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Preface

THIS BOOK IS WRITTEN FOR THE PURPOSE OF AIDING THE MANY
workers in a variety of fields who have the general problem of finding
numerical solutions for sets of simultaneous linear equations. Though
many arrive at this mathematical problem through least squares, corre-
lation, regression, or other statistical studiss, some arrive at the problem

- in non-statistical ways. For this reason [ have used s general mathe-

matical presentation rather than one designed more specifically for
statistical problems. The reader who is primarily interested in sta-
tistical applications should not have much difficulty in translating the
mathematical results to appropriate statistical results. Chapter 18 is
designed to assist him in this process of translation. _

Much of this material is simplified with the use of matrices. In
many cases the matrix proofs of important results are very concise,
and, frequently, the matrix results describe the eomputational methods
adequately. However, many of the workers who need these methods
are not familiar with matrices; indeed, the basic computational methods
can be presented to those who know the basic facts of high school
algebra. It is the purpose of this book first to describe the theorems
and methods in terms of elementary algebra and then to develop the
subject by including introductory material on determinants (in Chapter
9) and on matrices (in Chapter 12). More powerful expositions are
possible, therefore, in the later chapters. It cannct be overemphasized,
however, that a real understanding of the methods involved can be
obtained only with a direet application of the methods to numerical
problems. I have provided many illustrative problems, throughout the
book, to assist the reader in translating the mathematical results to
concise calculational methods. Many of the illustrations chosen have
been selected from the illustrations of previous writers so as to make
possible a direct comparison between the old and the new techniques.

Though I have organized the material in such a way that the book
may properly serve as a textbook for a course on linear computations,
or as a textbook for individual study, it is also arranged to serve as a
useful reference for the many workers in applied fields who seek to
apply improved techniques to specific problems. A rather extensive

v
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10 INTRODUCTORY REMARKS

the earlier methods. Indicate the size of the error rc_slx_lting from the application of

V501 .
i i —; indi 1.4.5). (This
(1.4.5) and show that the error is approximstely 801) indicated by ( )

calls for a ten-place machine. Translate the problem to a six-decimal-place prob-
lem if you have an eight-place machine.) ‘
5.01 is — \% ined from the result of the
8. The value of V5.01 is 10 501 and so can be obtaine

— 1 N
i i ition. T 0.1 is —= V/501.
last problem by moving a decimal position. The value of V501 i Vo

It can be obtained by dividing the results of exercise 7 by V' 10 = 3.16227766% "Ilt
can also be obtained by using the divisor 2V 50.0 = 14.14213562 and (1.4.5). Co
P o s i i he first roximation and
ind V/28 by successive approximations. Use 3 as the first app tion ¢
forx:' 21‘8‘"1:1 3? = 3})’6. Use the average of 3, 3, and 314 as the next approximation.

i i i decimal places.
tinue until agreement is reached to five '
CO;IO mI‘;erive formulas corresponding to (1.4.3) and (1.4.5) when the cube root of N

is desired. In the first case divide by (W + ¢)? and in the second case divide by
3 N + ()%‘ . . N .
(11 Find V28 to four decimal places by the method indicated in exerCISebIOf. Nis
12: Derive formulas corresponding to (1.4.3) and (1.4.5) when the rth root o

ivi v — in the second case divide
i divide by N by (VN + ¢"'andin t
ifsfﬁ' —h;)t(}: irset) cba_;er(zlv + or=D/r Obtain (1.4.3) and (1.4.5) when r = 2 and

the results of exercise 10 when r = 3.

R

CHAPTER 2

Computation with -Approximate Numbers

2.1 Introduction. The effective use of any digital system or device
requires that each number to be used in calculation shall be expressible
as a digital number. The very nature of measurcment also necessitates
the use of approximate numbers. Although counting by integers results
in exact numbers, most measurements, whether direct or indirect, result
eventually in comparisons with some sort of scale. Numbers resulting
from these comparisons are, in general, approximate rather than exact,
Although the length of a line can be determined to the nearest inch, it
cannot be determined exactly. Even if the line were exactly ten inches
in length, there is no way in which we could ascertain that fact.

