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. - INTRODUCTION -

THIS is the first report on our study of the
Geometry- of Numerals and presents Set-
theoretical Topological Considerations and
Practical Applications to Numerical Calculation
of the Algebra and Calculus of *‘Interval. Lat-
tices ”” which. we introduce in this article.

A parallel investigation, which is on the
rigorous erxor estimation in connexion with
inverting of matrices of higher order, has
been carried out by J. von Neumann and H. H.
Goldstine [1]. It points out an essential feature of
this kind of problem, but its method is not so
general as ours.

‘The motive of this study is as follows. As
is clear from the recent theory of information
and communication [2], its fundamental idea is
that the animal and the machine have the same
structure in regard to their organs of com-
munication. For instance, the modern high
speed automatic computer may be called brain
machine in that there are many similar points
between the human brain and the' automatic
computing machige.. By a preliminary study
stated in another article of these Memoirs,
namely [3], the author has been led to the
conviction that our scientific statement should
essentially be based on the concept of finiteness.
To him it also appears that there is a contra-
diction between the continuity concept and that
of discreteness.

This paper is intended as a realization of
what follows from the conviction.

* University of Tokyo, Tokyo, Japan.

CHAPTER I

INTERVAL CALCULUS

This chapter is dedicated to the basic exposi-
tion of the concept of interval. Its algebraic
properties are investigated and various concepts
of analysis such as function or differentiation,
are considered from o6ur standpoint.

1. Slgmﬁcance of interval

In order fully and effectively to utilize pure
mathematics' for ‘' the analysis of natural
phenomena, we must be aware that there are
many phases concerning which mathematics and
reality do not perfectly agree. For example,
neither one point on the real number axis is
sufficient to represent a physical quantity, nor
is any trace of a moving body described com-
pletely as a continuous function of time having
no “breadth ”’. In expressing numerical quanti-
ties by means of a finite number of digits we
cannot express an irrational number, but only
rational ones.

Let us consider the ptocedures of calculating
42 . We first calculate up to 1 and then
proceed to 1.4, 1.41, etc. Now we ask-* What
are the meanings of ‘this sequence of numer-
als 2’ The numeral 1, appearing in the sequence
of calculation, does not simply denote either a
natural or a rational number. It implies that
one of the figures from 0 to 9 will be obtained
by - the calculation of -the following step.
Namely, the figure 1 here denotes the. interval
[1, 2] which contams all the real numbers from
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1 to 2. Similarly, the numeral 1.4 denotes
the interval [1.4, 1.5], 1.41 denotes [1.41, 1.42),
etc.

The concept indicated by 4/ Z cannot be
formed without assuming the series of intervals
accompanying it and that can be said to be as-
sociated with a rule of calculating it out.

The above consideration leads us to the follow-
ing conclusivn.

i) The concept of an interval is more funda-

mental than that of a-real number.

ii) To denote an interval, we need not neces-

sarily use two rational numbers.
The numerical expression obtained by rounding
off, i. e., by counting 5-and higher fractions and
disregarding the rest, is-a good example of
denoting an interval by one rational number.
For instance, such a numeral as

<1.414>
should be regarded as denoting the interval
[1.4135, 1.4145].

That the concept of an interval is fundamentat

is not only so in the case of numerical calcula-
tion. It is better to use an interval instead of
a real number to describe a physical quantity,
treating the latter so as to have a certain
“ breadth”’, and say, ““ A body exists in interval
X when time is in interval T, instead of say-
ing, ** A body exists at point & when time is at
point t°. ’
.. The reader may. think of such more familiar
expressions as * Statistically .-----"" or * The
statistical values are ------ »”_ But probable or
stochastical numerical values are not different
from our physical quantities and should also be
described by intervals.

Thus, we might say that the interval concept
is on a borderline linking pure mathematics with
reality and pure analysis with applied analysis.

In the following sections of Chapter I we shall
investigate the fundamental treatment of inter-
vals with regard to their mutual relations,
operations, functions, functionals, differentials,
etc. Their application to numerical calculation

will be described in Chapter II

Although we have stated that the concept of

an interval is more fundamental than that of

a real number, we have no intention of discuss-

ing the theory of real numbers, and therefore
we shall not make use of anything more than

the commonplace knowledge of real numbers
and continuous functions.

In the following description we shall use
Greek letters a, 8, == , & 7y e to denote
real numbers.

2. The interval lattice

We shall first give the definition of an interval
and then investigate its properties.

Definition 1. Interval: The set X of all ¢
satisfying the condition

a<g<y
is called the interval and is denoted by [a, B).

Intervals will be denoted by Roman letters
in the following.

_Example 2-1. In Fig. 1, we have interval A

A B
1] 1 2

Fic. 1

which- will be denoted by [0, 1] and also B
which will be expressed by [2, 2]. Generally,
a real number is regarded as a limiting case
of an interval.

Definition 2. Inclusion: If each element £ of
interval X is always that of interval ¥, i.e., if
logically

LeX—geY,
then we write
- X—Y
and say that X is included by Y.V’

-1

Exarpple 2.2. In Fig. 2, A is {1, 2] and B

A .
1 2
B
° 1 2

Fic. 2
is [0, 2}. Then we have

A—sB.

1) Cf. §2 of reference i4]. i
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When X is included by Y, we customarily
write

XCY.

