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This paper presents a theory which lays down the foundations for
numerical computations and makes it possible to formulate properly
many numerical problems.

By the approximate number [a, 4] we shall indicate the interval [a,A]
i. e. the set of all real numbers « that satisfy the inequality a <z <A4.

. b
The approximate number [B—b, B+ b] can also be denoted by B. Thus,
H(A—a)
the approximate number [a, 4] can be expressed in the form ;[(A +a). We
shall omit initial zeros in the upper part, if they lie to the left of the
02
last digit of the lower one. For example, we shall write 3.1416 instead
0.00002

of 3.1416 .

We say that the approximate numbers « and # are equal and we
write a=p if, and ouly if, they are two identical intervals. Hence, we

a b
have [a, A]=[b, B] if, and only if, a=b and A=DB, and similarly A=3B if,
and only if; A=B and a=b.

We say that the approximate number f approximates the appro-
ximate number a and we write a=f or f¢=a, if, and only if, the
interval # includes the interval a. Thus, \;/e have [a,4]=> [b, B] if, and

p :

only if, @ > and 4 <B, and similarly 4 => B if, and onlyif, b—a >|B—A|.
It is easy to prove that the approximations a = f and f=>y imply a=>y.
The relation a=>B is a partial ordering of the set of all appro-
Ximate numbers. .
_ In practical computations it is convenient to use the following two
rules:

: a a+-|c| .
the rounding-off rule: A+4+c¢= 4 Ol!—) wp(uh‘w

’

a

. b i
the extending rule: A=)y4 it b>a
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For example, 2.12
9.¢I%2
09 0189 02 T _
2.7182 —2.12 =272, 0018 =C
Q=.00009%

Here the lower part 2.7182 has been rounded off at first to 2.72 by
means of the rounding-off rule, and afterwards the upper part 0.00189
has been rounded off to 0.002 by means of the extending rule.

We say that the approximate number y is the sum, the difference,
the 1)1'?duct, or the quotient of the approximate numbers ¢ and B, and
we write a+f=y, a—f=y, asf=y, or asf=y respectively if, and
only if, y is the set of all numbers z+v, 2—y, zy or z[y respectively,
where # is a real number from the interval a and y a real number from
the interval g. In place of a$f we alsa write %‘. We assume that the

interval B does not include zero, whenever it is a divisor. In that case,

- b
it f=[d,B], then bB>0, and if f=B, then b<|B|.
It can be proved that

: b a+tb
(4, A1+ (b,Bl=[a+h,A+B], A+B=AiB,

) a b +b
[a,4]=[0,Bl=[a—B,A~}), A~B=A_B,

(@, A]«[b, B]=[min (ah,aB, Ab, AB), max (ab, aB, Ab, AB)],

a b | 4|b4a|B|+ ab— min (|4]b,a|B]| ab)
4 * B =sgn(4B)[|AB|+ min(|A|b,a|B|,abd],
. |.. faa A A4 aa A A
<[a,A]-[b:B]—[mm (-l;’]_i’-b.’ﬁ)’ max (57 E’_I)-’E)‘]’
a.b a b 2
A.B:A-B-B2_b2.

For example,

2 1 91+14 105
(—13) +3=(—(39+ 6)) = (—45).

Approximate numbers do not form a group with respect to additioﬁ,

a b :
because ‘the .equation ‘A—l—_ ¢é=DB has no solution whenever b < a. Moreoveﬁr,
subtraction is not the inverse operation of addition, that is, the equality

a b b a - a b b a+2
(A+B)—B=A does not hold whenever b#0, but (A4+B)—B= A4 .
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Similarly, division is not the inverse operation of multiplication. It is
a consequence of the irreversible process of error accumulation.

Addition and multiplication are hoth commutative and associative,
put the distributive laws fail for multiplication and division. However,
the relations

as(B+y)=asftasy, aclf=y)=aef—ascy,
(a+B)s y=aly+ ey, (a=fiy=aly—fly

hold. Therefore, we say that multiplication and division are weakly dis-
tributive with respect to addition and subtraction.