2.2 Approximate numbers. The limitations of digital systems of
calculation and the very origin of the quantities to be used as bases of
calculation, then, force us to make use of approximate numbers. An
approximate number, or more precisely the approzimate value of @ num-
ber, is some number that differs from the true value by some amount,
presumakly small. If represents the true number and z’ the approx-
imate number, then the error e is given by

(1) e=¢@) = -1 = Ar = dr,

where e is positive or negative according as x > z’ or £ < 2°. The
error, ¢, is not usually known exactly, but is specified to be less in abso-
lute value than some quantity n. If the error and the approximation
were known, it would be possible to solve for zin (1). This would give
the exact value of z, and the use of approximate numbers would not be

necessary. Approximate numbers are especially useful when the con-
dition

2 IEISU

is satisfied. This is the general situation, resulting when measurements
are made to the nearest unit. Thus 7 is 0.5 inch when measurements
11



12 COMPUTATION WITH APPROXIMATE NUMBLERS Sec. 2.2

are made to the nesrest inch, # is 0.0005 inch when measurements are

made to the nearest 0.001 inch, ete.
Approximate numbers with unspecified but limited errors may be

indicated in different ways. The number 2/, if accompanied by the
absolute value of the maximum possible error, enables us to find the
range within which the true number lies. Thus if ' = 112 and 1 = 4,
the true number satisfies the relation

108 < z < 116.

The approximate number may be indicated either by the range 108
to 116 or hy 2’ with the greatest possible error, 112 =+ 4. A dual num-

ber such as [}(l)g} , where the upper entry is the highest possible value

of the number and the lower entry is the lowest possible value of the
number, may be used. The term range number is used here to indicate
an approximate number when expressed in this form. The algebraic

. . . . y
representation of an approximate number in range form is then [a:’ ] ,
L

where 2y is the highest possible value of z and zr, is the lowest. The two
recorded values are the components of the range number.

The form 2’ == n, where 7 is the absolute value of the largest possible
error, may also be used to represent an approximate number with un-
specified but limited error. Since this form features an approximation
to the number accompanied by a statement of the largest possible error,
we may refer to numbers of this form as approximation-error numbers.
Also a condensed notation may be used in which the maximum possible
error is inserted in parentheses after the z’. The decimal point may be
disregarded in writing the error if it is understcod that the error term is
expressed in the unit of the last figure of the . Thus 1.12 4= 0.04 ap-
pears as 1.12(4) and 0.00132 == 0.00017 may be written compactly as
0.00132(17). This convention also tends to avoid confusion with cus-
tomary probable error and standard error notations.

No matter whether we use range numbers or approximation-error
numbers, it is important to note that an approximate number repre-
sents a range within which the true value of the number is located.

The reader who understands these two forms of approximate numbers
will be able to change at once from approximation-error numbers to

range numbers and vice versa. Thus

3) =2+ and 2L =% —n

S e T T e

-

See. 2.3 SIGNIFICANT FIGURES AND NUMBERS " 13
and '

“) x = %(xll + 21) and

For example,

: 1660 1.43
1643(17) = [ J and [ : ] _
; 1626 L 1o = 1:295(135).