But the relation of inclusion will be used in
this paper so often that it will be more con-
venient to use symbol — than C.

We may say that numerical calculation is
essentially to deal with the inclusion relation.

Definition 3. Coincidence: If X—Y and
y—— X, we say that X and Y coincide with
each other and write

X—VY. T (22
Example 2-3. In Fig. 1 the interval A coin-
cides with itself, i.e.,

A—A.

Theorem 1. The system of the intervals
forms a partially ordered set in the following
sense.

i)y X—X.
i) If X—Y and Y—2Z, then X-———»Z}
iiiy If X— Y and Y—> X, then Xe=—Y.

2-3)

These relations, especially ii), play an impor-
tant réle in numerical calculation.

Next, we shall define two dual operations by
either of which each pair of intervals can be
associated with a third interval.

Definition 4. Join: By the joint of X and ¥
we mean the least among all the intervals which
include both X and Y and this interval is
denoted by

XVY. (2-4)
Example 2-4. In Fig. 3 the join of A and

A

™~

AVEB

Fic. 3

B is explained graphically. In this case, if
both A and B are reduced to real numbers,

— 31 —
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AVB is the interval denoted by [4, B], i.e.,
AV B=—[A, B].

Example 2.5. We have

i) —3.141Vv3.142.
ii) Let <1.414> be the value rounded off, then
<1.414>—=1.4135V1.4145.
iii) 1v2—0V2, and 0V2—0V3.
Hence
1vV2—0V3.
iv) [0, 1]V[2 2.5]==[0, 2.5]==0V2.5.

Definition 5. Meet : By the meet of X and
Y we mean the greatest among all the intervals
which are included by both X and Y and this
interval is denoted by

XAY. (2-5)

Ezamble 2-6. In Fig. 4 the meet of A and

Fic. 4

B is explained graphicaily. In this case, if A
and B do not intersect each other, then

AAB==0.
Example 2-7. We have

i) [0, 3IA[2 4]==2, 3]==2V3,
ii) [—1, 1JA[2, 3l=9.

Theorem 2. The system of the intervals
forms a lattice in the following sense [5]:

i) XVXe=X, XAX=X;
i) XVYe=YVZX, XAY=YAX;
fii) (XVY)VZ=XV(YVZ),
(XA DAZe=XA(YAZ); _
iv) (XVDAX=X, (XAV)VX—=X

(2-6)

These relations are called the idempotent, the
commutative, the associative and the absorptive
law respectively.

One can readily verify them through the
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definition of meet and join.
The law iv) is the same as

X—+XVY, XAY—X (27

Example 2-8. We have

) (AV2V3i=—1V(2V3)=—1V2V3=1V3.
In this case, the order of operation does not
matter.

ii) [0, 2IA[1, 3]—0, 2].

This is an example of the absorption law.

Now that we have seen that the system of
intervals is a lattice, we can investigate the
properties of the system as a lattice from an
algebraical pomt of view. .

For example, let P(X, Y---) be a lattice
polynomial, i.e., a formula composed of some
elements X, Y, --- which are associated with
one another by symbols V and A. Then

P(Xy Yr '")_—’P(X'r Y’, '")l
provided that

X— X, Y—Y, .

Example 2-9. We have
1—[0, 2] and 3—3, 4],
hence .
1V3—10, 2JV3, 4].
In fact, the right-hand side is
[0, 2V[3, 4]=—=20V4. .
Therefore it includes the léft-hand side. .

3. Anthmehal Operatxons

We shall define here anthmetxwl operatxon;
on intervals and investigate their relations to
the lattice operations. :

Definition 6. i) Addition: By the sum -of
X and Y we mean the interval consisting of
the set Z of all

- &y (X 9eY),

‘and ‘we write -

XY=z, 3-1)

Miscellaneous Subjects

il) Subtraction: By the difference between
X and Y we mean the interval consisting of
the set Z of all

§—n (8eX, neY),
and we write

X—Ye=2Z. (3-2

iii) Multiplication: By the product of X and
Y we mean the interval consisting of- the set
Z of all

&y (€eX, 5eY),

and we write
XYe=2. @3-3)

iv) Division: By the quotient of X to Y,
provided that zero does not fall in Y, we
mean the mterval conslstmg of the set Z

‘of all

§/n  (EeX, %)),
and we write
X/ Ye=—2. 3-4)

It should be noted that these four operations
are mutually independent. For instance, the
interval X which sahsﬁes the following relation

- A+Xx=’B
is generally different from the interval
B—A.

In this respect our system dxﬁers from that of
ordinary numbers.
Example 3-1. We bhave

) (Av2+@BVe) =4vs,
i)  (5V6)—(5V6) =—1VI,

ii). (2V3IX(—6V4H)=——18V12, -
iv) (4V8-=(v2 —2vVs8.

Here, the order of ‘operations is as follows:

X, =3 4 =V, A =2, —>.
Definition 7. Abbreviations:

-i). —X is the abbreviation of 0—X;
-if) X~ is the abbreviation of 1/X.

—32 —
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Theorem 3.

i) —(aVag)i——a,V—ay.
. 1.1
ii)  (;Vay)le== —V‘—
In ii), a, and ag are assumed to have the same
sign.
Proof:

i) —(ayVaz)=—0—(a, \/a,)z:—a, V—a,.