We can’also multiply or divide approximate numbers in an appro-
ximate number by using the following formulas:

A

a4+ b

Bl—b
A
B

a b 4|0 + a!B| + ab a b
A* B=) AB , AtB=
these formulas are very convenient in practical computations.

The set of all approximate numbers, the upper part of which equals
zero, that is, the set of approximate numbers which are intervals reduced
to points, is isomorphic to the set of all real numbers with respect to
the arithmetical operations. We shall denote the isomorphism by writing

0
A=A, »
" The definition of approximate numbers and of the operations on
them given above are not sufficient in practical computations. Although
the operations were defined in a natural way, they are not regular enough
(multiplication and division are not distributive with respect to addition
and subtraction) and the inverse operations fail. Therefore we shall now
extend the conception of an approximate number and introduce some
new operations in order to obtain a ring of approximate numbers.
From now on we shall indicate by the approximate number [a,4]
the interval [min(a, ), max(a,4)] with the sense from a to 4 or redu-
ced to a point, if a=A. Thus, there is now no need to assume « <A4.

b
The approximate number [B—b, B+b] may also be denoted by B, but
now b>0 is not assumed. ‘
If a<A, we shall call the approximate number [a,4] a positively
oriented interval or simply an interval. If a >4, it will be called & ne-

b
gatively oriented Thterval. Thus B is an interval if, and only if, >0.

b .
If b <0, B is a negatively oriented interval. We shall identify the appro-
T 19+
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Ximate numbers in the previous sense with the intervals in the new sense,
All the natural operations will hold for the intervals,

We now define equality, approximation and the four regnlar arith-
metical operations for all approximate numbers as follows:

‘a b !
[a,A] = [D,B] if, and only if, «=b, A=B, i.e. A=R if,
' . and only if, A=B, a=y,

a b
[e¢,A1=>[b,B] if, and only if, a>b, A<B, i.e. 4—B if,
! : and only if, b—a>|B—A|,
- ' " S a b atb
[ A1+ (0, Bl=(a+b, A+B), ic. A+B—4 1B,

1

) a b a-bd
[a,A]——[b,B]:[a~b,A-B], i e. A—DB=A4—B,

‘a b aB+A4b
(443 - (0, Bl=(ab, 4B], i.c. A.B—aBiam
aB—A4b
. . B
a —_
[a,4] : [b,B]=[%,%J if bs£0, B0, i. o, A:B:‘zf_;" if |B|5b.

We sce that the natural addition - of intervals is identical with re-
gular addition.

Approximate numbers form a ring with respect to addition and
regular multiplication. Regular subtraction and division are the inverse
operations of addition and regular multiplication respectively. All the

approximate numbers [0,4] and [a, 0], i. e. all the approximate numbers Z
with [4]|=|a|, are divisors of zero in the ring, but they do not form an
ideal, because every approximate number is a sum of two divisors of zero:
[a,A]:[a,0]+[O,A].

Every approximate number is a linear combination of the appro-

0 1

ximate numbers 1 and 0. Therefore, approximate numbers form a two-
dimensional linear vector space with respect to addition, and regular
multiplication by real numbers.

0 -
The set of all approximate numbers 4 ig isomorphie to the set of
all real numbers with respect to the regular arithmetical operations.

0
We denote the isomorphism, as before, by writing 4=4. Every appro-

: a 1
ximate number 4 can be written in the form 4d+ad, where A=0 (f2—

-
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=A44=1). Thus we may compute with approximate numbers (excepting
the division by a divisor of zero) in a similar manner as with complex
numbers. For example:

’ ’ 8
-2 ‘
g‘ 6=(5+341) (6—2A)=30—10/1+18/1—GA2=24+8A=24.