tio31.3.“Slgruﬁcant: figures and significant numbers. Both approxima-
' -(;nor numbc.rs zu.ld range numbers are dual numbers. The record-
lrlr:lg (;, an.fapproxlmatxon-error number can be accomplished by a single
mber 1 an agreement is made as to the maxi i :
er ! _ aximum size of the
permissible. It is conventional to rec ont
ord the result of
{or the result of an a imati irrati o) by & diviial
( ; pproximation to an irrational number) 1 igi
number, so that the recorded nur i o e oy il
un mber is correct to the las
digit, that is, the error is o lact rerordd
at most one-half unit in the 1
place. In this case it is not necessar e ornor
- In S >ssary to record the 9 in the error n
> 3 3 u .
:zr sl;nce61t7 is b.y agreement equal to one-half unit. Thus the recordr:d
m.zr;1 telx; . 38 implies the spproximation-error number 6.738(14) and
" (:gat. e wfrltten as the approximation-error number 6 7380(5). In the
on of range numb i ‘ :
[6_7335 z ers this number would be represented by
6.7375 |
ne’gl;ix:tiixgltt}s; used in this method of recording approximate numbers
g the zeros necessary to indicate positive or i ’
 nex negative powe
{;;n, are known.as significant figures or significant digits. Thus I:he nr:n(:f
2 6.738 .mentloned above has four significant digits.
pproximate numbe?rs that are expressed in terms of significant fig-
ures mdlght be called.szgn'.;ﬁcant numbers. A significant number may lt);e
viewed as an 'ap.prox1mat10n-error number in which the maximum
18 one-half unit in the last decimal position, e
Sig:i};?cr:nf som; ambiiuity about the number of significant digits in a
number such as 30720. Is the last cipher a signij igi
! suc pher a significant d
:;I:loesdlt;t) me;‘lely indicate a power of ten? This ambigugity shouldli]:
oved Dy the person who introduces the nu
¢ ) : mber or, preferably (se
sec’It‘l}iJn 2.5), a notation :v,hould be adopted that resolve; the ambiiugtye
- etproceis of re}f)la,cmg a number, exact or approximate by a sig.
ant number with a smaller number of signi is ;
: gnificant figures is kn
rounding off.* Thus 3.1416, the fi i rounds
. X ve-figure approximation to 7, rou
0 nd
off successively to 3.142 and 3.14. It is conventional to round o}’f to th:

n= %(xﬂ — ).

« t. .
wp:gtﬁ:; :gz;er;:,:ornal (fio useﬁtheTiymboI for equals, rather than the S};mbo] for
, ounding off. us it is i i
and not necessarily. r 22 3.1416 or r = 3.14lﬁaccePwd practics o vrite x = 31416
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even digit when the number to be rounded off is exactly hall way be-
tween two successive digits.*

2.4 Limitations of significant numbers. In view of the simplicity of
significant numbers, it is not surprising that these, rather than range
numbers or approximation-error numbers, have been used extensively

in computational work. However, significant numbers are far from

ideal as s means of expressing the results of fundamental operations

with approximate numbers.
The limitations of significant numbers begin to be apparent when we

attempt to transform range numbers and approximation-error numbers
to significant numbers. The transformations by which range numbers
are written as equivalent approximation-error numbers, and by which
approximation-error numbers are written as equivalent range numbers,
are shown in (2.2.3) and (2.2.4). It is impossible to transform these
numbers $o0 equivalent significant numbers.

A significant number is a special case of an approximaticn-error
number with the range restricted to a unit of the last digital position so
that significant numbers constitute a rather restricted subclass of all
approximate digital numbers, any of which may be stated in range or
approximation-error form. It is possible to transform significant num-
bers to equivalent approximation-error numbers and range numbers,
but it is impossible, in general, to transform approximation-error num-
bers and range numbers to the subdlass of significant numbers. Thus

'6h) 1.196 = 1.196(%) = 1.1960(5) = [1'1965]
: YRl ~ 111955

but
[1.24] - 11008
114)

cannot be expressed as an equivalent significant number. It certainly
cannot be expressed as the significant number 1.19 because it represents

-
the rangz number [112:;] , nor as the significant number 1.2 because

it represents the number E?g] These two numbers have a range of

* It is helpful to place a dash above a final 5 that results from rounding off 8 num-
ber whose digit in this position is less than 5. Thus 2.76147 should appear as 2.7615
when rounded to 5 significant figures. This number when rounded to four figures
appears as 2.761, which is in error by Jess than one-half unit in the last place, while
the rounding off of 2.7615 yields 2.762, and this is in error by more than one-half

unit in the last place.

