower
limiting sets. It is easy to see that these are contained in the set of
values of )
» ((n})lglm) Fm>

but in general ‘the latter will have further values not contained in the
limiting sets.

There is, however one important case in which the set of values of

(( l) )a(m) may be identified with the limiting set of the set of values of
M) > 0O,

@,y 88 (m)—oo. This appears from the following Theorem:
If a,, ts always closed finitely, and
Gm) D Amy
for every (m’) > (m)*°), then
‘ ( lim )a(,,,)
(m)—> o
has all, and only, the values common to a, for every (m).
Any value « belonging to a,, for every (m) is of the form

lim «,, with e« a,,

(m) > ©
(namely for )= ), and belongs therefore certainly to
(i) Fom-

On the other hand, from
Am) D Gy for all  (m’)>(m)

> ) oo

%) This is a familiar distinotion in ordinary analysis, where lim «; is not the
$> 0

same thing as hm (a;), where (o) represents the set having «, as its only object.

we deduce

E. g if ;= 1+—, the first lim is 1, the second is the null-set and corresponds

only to 4.
10) (m’)> (m) means each index m/ is >> the corresponding index m;.
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hence, as a,, is closed finitely,

% 2 ((m)+w) (m)

so that every value of the limit certainly belongs to g, for all (m).
This completes the proof.
Now for purposes of evaluation of limits, the general type of Nple
succession may be reduced to the above special type (closed conmtracting
successtons) by virtus of the following property:

Given any Nple succession of quantities a,, and defining
(@m) )

to have all, and only, the values each of which belongs to ayy) for some
(m')> (m), we have

g(,,,) (m')>(m)

((ml)l_lzlm) Iom = ((mli_inw)) Uiy -

For simplicity suppose N = 1.
As
gm ) am’

(W) O > (i) O

For the converse, note that a value of the left-hand side is a limit
of values y  of g, for a sequence of indices m;, i. e. of values am/ of am;
for a sequence of mdlcee m{ >my, i.e. a value of (hm) "

" —» O,

we certainly have

This completes the proof, in the case N = 1, and with the slight com-
plication in the indices, the same proof is valid in general.

The Nple succession of quantities

is clearly of the required special type, for each term is closed and the term
of index (m) includes those of index (m’) for all (m’)>(m). And its
finite limit coincides with

(("ll)—b m) g("),

( lim )a(,_,.

(m) > oo,

hence with

1) By analogy with the notation X a, and JTa,, we use U (a,) to denote the
union of a finite, and by extension (in the obvious sense) of an enumerably infinite,
set of quantities a,,
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Thus
Theorem VIIL. The finste limit of any Nple succession of quantities

() has all, and only, the values common to

R. C. Young.

= U Am')

Iom ') (m)

for all (m).
This characteristic property of the finite limit of an Nple succession
is the one most convenient for purposes of generalisation.
Suppose for instance that we have to consider a quantity @ (&) defined
a8 & (many-valued) function of a numericel variable £. In order to define

Jim a(£),
we first form the function
g,,(¢)
havirg all, and only, the values each of which belongs to
a(¢)

for some &' in

N'—&olg’f“'fol’
FCE+H0(8—&);
(eling a()= (El_xg‘x) %, (£)

to have all, and only, the values belonging to

g, (bo+0)Dg, (&+8') for all ¥'<,
we see at once, by Theorem VIII, that the above definition of
ALAC)
coincides precisely with that furmshed by Theorem VIII for

(wim,) 9, (b0 m)-

Let us extend the ‘definition of the many-valued function a(¢) of the
numerical variable £ by defining

for any quantity z,

i. e. for some

we then take

for &ll &.
Now as

a(z)
to have all, and only, the values each of which belongs to a (&) for some
valu: & of z.
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Then our function

9. (6)

a(é+0(&—&)),

where 0 is our symmetrical sub-unit.
In fine, we therefore obtain our definition of the finite limit in a
contsnuous passage lo the limst with respect to a numerical varsable E in

the form
(im)a() = (lin)a(&+5)- )