Approximate numbers can be represented by points ‘in a plano.
Let (X,) be the rectangular Cartesian co-ordinates of a Pomt P in the
plane. We say that the point P represents the approximate number
X+zA. In such a way we have a one-to-one correspondence between
the approximative numbers and the points on a plane.

a .
If |a]<|4], then the approximate number 4 can be written in the
form p(chy+ Ashy), where the modulus ¢ and the argument y arc

real, p=4 yA2—a®. We call this the hyperbolic form of the approximate

a
number 4. If |a| > |4], ¢ and v are complex. If la|=|4|, that is if A4 is
a divisor of zero, it cannot be written in a hyperbolic form. Tt is casy
to verify that, as with complex numbers in the trigonometric form, the
modulus of the regular product of two approximate numbers is the pro-
duct of their moduli and the argnment of the product is the sum of the
arguments. The modulus of the regular quotient of two approximate
numbers is the quotient of their moduli and the argument of the quo-
tient is the argument of the numerator minus the argument of the de-
nominator. As in De Moivre’s theorem, if n is a positive integer, then
[e(chyp+ Ashyp) = o"(chny+ A sh ny).

All the natural operations can be translated into the regular ones.
For example,

asgnB —bsgn A
a b 4 : B if  |4]>a>0,|B|>b>0,
“lasgnB it |d|<ae, |B|>b>0.
A  :(B—bsgnB)

In many numerical problems it is convenicnt to operate in the following
way. Formblate the problem by use of the natural operations; after-
wards {ranslate these operations into the regular ones, and then solve
the problem by their use.

Many numerical problems reduce to a system of approximations.
We compute with approximations in a manner similar to that used for
equations or inequalities in the usual algebra.

In order to introduce a topology into the ring of approximate num-

bers we now define a norm. By the norm of an approximate number
a

" a=4 we mean the real number |a|=|4|+ |a|. Such a norm has all the
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required properties and besides |a- f] <|a|-|8]. Thus, approximate numbers
form a two-dimensional Banach algebra with respzct to addition, regular
multiplication and regular multiplication by real numbers.
A sequence of approximate numbers {a,} is said to he convergent
to a if, and only if, it converges in the rorm, i. e. lim las— a]|=0. Thus,
. n—0co -

it follows that

lim an
. . . ° . a’l .
lim[a, 4,]=[lima, lim4,] and limA,=1lim4,.
n—0 n—»o00 n—-»00 n—»oc n—o00

We shall call a function with real arguments and approximate va-
lues;-an approximate function. For example, let F(x), f(z) and G(z) he
threc usual functions of the real variable 4, such that |G (2)—F (z)| <f(z).

f(=) -
Then we say that the approximate function # () approximates the func-
tion @(x) and we write

f(z)

Q(z)=>F(x).

We define contihuity, convergence, derivative and integral of an
. f(z)
approximate function ¢(z)=F(z) in the obvious way, and the following
formulas result:

b
[ )iz
g f@ s 5.
9'(¢) =F'(), f @(z)de= f F(x)dx.

a

@) gl - Sl g
If Flr)=G(x) and g(z)=0, then I (m) = G' ().

b . b
It g@)=yp@), then [gp@)do= [wlx)dz.

We shall call a function with approximate arguments and values
a function of approximate variables. For cxample, the approximate valuc

x
of the integral f f(w)du, where f(u) is a fixed usual function of a real

variable «, is a function of the interval [z, X ], if the method of comput-
ing is uniquely defined.

Continuity, convergence, derivatives and integrals of functions of
approximate variables are introduced in a manner similar to the ana-

logous conceptions for functions of complex variables. They have many

£

‘e‘(\\
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interesting properties, which, however, seem to be of no great use in
numerical problems.

The author of this paper has elaborated the details of the theory out-
lined above. He is preparing a monograph. All the numerical methods
and computations can be written in the language of this theory; many
new methods arise; many cumbersome computations can be performed
automatically. There are many numerical problems which cannot he
formulated properly, because this theory fails:
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