Scc. 2.6 ABSOLUTE AND RELATIVE ERROR 15
the same length, and nine-tenths of the range is common to the two

1.14
must be represented by the significant number 1 = 1.0(5) = [ L5J

numbers, but they are not the same numbers. The number [1.24J

. . Lyl O.r
I? 115 lt,;us }:hat the range of the significant number 1 does cover the r':1 re
ol T.} : (:)), but t'.he numbers are certainly not equivalent e
- t.u‘s {llust?atlon sl_'xf)ws that there may be considersble loss in infor-
Cozrxn ;):t 1;1. usmgf; s:gmﬁ;ant numbers as a means of expressing results of
ations, for we deliberately take a lar i
¢ _ rate ger error than is necessa
'(lsilst‘l)?issi nm thte nu;ni)le)r of significant figures in products and quoticr:{s'
section 2. for example, is due not
mulation of errors as E;o the si ici e g e
s simplicit ab ee i
exponse of e plicity tha’ has been gained at the
We need, then, to car i
, ry out our calculations with ths use
need, ' 2 of ran
ampﬁzﬁin:tlon-e.rtrﬁr numbers if we wish precise results Rulesg efgxr'
ation with range and approximation mbe
with an outline of some of th i ind on s imgether
vith e classical material on calculati i
significant numbers, are presented in foms of b chanter
the later sections of thi
2.6 Scientific and signi i : ltipliomsion e
gnificant integer notation. Multiplicati
power of ten can be used to make th  digits i sty
e number of digits i igni
number the same as the number igni e Appensocant
: . of significant figures. Applicati
this device results in so-call enti, By siarmeion of
ed scientific notaticn. Any signi
ber can be written as a signi con L aach 10 o
gnificant number between 1 and 10 ipli
multipl
by sglme power of 10. Thus 3720 = 3.720 X 103, ¢3 000,000 B o3
X 107, 0.0000153 = 1.53 X 1075, P TRI =03
m(;ih;s for.lznh of sc.ientiﬁc notation is closely related to the laws of com:
ogartthms since any significant number ¢ i A
- an be written (approxi-
mately) as a power of 10 if 2 table is available giving the (appr(oxlzgl t),(e
perers of 10 of the numbers between 1 and 10 o)
o nns?élr;cfli for;}nﬁof notation, in which each significant number consisting
cant figures is multiplied by a A
" i : power of 10 to make th
a significant n-place integer, mi ) o
‘ , might be called a signifi )
tion. 1If I represents the signi i ! Ca'nt oy o
bor then gnificant integer and z the significant num-

0 I =210,
where ¢ may be positive or negative. Thus
3.9762 = 39762 x 10~ and 93,000,000 = 93 x 108,

bef.i(i dAf;)soéu'te a.ng relative error. The error of an approximate num-
efined in (2.2.1). In many situations it is not so much the error
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as the ratio of the error to the number that is important. The relative
error of z, which is defined as

1) &(z) = .
x

z z xz

may be used to measure this ratio.

In many cases the true value of z is unknown and we have recorded
cnly its approximate value z’. If € is small with reference to z, an ap-
proximate value of the relative error, or an alternative definition of the
relative error, is given by

8

z—2 Az
= = — — 1,

z’ LA 4

€
@) ele) ===
X

The percentage error is by definition the relative error multiplied by 100.

In technical calculations the term error is reserved for the difference
between an exact number and its approximation. Incorrect statements
entering the calculation as a result of incorrect transcriptions or as a
result of an improper use of the rules and laws of the computing system
are due to mistakes. It is usually possible to eliminate mistakes from
computational procedure, but, when dealing with approximate num-
bers, it is usually impossible to eliminate errors, although limits or
bounds for these errors can often be computed.

2.7 The fundamental operations with range numbers. Range num-
bers may be used with the fundamental operations to secure range
numbers representing sums, differences, products, and guotients.