1 -1 1+
il) (@1Vay)™ 1mm.__—;_a—va,

Theorem 4.
XY= XH(—7Y), C
D) g
X/ Ye=—XY1. .
From this theorem it'vfollows ti'xat subtraction

and division are reduced to addition and multi-
plication respectively.

Theorem 5. - - )
X+Ye=Y+X,
(X+ Y+ Ze=X+(Y+2Z),
XYe==YX, ; @-6)
XV Ze=X(¥Z), .
X(Y+Z)— XY+ XZ.

The last relation differs from that of ordinary
numbers and an example is as follows.

Example 3-2. If

Xe=1V2,
then
X3—-Xe—2(1V2—(1V2)
==(1V4H—-(1V2)=—=—1V3
and S . o
(X—DX={(1V2)—1}(1Vv2)
=OVINLV2)==0V2.
Hence, it follows t.ﬁat
| (X-DX—X-X.
From this example xt follows that the cal-
culation of?

A +A._,x-‘+---‘---+A;z’+A..

1 Weshanalsomesmznkoman leﬂ.ers as variables
of functions in the following. - .

—33 —

) <<1_'.414>~.==1.414—5xi(r4v;.414+5>é10f‘

is better carried out by applying the following
form (Horner’s method)

(A XA Ae )X+ An ) X4+ A X+ Ao
Theorem 6. '
1) XHYVZ)e=X+YVX+Z, } 37
i) X(YVZ)=—=XYVXZ.
-Proof ;.
i) YsYVZ and Z—YVZ,
hence .
. X+ Y—XHYVZ),
X+ Z— X (YVZ).
Therefolie. 7-

X+YVvx+z
—XHYVI)VXHYVZ) .-
—XHYVZ).

Inversely, if
&X r)eY and (eZ
© . then
V=t VEH— X+ YV XLZ.
Therefore
XHYVZ)—X+YVX+Z.
From these relations, we get
XHYVZ)y=X+YVX+Z.
Similarly for ii).

- Example 3-3. We have

i) (@1Va3XB1VBs)ye=a;(8:VB2)Vay(B1V5;)
—a,8; Va3 Vayf,Vasfs.
This~ relation gives the law of multipli-
cation, i.e.,
(a1 Vas) (B:V8,)
+==(the least among a,f8;)
V(the greatest among a,8y).

- The .other operations can be . performed
analogously.

=21.414-H(—5X10~4 V5X10¢)
S L el A5V X10-¢.
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Theorem 7. If

i) A+Xe—=A+Y
or
ii) A—X=—A—-Y,
then
Xe==Y.

Proof : Let @, € and 5 be the greatest num-
ber of A4, X and Y respectively. Then, in case

i)

a+E=a+7.
Similarly, let «, £ and 7 be the least number
of A, X and Y respectively. Then

até=aty
Therefore
Xe==Y.

In case ii), the proof can be carried out analo-
gously.

Theorem 8. If A does not contain zero and

i

i) AX—AY
or

i) A/X==A/Y,
then

X=Y.

We can verify this theorem analogously to
‘Theorem 7.

Example 3-4. The solution of the equation
AV2)+X=—=2V5(=01V2)+(1V3)

Xe=—1V3.

4. Multi-dimensional intervals

The intervals defined in § 2 were, strictly
speaking, one-dimensional. Now, we shall study
multi-dimensional intervals and their continuous
mapping which also will be dealt with in the
next section. .

It is easy to expand -the concept of one-

Miscellaneous Subjects

dimensional interval to that of n-dimensional
one. In the following, we shall designate a
point in the n-dimensional space by £=(£,, -+, £.).

Definition 8. n-dimensional interval: The
set X of all £=(¢,, ---, £,) satisfying the con-
dition

a;<E<B,

is called the m-dimensional interval and is de-
noted by ([zy, 81} -, [a@s, Ba]) or (X4, -+, XJ)
with X, —{a,, 8:]-

We shall generally denote multi-dimensional
intervals by bold Roman letters.

Example 4-1. In Fig. 5 we have the interval

) S

Fic. 5

which is denoted by ({1, 3], {1, 2))-

The inclusion relation, join and meet opera-
tions on n-dimensional intervals are defined
analogously to those on one-dimensional inter-

“vals.

Definition 9. i) Inclusion: If each component
X, of interval X is included by the correspond-
ing component ¥, of interval ¥, i.e., if

X,—Y, for i=l, .-, nm,
then we write
X—Y 4-1)

and say that X is included by ¥. If X—>¥
and Y— X, then we write

Xe=Y.

ii) Join: By the join of X and ¥ we mean

— 34—
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‘the interval Z of which the i-th component Z,
is the join of X, and Y, i.e.,

Ze=(Z,, - Z)==(X,VY,, -, X, VY,)
and this interval is denoted by
XvY. “4-2

ili) Meet: By the meet of X and Y we
mean the interval Z of which the i-th component
Z, is the meet of X and Y,, i.e,

Z==(Z;, -, Z)=(X1A Y3, = X.AY.)
and this interval is denoted by

XAY. 4-3)

Example 4-2. i) If
X=(1, 3}, [1, 2]
and

Y=([0, 4], (1, 3)),
then, as in Fig. 6, we have the relation

X— Y.

r

)
o

[

DI

[ S
L]

Fic. 6

ii) Using the notation of join, the interval 4
in Fig. 5 can be written as

A==((1, 3], 1, 2
=(1V3, 1V2)=(1, DV, 2).
i) If
Xe=—(0V4, 1V3)
and

Y+=(3V5, 0V2),

T. Sunaga — Theory of an Interval Algebra and its Application to Numerical Analysis 553

then, as in Fig. 7, we have

XA Ye={O0VHABVS), 1VIAOV)}
=—(3V4, 1V2).