We notice that the many-valued function a(z) of the many-valued
variable z defined as above from a(¢), has the special property that

a(z) Ca(z)

z'C=x.

is precisely

whenever

Functions with this property will be described as contractive.
If, for any contractive many-valued functionof a many-valued variable z,
we deﬁne, for each z,, the auxiliary function

7,,()
as having (only) each value that belongs to
a(z")
z' Cxy+0(x — z,);
we have (since a(z) is contractive),

gx‘(a:) =a(z,+0(z —z,)).
(lim) (=) = (Jim) g, (2)

to have all, and only, the values belonging to g, (z) for every z, which
are seen to be the values of

(Jim ) g, (%0 +3)-

We thus obtain (as definition of the left-hand side): when a(z) 15 a
contractive function of x

(fim) (=)= (dm ) o (z0+ 7).

%) This limit includes a(&,). To obtain the more usual definition, replace 6
by the quantity 68’ having the same values except zero.

for some

We then take
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As a particular case, note that

(i) ==z

For unrestricted many-valued functions of z, cr of other arguments
(among which figure the variable point or set of points in » dimensions),
in their full range or in restricted ranges, the same principle of course
applizs, although the formulae become more :umbersome, and new notations,
hence to some extent new ideas, have to be devised for them.

[n the case of a function

a(P)
of a variable point in n dimensions,
(i) (P)
reduces to an nple finite limit.

Another interesting case is that in which the argument is a “sub-
division”, either in the Riemann or in the Lebesgue sense, of a given range
of points, and we are dealing with limiting processes such as occur in
Riemann and Young-Lebesgue integration. It may be described typically by
saying that the argument is some object P with which is associated a
specific quantity d, which we shall for definiteness call its norm, and the

required limit is .
()P
This is then defined by forming the contractive function of z

9(z)
having (exclusively) every value belonging to a(P) for some P of norm
d C a0, and equating the required limit to

(tim) o () = (lim ) (57):

\m > co,

(Eingegangen am 23. 5. 1930.)

Verkniipfung einiger Rechenproben von R. Mehmke
fir das systematische Eliminieren bei linearen
Gleichungssystemen mit bekannten Sitzen
der Determinantentheorie.

Yon
A. Walther in Darmstadt.

1. Im 2. Hefte, S.300—318 des vorangehenden 103. Bandes (1930)
der Mathematischen Annalen hat R. Mehmke eine Arbeit ,Praktische Losung
der Grundaufgaben iiber Determinanten, Matrizen und lineare Transforma-
tionen (Beitriige zur praktischen Analysis, II.}% veroffentlicht. Er hebt in
ihr gewisse fiir das praktische Rechnen wertvolle Proben hervor, die sich
beim iiblichen ,gewdhnlichen“ Eliminieren und beim , beschleunigten*
Eliminieren von Unbekannten in linearen Gleichungssystemen ergeben und
die nact seinen ,Erkundigungen bei hervorragenden Sachkennern ... son-
derbarerweise nicht bekannt zu sein scheinen“'). Die Beweise erbringt er
durch Heranziehung der Rechnung mit ,Extensen“ (Punkt- und Vektoren-
rechnung). Ich mdochte hier zeigen, dal die Proben mit geldufigen Satzen
der Determinantentheorie identisch sind, die natiirlich ihrerseits wieder mit
jenen Tatsachen aus der Punkt- und Vektorenrechnung zusammenhingen.
Und zwar handelt es sich um das Theorem von Sylvester®), nach dem die
aus den (k --1)-reihigen Superdeterminanten 1 <A < %) von

a; Gug ... Gy,
Ggy Ggg - - - Ggy
Gpy Gpg--- Gyy

1) En freilich nicht als Probe gewerteter Sonderfall findet sich z. B. bei P. B. Fischer,
Determinanten, Sammliung Goéschen 402, S. 6.

%) Vzl. G. Kowalewski, Einfithrung in die Determinantentheorie, Leipzig (Veit & Co.)
1909, § 41, S. 8388, § 44, S. 99-102, § 45, S. 102103,
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