In the operation of addition we have z +y = [?Z ‘ + [Z’Z ] . The
sum may be as large as zy + yn and as small as 7, + yr. This follows
at once no matter whether z and y are positive or negative. So

(x + ?/)H:] [x,,, + yu J
1 = - '
1) z+y I:(z-i-y)L aL + YL

[2.38] . [3.19] ~ [5‘57]
2.34 317) L1551

[2.38] N [—3.17] ~ [—0.79]
2.34 -3.19]  1-085

This law can be applied to any number of additions simultaneously.

For example,

and

See. 2.7
Thus

RANGE NUMBERS

173 127 ~0.63 -
[109J+[12]+[ J+[ ol = oo
. 125 —0.67 —-130) ~ Logr

Before considering the operation of subtraction, we note that pre

fixing by .a minus sign (multiplication by —1) changes the order of

th . . "
e terms in the range number in addition to changing their sign. Thus

o [3.19J —-3.17 oy e
317 = | —310]" With thxs adjustment subtraction is a special
case of addition. We may then write

St b e 0 8 B e
[rzu]--[aoz)

sl - [l - 1)
bt bl B B el

1.15

17

Thus

but

Addition and subtraction may
example,

32.04 2.27 16.09 -
[31 96] - [ J + [ ]+ -
. 2.21 15.43 —~3.16

_ [32.04 — 221 4 16.00 — 3.087 [42.84
31.96 — 2.27 + 15.43 — 3.16] = [41.96}' '

It is usual.ly preferable to factor the n
tra!lend since a subtraction of the
easier to accomplish. Thus

o e R ol S o

230

be carried on simultaneously. For

egative sign from a negative sub-
form a — (—b) = ¢ + b is then.

Sometimes we wish to add or subtrac

t exact number i
numbers. The above rules can be m  oniepploximate

ade to apply by writing the exact
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20 is repre-
i Thus the exact number 1

‘oital) numbers in range form.

(digital) o

sented in range form as 126 | -

a second approximate number, a satisfac-
urate number

and treating
Thus to add

If one approximate number is accurate

more decimal places than ' numb
K))ry result can be obtained by rounding off the more acc

to one decimal place more than the less accurate nun;)l()}(;r
the rounded-off number as though it were an exact number.

245 [ 173.94397]
] and
[244 173.94388

245 [173.9] _ [418.9].
‘[244] + 173.9 417.9
Similarly, if 1.37 is a significant number,
3.142 1.375] B [4.517].
18T = [3.142] *lises) T Lasor
ed similarly. When the numbex:s
the product is obtained by multi-

we form

Products of range numbers are handl

itive (either exact or digital), mult
ml‘e iggsgll:?a(rge number by the large number and the small num y
Ly

th Il number. If one (or both) of the range nu}mbers is negative,
s, . :
faft(b)r out the minus sign and use the above rule. Thus

= x"] [yy] = {xﬂyﬂ] z >0, y>0.
®) W= zp 1 LyL TLYL

- —y
ST N I
O e RS-

n 3nu ' ents with different signs. This 18
A mber may have compan : s AR
- aglesince here the error is larger than the approximation Con
\ itive. Then
éider for example, the number { b] , where a and b are posit
y
a—2>5 a+ b'

5 and € = 5

not usu

z =

Sce. 2.7 RANGE NUMBERS 19

It follows that e is larger than 2/, and relatively much larger if a is about
the size of b. In most calculations the error term is much smaller than
the approximate term, so numbers of this sort should appear infre-
quently.