Fic. 7

N

i

Since we can consider n-dimensional intervals
as interval vectors in an n-dimensional space,
we shall consider some operations on interval
vectors. .

Definition 10. i) Addition: By the sum of
X and Y we mean the interval Z of which the
i-th component Z, is the sum of X; and Y.,

ie,
Ze=2(Z,, -, Z)=(Xy+Y,, o XotYo)
and we write
Z—X+Y. (4;4)

ii) Subtraction: By the difference between
X and Y we.mean the interval Z of which
the i-th component Z; is the difference between
X; and Y,,'i. e,

Zz_—_’—(zb % n)‘:z(xl—yh b X.—Y.)
and we write

Ze=—X-Y. 4-5)

For the multiplication of an interval vector
by an interval scalar, it is necessary to repeat
such considerations as we have done on the
distributive law of intervals in Theorem 5 of
§3. Namely the relation

XXy, - Xo)—(XX,, -, XX} @-6)
always holds, but the relation
X(Xh haat’) Xn)g(xxh Tty XX-)

does mnot.

— 35 =
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Example 16. When

Xe=1V2
and
U=21.0V1.2,
we have
X\, U)ﬁ_(lvz)(l, 1ovy2) @D
and ’ :

(X, XUy=avz2, Lovz4e. @7

The regions indicated by X{(1;” U) and (X, XU)
==(X, Y) are shown graphically in Fig. 8.

Although (X, U)is a two-dimensional interval
in the parameter space xu-plane, X{1, U) is not

an interval in the xy-plane. And (X, XU)=—-

(X, Y) is an interval in the xy-plane, but it is
different from the region indicated by X{1, o)
which is, mathematically speaking, the image of
the interval (X, U) continuously mapped into
the xy-plane. Since it is not sufficient to employ
the interval (X, XU) for the estimation of the
region or the error indicated by X(l, U), we
should consider not only intervals. themselves,
but also their continuous mapping for the inter-
val calculus.? .

The above consideration suggests, for exam-
ple, how the coefficient errors of a system of
linear equations influence the errors of the
unknowns of the system and how these should
be estimated. ..

5. Intéx:'val functions and functionals

We,  shall inveétiga__te_ here the continuous
1) The difference between X(14-U) and X+ XU 1s
similar to that which exists between X{1, U) and
(X, XU), but the latter difference is higher in order

than the formeruuubeseenfmmthemeaningao(

their expressions.

mapping of intervals into a function or a
functional space. More generally, however, we
should consider the continuous mapping into a
topological space.»

Definition 11. Interval Function: By an
interval function will be meant the set of all
those functions of a function space which are
the images of an interval continuously mapped
into the function space.

For instance, if we consider a family of
functions with parameters a and g8

f(x; a, )

and if @ and b are intervals respectively, then
the set of all f(x; a, f) satisfying the condition

aca, Beb

is an interval function. This will be designated
by : o

f(x; a, b). G-p»

Example 5-1. The equation of motion of a

" single particle under gravitation is

s=s,+v°t+%gt’.

Here, however, s,, v, and g are not real num-
bers, but intervals and we can write

$=j(f; Sor Tos 9),

using our notation.

Fic. 9

2) CL Chapter II of reference [6]. -

$) When we consider the mapping of an interval, we
shall designate the interval by a “small” letter.
Therefore 2(14-b) and a}-ab are equivalent to_each
‘other, but A(14-B) and A4 AB are not.
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Example 5-2. The interval function

y=—1+(1V2)x

graphed in Fig. 9, is written in our notation,

as

y=f(x; —1, 1V2).

The definition of interval functionals is similar
to that of interval functions as follows.

Definition 12. Interval Functional: By an
interval functional will be meant the set of all
those functionals of a functional space which
are the images of an interval continuously map-
ped into the functional space.

For instance, let us consider an interval a and
Dirac’s function 3(a) defined as

Ha)f=f(a)

where f is an arbitrary function.?? Then the
set of all 3(a) satisfying the condition

aea =

is an interval functional. We shall designate
this interval functional by

¥a) 6-2)
and we have )
A =f). 63

The relation (5-3) is gxaiihially explained in
Fig. 10. :

ol A

R S

Fic. 10

The interval 3(e)f or f(a) may also be regarded

1) Acuordi'ng to tile t}leory of distributions [7), Dirac’s
function is 2 *functional”. We may also treat fas
an interval function. - .

555.

as the image of an interval under the mapping
f and has the following properties.

Theoxrem 9. If

XXz Y33 "

then
f(x3y P10 o S (%3,73, > )-
Proof: It is evident from the following
graph.

/Ile)
B N atatatas )
Lx".) !
I(lx,) 1
1 ]
| i
]
)
]
]
1
1.
h—t—t

of i ni -
Fic. 11

Example 5-3.
sin (0V0.5)—> sin (—0.1V0.6).

Theorem 10. .
F&3 V) Sz )V STz } &0
fxy Axg)—>f(x1)AS(x3)-
Proof:
x,—2;Vz; and 1,— 1, Vzs,

hence, by virtue of the preceding theorem, we
get

J(x)—>f(x3Vxs),
(23— f(x:V x5)-

Therefore : -
S(x)V Ax3)—f(x1V %5)--

The second relation can also be verified analo-
gously.

Example 54 . el

cos (—5%)Vcos 10°—»cos (—5°V10°). - -~

- 37 —
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6. Differentiation

We shall study differentiation as an applica-
tion of the concept of interval functional.
The definition of differentiation is

j’(e):limj(e-*-dj)—f(f),
ae~o0 3

6-1)
but this process seems to involve unreality.
Therefore we shall try to define differentiation
realistically, i.e., to define the differential
coefficient on an interval.

Now, we shall introduce the derivative of
Dirac’s function ¢’(a) for which

¥(a)f=f"(a)

where f is an arbitrary differentiable function.?’
The operator &’(a) thus defined is obviously a
functional and therefore for an interval a, d(a)
is an interval functional. Then we have the
relation

¥(a)f=s"(a) 6-1)

and ‘we shall call é’(e)f or f(a) the differential
coefficient of f on the interval a.
" Next, we shall explain the meaning of the
differential coefficient on an interval.

Let us consider a function f(x) with the
continuous derivative of the first order. By the
mean value theorem we have

FEHID=FE )+ € H0dE)E  (6-2)
provided
§—0V1.
If x is an interval and
£iex and g,4dgex,
then
' ¢1-+0dgcs
and
J(&sHdE)— (&) S (2)d8. ©-3)
Here, since we can subsﬁtute intervals x; and

dx for ¢, and d¢ respectively, we get the prop-

1) It is usual for the “ formal” derivative of Dix;ac’s
function #(@) that 3’(a) be defined as
¥(a)f=—f"(a).

We may also treat £ as an interval function.

erty that, so long as both r, and x,+}dx are
included :n x, then the relation

Sxs+dx)—f(x)+S (x)dx 6-49

always exists.

We shall show later that relation (6-4) is very
useful for applied analysis.?

The expansion of a function can be explained
as follows.

For instance, the relation

S(x4,4-dx)
ot s L 6-9)

exists under the condition as in Fig. 12.

x5, +dx
. |

~Fie. 12

7. The topological background

Since numerals are used for the analysis of
continua, topology, which abstractly deals with
continuity, plays an important réle in the study
of numerals. In fact, our interval calculus has
a topological background.

Since numerical calculation is meaningless
without error estimation, a numeral should be
characterized by an error. Owing to the topo-
logical background of this paper the error
concept corresponds to that of neighbourhoods
which is fundamental in topology, and arith-
metical operations of numerals to operations
connected with topological groups which deal
with neighbourhoods. ' .

Now, we consider three elements ¢, 4 and ¢
of a group G satisfying the relation

ab=c.

When G is a topological space, neighbourhoods
U, V and W can be associated with 4, b and ¢

2) See the examples of §9.



Misc. 11

respectively as in Fig. 13.
Q)
U
— (&

Fic. 13

If
Uv=w’

and the set W’ is included in the neighbourhood
W, we get

UV—W.

This indicates the principle of interval calculus.
That is, the group G corresponds to the system
of the real numbers, the group operation to
addition or multiplication, and neighbourhoods
to intervals. In practical interval calculation it
is convenient that a and & are regarded as mid-
dle points of intervals U and V respectively.
This idea corresponds to the concept of systems
of neighbourhoods of the identity and will be
effectively used in the following chapter.

The reader who has a basic knowledge of
topological groups will easily understand these
circumstances.

The main concepts in the theory of topologi-
cal groups which are utilized in these connexions
are the definition of the topological group given
as follows [6].

Definition 13. A set G of elements is called
a topological group if

i) G is an abstract group,
ii) G is a topological space,
iii) the group operations in G are continuous
in the topological space G.

In greater detail this condition can be formulated
as follows:

i) If a and ) are the elements of the set G,
then for every neighbourhood- W of the
elements @b there exist neighbourhoods U
and V of the elements ¢ and & such that

Uv—Ww.
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ii) If a is an element of the set G, then for
every neighbourhood V¥V of the element a-t
there exists a neighbourhood U of the
element g such that

U-r—sv.

CHAPTER 11

APPLICATIONS

In this chapter we shall develop the practical
method of the interval calculus and show its
applications to numerical calculations.

8. Practical interval calculus

When the number of figures of a numeral is
numerous, the above method of representation is
inconvenient for practical calculation. There-
fore we shall revise the method to express an
interval and establish the law of arithmetical
operations.

An interval A can be expressed in various
ways as follows,

a1+¢a+(“1—“a V“:‘;“x)

A—=aq;Vazv=—
—a+t+(—aoVag), (8-1)
provided
ay>0.

Here a is the middle point and «, is the upper
bound of error.

Definition 14. 1If

A7==a(—a,Vao) (2,20), (8-2)

then we shall write

A—=(a, a,).

a—a, a+t-aq
J

Example 8-1.

140.01+=—2(1.00, 10-3),
<1.414>=(1.4140, 5X10~¢).