Multiplication involving one of these numbers is easily accomplished
if the sign of the number is so adjusted that the component having the
largest absolute value appears as positive. Thus

[1.18][ '1.02] [1.18M 2.14] [ 2.5252] [ 1.2036J
1160 l—214] lraedL—102) = 7110036 = —2.5252

and
[-1.16] l’ 1.02] [1.18] [ 2.14] [ 2.5252:,
=180l —214]  l116d L~1.02) = | —1.2036
Multiplication involving two of these numbers may be accomplished
directly by writing the four possible preducts of the extreme values and
selecting the highest and lowest, or by adjusting the sign of each num-

ber so that the component having the largest absolute value is positive.
The product is then reduced to - another product

¢l e a>b2>0
[ J [ ] with .
—bil—d c>d>0

The upper component of this product is then ac, since ac > bd. The
lower component is then either (=be) or (—ad), whichever is smaller.
Using the first method, we have

[ 1.22][ 1.27] [ 1.5494]
—1381L-1.11) [ —1.75%

since the possible products are 1.5494, —1.3542, —1.7526, and 1.5318.
Using the second method, we have

[ 1.38] [ 1.27]_ [ 1.7526] [ 1.5494J
—1220l—111) L—15404] ~ [ —17508 B

Significant numbers may be multiplied with the use of the correspond-
ing range numbers. The product of the significant numbers 1.23 and

2.34 is then
[1.235] [2.345] [2.896075]
1225112335 12.860375
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This product may well be represented by an approximation to it such as
2.896
2.860

product is [

] - A four-place range number that does cover the range of the

2.897]
2.860 -

The caleulation of products of more than two approximate numbers is
carried out with repeated applications of the processes described above.

The quotients of two approximate numbers can also be computed
with range numbers. The negative signs, if any are present, should
first be removed from the numerator and denominator to obtain the
form +x/y with z and y positive. We then divide z by y1, to get the
highest absolute value of the quotient and z, by yi to get the smallest
absolute value.

4 T _ N [Iu] . [yu] - [111/9’1,].
y zL, YL zL/yu

0
[625.7] ' [36.2] B [17.478] *
62431 "~ L3588l l17.245]°
whereas
[625.7] _ [—-35.8] [625.7] _ [362]
62431 L —362)  le2e3l ~ Ll358
[17,478] [—-17.245'1
h 17245 [ —17.47¢8.
and

[3.39] . [3] [1.13]
3151 L3 1.05

In rounding off the answers make sure that the range of the quotient
is covered even though the error is bigger than one-half unit. (This
amounts, in effect, to providing a true bound rather than an approx-
imate limit.) Thus, though the ratio above (6243 to 36.2) equals
17.245856, the result is recorded as 17.245 since that number represents
the lower terminus of the range. If it were to represent the upper
terminus, it should be recorded as 17.246.

The foregoing rule takes care of the usual situation where both com-
ponenis of each range number have the same sign. Additional cor-
sideration needs to be given to the case where the numerator, or the
denominator, has components with different signs.

* A more precise statement would use the approximation sign, rather than the
equals sign, when the results of the divisions are rcunded off.

See. 2.8 APPROXIMATION-ERROR NUMBERS 21

A good rule to follow, if the dividend has components with different
signs, is one similar to the multiplication rule. The sign of the numera-
tor is so adjusted that the component having the larger absolute value
appears as positive. Thus .

[ 1.37:, . [—1.11] [ 2.46] ) [I.IGJ [ 2.22]
2461 " [-1106 -1370 " lud  L-1.23

A similar rule for the case in which the divisor has components with
different signs is not stated here since, in general, divisions of this type
should not be performed. If the components of the prospective divisor
have different signs, then the range of the divisor includes the number
zero. Since division by zero is excluded, and since there is no way of
knowing when the approximate number is zero, a safe procedure is to
use the conservative rule, never divide by a range number whose com-

panends have different signs.
Range numbers are also adaptable to the operation of square root.

If x > 0, then
ve- -2

For example, the value of the square root of the significant number 103 is

[\/103.5} B [10.18
Vies) 10.12}'

2.8 The fundamental operations with approximation-error numbers.
Approximation-error numbers may be used to perform the fundamental
operations and to secure approximatior-error numbers representing the
values of sums, differences, products, and quotients. If z; = z'; + ¢
and & = 2’5 + €, then 2; + Ty =2y £ 2’5 + (¢ =+ ).