For practical convenience, these intervals are
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also written as
1.00;1 and 1.4140;5 (8-3)
respectively.

We shall give the law of arithmetical opera-
tions applicable to the case when intervals are
represented as (8-2).

1f

Av=(a, ag)==a+(—aoVa,)
—a—ayVa+ta,
B=(8, Bo) ==p+(—HoV Bo)
==p—PBoVB+P

8-4)

then in the case of addition

A+B==(a, as)+(B, Bo)
—{a+(—aoVao)}+{f-+(—Bo VBo)}
=—a+-p+{(—ao Vao)+(—Bo VBo)}
F==a+-B+{—(ao+Bo) Vao15o}
+=(a+8, ao+8o)- (8-5)

Subtraction is written as follows.

A—Bw==(a, ap)—(8, Bo)
= {at(—ao Vao)}—{B+(—BoV Bo)}
=2(a—B, ap+Bo) (8-6)

In the case of multiplication, it is alwayé
possible to assume that

a>ao>0, B=B,>0,

for practical calculations are performed with
the absolute values and the errors are small.
Since

atag=a—ao=0 and g+ >p—F,>0,
we have

AXBe=2(a—a,)(B—Po)V{ataoXB+Bs)

==af—aoB—aPota,fo

VaB+aoftaBetaofe
—=af+taofoH(—aof—aBe Vaof+ap,)
=(ap+aofo, aoB+apf,)- @7

In the case of division, it is possible to assume
that TaIRA o

a2ae20, . f>Fe20 (B#po)

by similar reasoning to the above.

A (a, ag) a—agVata,
BT Bo) " B—BoVBt+h
a—ag . ,atay
“=BTBs YB—Po
1 ra—ay, , atay
=7 (575 +5=5.)

1 ra—ay _atae, atay a—ay
+7 (558058 V5he—5tB)
aﬂ+¢oﬁo+ “oﬂ+aﬂovaoﬂ+aﬂn

82—83 B>—3B3 A*—83

aB+taoBy @oBf+aBe

G = =Pl @8
The above operations can be formulated as
follows.

Theorem 11. The arithmetical operations
associated with interval expressions such as
(8-2) are as follows.

i) Addition: .

(a, ao)+(8, Bo)==(atB, ap+po)- (8-5)
il) Subtraction:
(a, @o)—(B, Bo)==x(a—p, as+Bo)- (8-6)
ili) Multiplication :
(@, @o)(B, Bo)¥==(aftaoBo, aof+aBo), (8-7)
provided
azag>0, B>po>0.
iv) Division:

(@ @g)_, (aBtaofs softabe
e a—Cp=p" p—pr ) &

provided

a2ay=0, B>B,20.

These operations are similar to those of com-
plex numbers,

(E+iEo)H-(ntine)=E+n+i(Eo+70)s
(€4+i€0)—(ptine)=E—n)+i(fo—70),
(E+i€o)ptino)=(En—Eono)+i(Eon+E70),
it _Ent€ov0 , Lor—Ene

r+ine »*+9d 7+

That is, if we treat an interval 4 as a point on a
plane in two-dimensional space as in Fig. 15, 4
is resolved into the two components, one of
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which is the middle value and the other is the
upper bound of error.

ol

Fic. 15

Among the above operations the method of
division is inconvenient practically. Therefore
we need a more convenient method than (8-8)
or (8-8"). We have

(a, a»)___’a—aova+an
(B, Bo) ™ B+Bo " B—Bo

- 2of+aBo, ,aoB+aby
=5+ (—Hr V Raiey) -

Since
B+Bo=B—Bo>0,
we get

( ¢oﬁ+aﬁovdoﬂ+ﬂﬁo
B(B+Bo) ¥ B(B—Bo)

_’( anﬂ+aﬁovaoﬂ+aﬁo
B(B—B0) 7 B(B—Bo)

g @t (F)e_at(F)bo
= (V)

Hence we get the following theorem.

Thgorem 12,
a
(a, ao)_,(l a°+(7)p°) (8'9)
(B, Bo) B’ B—Bo }
provided
azao=>0, F>By>0.

(23
We first calculate -2 and. then i(_ﬁ)ﬁ.
B B—Be
In practical calculations, it is often meaning-
less to calculate af or «/B accurately and
numerals should be rounded adequately. In such
cases the following theorem is useful.

Theorem 13. If

A==(a, ay) (8-10)

and
a—>(a’, ay),
then
A—(a’, agtap)- (8-11)
Proof :

a—ra’+(—ay Vay),
at(—apVao)

—ra’'+(—ap Vayo)H—ao Va,)
==’ +{—(ap+ap)Vas+ap}
==a’, aotap)-

Example 8-2. i) We have

1.432—>1.43;1,
hence
1.432;50—>1.43;6.
ii) For multip]imfion, we have
@B+aoBo——>aB+(—aofo VasBo)=—(aB, oB,),
and hence

(@, @oXB, Bo)—>(aB, aoBotacBtaBe)
==(ap, as(B+Bo)+abo)
={aB, apS+lata,)p}.

This gives the method of calculation for
multiplication.

' Example 8-3. i) Addition:

1.689;4-4-2.745;1—=—4.434;5,
3.624;841.24;3 +—4.864;38
—4.86;(0.44-3.8)
-—)4.86;5.
if) Subtraction:
3.429;5—1.201 ;2==2.228;7,
6.724;7—2.3034 v==4.424;47
—4.42;6.
iii) Multiplication: To calculate the product
(0.4320;5X0.3810;5).
0.4320¢0.3810=0.164592—>0.16459;1
0.44x504-0.39 x50 <42.
.~. (0.4320;5)0. 3810;5)—»0.16459;43
—0.1646;5.
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iv) Division:
0.1646;5+-0.3810;5

545x%0.44

—_— (0.43202--., —m—x104).

v) In the case of multiplication and division
it is convenient to proceed in the following
manner.

0.4320;5 0.432 ;2
X 0.3810;5 0.3810;54/0.16460;50
1.2960;15 15240;20
3456; 4 1220;70

43; 1 1143; 2

22 77,72
0.16459;42 77; 1
;73

;76

;—3

For instance, the first operation on the left
hand side is.

4320;5%3—12960;15.

The other operation can be performed
similarly.

vi) To calculate

1IN Z—x3
T3

.accurately up to the error of the order of 1075,

The values rounded off sufficiently for this
case are

+/ 2 —>1.4142140;5,
7—>3.1415930;5,
A/ 3 —»1.7320510;5.
Hence
7x1.4142140;5—3.1415930;5 % 1. 7320510;5
7 (3.1415930;5)341.7320510;5

9.899498;4—5.441399;3
~9.860607 ;4+1.732051;1

4.458099;7
11.601658;5

—»0.384264;1.

9. Examples of numerical calculations

We shall describe here 'applications of the

interval calculus to simple examples of numerical
calculation so that the efficiency of our method
will be shown.

Example 9-1. To solve the equation
f(x)=x%—3x+4+1=0. 9-1)

Here, we shall calculate the root between 0 and
1. We have
£(0.3)=0.127,
£(0.4)=—0.136,
hence a root lies in
0.3Vv0.4.

Let it be denoted by «. The function value at
the point x=0.35 is

£(0.35)=—0.007125
We also have
f(x)=3(x*-1),
therefore

£7(0.3V0.4)—3{(0.3V0.4)>—1}
——(2.52V2.73).

Solving
. 5(0.35)4-17(0.3V0.4)dx=0 ©9-2)
we get )
ds—>=j e T2, —(0.0026V/0.0029).
Therefore )
a—0.3471V0.3474. ©-3)

If one needs 2 more accurate value, similar
processes are repeated. The accuracy associated
with each step will increase step after step
very remarkably. Thus, we first calculate

£(0.3472), f7(0.3471V0.3474)
and then solve
£(0.3472)-+£7(0.3471V0.3474)dx=0 (9-4)
with réspect to dx.

Example 9-2. To solve

2sinx
t'——T'.

@5

1) Cf. pp. 133~1% of reference (8).
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Here it is assumed that the root is known to
lie in the interval

0.62Vv0.63.
Let
f(x)=xe*—2sinx, (9-6)
then
S ()=(Q1+x)e*—2 cos x. 97N

We make use of the following round-off
values:
%630 —, <1.8589280>,
%930, <1 8776107>,
sin 0.620— <0.5810352>,
sin 0,630—— <0.5891447>,
08 0.620—>» <0.81387>,
cos 0.630—— <0.80815>.

and hence we have

£(0.62)=0.62 ¢%%2—25in 0.62
—0.62x1.858928;1
—2X%0.581035;1
—1.1525354 ;7
—1.162070;2
—»—0.009535;9,
£(0.62V0.63)—> {14-(0.62V0.63)} e0-63V0-68
—2cos (0.62V0.63)
—>(1.62V1.63)(1.858V1.878)
—2(0.808Vv0.814)
—(3.009Vv3.062)—(1.616\V1.628)
—>1.381V1.446,

whence
2 - £(0.62) (9.526V9.544)x10~*
* 70.62v0.63) >~ 1.381V1.446
—(6.58V6.91)x10-2.

Let a be the required root, then
a—>0.6265V/0.6270. ©-8

The next step is to proceed in a similar man-
ner, calculating

“dx —f(0.6267)
— 77(0.6265V0.6270)

Example 9-3. In such a problem as the aBove,
one needs interpolation of numerical values.
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Interval relations such as

€%:93%_,1,85892800;5,
e-031 1 86078790;5

can be used to evaluate the value of
e0-030+= (n_»0.000Vv0.001) (9-9)

as follows.
Using the relation
S(xy4-dx)y—>f(xy)+f"(x)dx
where

2 —%, 5+dxs—>x,
then, by means of the relation

£9-6204=_ ,eo.e:n+eo.e:ovo-ssn,,_ (9.10)

we proceed to obtain a sufficiently accurate
value. For instance, when 7#=0.0004, we have

€°-8304_] _85892800;5
-+(1.8589V1. 8608)0.0004
—>1.85892800;5-4-(1.8599;10)4 X10~¢
—1.85892800;5+47.4396;40 X104
~——»1.85967196;45.
‘Thus, we have seen that making use of differ-

ential coefficients, we can increase the accuracy
of interpolation.

Example 9-4. We cannot accurately calculate
the value of an integral without evaluating the
differential coefficients of high order. If we
calculate a definite integral by Simpson’s
method, only a few differential coefficients of
the lowest orders are enough. Here we shall
study it. .

Simpson’s method is as follows.