Now if ¢ is an error, not greater in absolute value than 1, and if
l € I < 7, it follows that the maximum absolute error of Ty & x5 is less
than 5; + 7, since

(1) €Ty £ 23) = (1 L 23) — ¢y £ T's) = ¢ % e,

and
I e(zy £ 2) | <y + 7.

If 72 is small with respect to 5, then the maximum possible error of the
sum or difference is approximasely that of z;.

If z; is an exact number, then 5, = 0, and the maximum possible
error of the sum or difference is equal to that of 2.
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If 9, and n, are each equal to or less than 7, We may say
(2) l G(Il =+ .’132) | S 27).

This argument may be extended to include the algebraic sum of
numbers. Thus

@) e ko kzgdkay) | <g ot oy
and, if n; = 9,
4) | e(zy 2 2o w5 £+ - ay) | < N

The rules for adding and subtracting approximation-error numbers
are somewhat simpler than the rules for adding and subtracting range
numbers, since one does not need to be so careful about signs. One
computes the approximate sum or difference just as he does the exact
sum or difference, but he adds a possible error term that is the sum of
all possible errors. '

Some of the addition and subtraction problems of the last section arc
here worked with the use of approximation-error numbers.

[2'38] + [3'19] = 2.36(2) + 3.18(1) = 5.54(3) = [5'57]
2.34 3.17 ' ' 5.51
[2'38] + [—3'”] = 2.36(2) — 3.18(1) = —0.82(3) = [—O‘mJ
2.34 -3.19) ' - " L-085

{1.73] N [1.27] N [—0.63] N [—1.26} — 171 + 12600
1.69 1.25 —0.67 ~130] '

111
~ 065(2) — 1.28(2) = 1.04(7) = [0 97]

4.517
7 + 1.37 = 3.142(0) + 1.370(5) = 4.512(5) = [ ]

4.507

Products of approximation-error numbers can also be computed.
We get

02y = (21 + e)(@'s + ) = 217, + 1’y + ¢r’s + e
so that

(5) €(T122) = 2100 — 212y = e’ + a2’y + ee

e e

' to three decimal places, is then 2.878(18) = [
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The second-order error term ¢ ¢; is usually very small and may be
reglected in most problems. If we neglect it, we have the conventional
formula

€(1122) = 2’16 + 226, *

Again if 9, is the absolute value of the greatest possible value of ¢,
and 7, of €, we can write

® | e(mze) | < | @'l + | 22 |m.

This ab + cd operation is easily performed with a computing machine.
We do not even need to watch the sigrs. To use the earlier illustration,
the product of the significant numbers 1.23 and 2.34 is

P = 1.230(5) X 2.340(5).

The approximation term is 1.230 X 2.340 = 28782. The error term

is (1.230)(0.005) + (2.340)(0.005) = 0.01785. The product, recorded
2.896

2.860] :

Quotients may be treated in a similar fashion since

@ a_hta

Z2 2o+ e

€
x’, (1 + T)
)

1+1_z+m)

* This formula ean also be obtained by differential caleulus since

d(z'\z'e) = 'y dz'y + 'y dx’).
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An approximate value of the error of the quotient is then

2y l"l €1 €2 I"_)_é] — 23,162
®) \- )=\ )=—— "
Zo Tg \T'1 o A

Again, if | ¢ | < 7y and | & | < 12, we have

)

This formula also describes a single machine operasion if the value of

2'52 is first computed. Thus
625.0(7) 625.0 (36.0)(0.7) + (625.0)(0.2)
36.02)  36.0 1296

17.361 + 0.116 = 17.361(116).

The formulas (6) and (9) are approximate and should not be used
when the errors are relatively large. They should not be used, for ex-
ample, when one of the numerators has components with different signs,
for in this case the error may be larger than the approximation.