{: SeXs—r g U+ —RHH4O)
B pohvh, @1
hence it can be written

(L st etrt 2tk trsn)
H(n+yst-t73e-2)}
i B OtEsa VR,
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where

Fic. 16

For instance, to integrate

(=D en

numerically one proceeds as follows.

.1 1,1 1
f (")—1+x’— ) (1+ix+l—ix) ,
(DA (1) (—i)*4!
roem= { TrF — A=}
4' {(1—14')5'*'(14'11)'}
(123"
_4!{1—x’(10—5:’)}
==

F40V0.2) 1—(ovo.2)={1o—5(o\/o.z):}
. {1-0V0.2)7}° -

1—(0V0.04)10V9.8)
b (IVI.M)‘

—1Vv0.49.

Similarly,

14X0.2v0.4)  —0.57V0.64
- T Lzvaz (0.48)V0.54,

J4(0.4V0.6) 0.3v2.4 -
T v —0.00VL.15),

F40.6V0.8 1.4v4.3
] ) —4(6V12 o)_"“(0 11v0.99),

—(2.2V58)

J4X0.8Vv1)
4!

Then

S FO0OV0.24700.2v0. OHO0AV0S

+7%0.6V0. 8)+f"(0 sV}
—2 57V1 31

—ingvaz —>—(0.06V/0.49).

Hence

5 gy
[ 1+4‘¢5
0.1 1 1.1 . 1 1
—3 [1+Tz'+2 (Totrmtrests i)
1 1 1 1 1
'*'4(1.01+1.09+1.2s+1.49+1"_.8x)}
641
—(0';0 A 2.6v1.4).
Finally one gets ’
7—3.141593 52, (9-14)

In the above example, if statistical treatments
are employed, the breadth of the interval of the
final result will become narrower. Generally,
it is important. for the practical analysis that
the interval calculus should be improved by
statistical considerations. The same remark
applies also to the next example.

Example 9-5. To investigate the equation
y=f(z, 3)- (9-15)

We calculate the differential coefficients of high
order and evaluate them on intervals.
As an example, let us solve the equation

y=z——;- 9-16)
with the iritial condition
=1 at x=0,
The x-axis is divided into
I=0V0.1, II=—=0.1V0.2, etc.

Differential coefficients of high order are
calculated from the relations

Iy =2y—x,
7y 4y 3=2y'1, (9.17)

.......

yson the interval 0V0.1 is denoted by y, and
that on 0.1V0.2 by y,. 'We then have

7—2-COD_ 5y

hence .
' 7—140.9V2r | @18

R
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To raise its accuracy we must first calculate
the differential coefficient of the second order,
i.e.,

¥ _ Y2yl (1.9V2)0VO. 1)—1

’ ¥ 1vi.2
0v0.2—1 0.8V1
—Taviz - T \iviz
—s—(0.66VV1).
Since i
¥ 2=0=2,
y,-—>1+2x—-0'egvlz’. (9-19)
Therefore
Yo.1.—>140.2—(0.33V0.5)x10~*
—1.1957;9,

¥ o0.1—>2—(0.66V1)0.1—>1.917;17,

where y,.; is the value of y for x=0.1and ¥/,
is analogously defined.
Next, we go to the second interval

0.1v0.2.
In this interval, we have
yi—2V (2-1ig)—2V1.8,

yi—1.19V1.20H(2V1.83)(x—0.1),
Yo.5—>1.19V1.204(2V1.83)0.1

—1.37Vv1.40.
Using this value we can evaluate more
accurately, i.e.,
0.1v0.2
Y21 .19y1.40 2—(0.07V0.17) -
—»1.83Vv1.93.
Hence
2—y )—1
¥ —> Yl y;'t" )
(1 83Vv1.93)0.07v0.17)—1
1.19v1.40
0.67Vv0.88

——(Tov1.20) ——©-47V0.74).
Ir—>Ye1+5 0.1(x—0. 1)+%'—(x_0.1)s

—-1.1957;94-1.917;17(x—0.1)

(0 47V0 74) +—0.1)5.

Yo.9—>1.1957 ;9+0. 1917;17
—(30;7) X104—>1.3844;33.

(9.20)
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The above procedures are explained graphic-
ally in Fig. 17.

As stated above, we can integrate (9-16) as
accurately as we wish and carry it out over a
wide region. We cut the x-axis into intervals,
obtain the solution on each interval, and recon-
nect them again.

CONCLUSION

We have realized that numerals should be
essentially considered from the topological point
of view.

The chief results of this study are as follows:

1° Numerals are treated as intervals and the
concepts of numeral and error are made clear.
And an interval calculus is established alge-
braically from the lattice theoretical point of
view so that it can be applied conveniently to
the numerical calculation.

2° Interval functions and functiopals, and
their differentiation are investigated and used
effectively in some examples of applied analysis.

Future problems will be:

I* To investigate problems of the numerical
calculation connected with higher dimensional
mathematics, for instance, matrix inversion?’,
partial differential equations, etc..

2* To inveétigate direct applications of the
interval calculus to physical and engineering
protlems,

3* To revise the structure of the automatic
digital computer from the standpoint of interval
calculus and topology,

1) Cf. reference. [l
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4* To prove the applicability to other fields,
of our view that scientific laws should be stated
essentially in the language of finite elements
and discrete topology.
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