Some special quotient rules are worthy of note. If x; is an exact
number, say A, (9) becomes

15

whereass, if z, is an exact number, it becomes

< , t's ,’71 + l z'y "'72'

1"22

9

| 4 [9s

S 7 2
T2

(10)

’

‘ T m
11 = —.
(an ‘ (B> =B
Thus

3.00(0.12)
3 +3.27(12) = 0.9174 £ ———= = 0.9174(337)
(3.27)2 .

and

3.27(12) + 3 = 1.09(4).

The rule against division by zero becomes, when stated in approxi-
mation-error numbers: never divide by an approrimation-error number
when the absolute value of the error lerm s as large or larger than the abso-
lute value of the approximation term.

* This formula may also be obtained with the use of the diflerential calculus since

d (1 1) x'sdx’y — x'1dx’s
1'2 1'22

< prmime e

T aw——

RSO —"

T,

See. 2.9 THEOREMS ON RELATIV) ERROR 25

‘ The reader should note that the numerator of the right side of (9) is
identical with the right side of (6), and hence that the recorded absolute
value of the crror of the quotient of the two numbers having relatively
small errors is greater than, equal to, or less than the recorded absolute
value of the error of the product of the numbers, depending on whether
the absolute value of the denominator is less than, equal to; or greater
than unity.

Square root may be accomplished with the use of approximation-

error numbers. Thus, if 2’ > 0, d(V;) =1 —dz , S0 that
xl

(12) «(Vz)| <—1_.

l , AL 4
The square root of the significant number 103 is

1

3 10.174

10.149 & ——2 = 10.149(25) = [ ]
2(10.149) @5) 10.124

2.9 Theorems on relative error. An alternative method of studying
first-order error, particularly effective with products and quotients (and
powers and roots), is by means of relative error. Formulas are obtained
essily with the use of logarithmic differentiation. Thus, if

x
Q ==, U= xp’
Yy

M P =gy, V = gl»
we have '
log. P = log, z +log, y
log, @ = -
@ og. ¢ = log, x log. y
log. U = plog,z

1
log, V = 2 log, z.
It follows that

. P dr  dy
—_— = — + —
P z y
dQ dzr dy
3) @ =z y
au dx
v e
day _ldzx
Vo pz’
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which gives us

| &(P)]| < |e@ ] +] &) |
@] < |e@) ] +]ew) |
4) l er(U) ' <z l fr(x) ,

1
I er(V) ! < ;l 6,-(2‘) I

These approximate inequalities may be summarized by the two
theorems: .

The absolute value of the relative error of a product (or quotient) is ct
most equal to the sum of the greatest absolute values of the relative errors cf
the numbers from which it is formed.

The absolute value of the relative error of a power (or root) is at most
equal to the absolule value of the power (or the reciprocal of the root) times
the grealest relalive error of the number.

Once we have computed the relative error of a quantity we can com-
pute the error by multiplying by the quantity or we may compute the
approximate size of the error by multiplying by the approximate value
of the quantity.

The errors of products and quotients (as well as powers and roots)
may then be calculated by relative error. It is necessary only to com-
pute the maximum relative error of the number in the product or quc-
tient, to add these, and to multiply the result by the approximate prod-
uct or quotient. For example, the maximum relative errors of the
numbers 1.23 and 2.34 are, respectively, 0.0041 and 0.0021. The sun
is 0.0062. Since the approximate product and quotient are 2.878 and
0.526, respectively, it follows that the errors are 0.018 and 0.003. Then
P = 2.878(18) and @ = 0.526(3).

Similar treatments of (1.23)2 and V/'1.23 give 1.513(12) and 1.109(2..

Before the introduction of computing machines, it was not practicsl
to perform all the calculations necessary for obtaining limits or bounds
for error in an extensive series of calculations. The practice was to
prove certain statements that are true for large groups of approximate
numbers and to use these facts in fixing an upper bound for the result-
ant error. These statements have usually been expressed in terms cf
significant numbers. A modified treatment of this general theory is
presented in the following sections. Direct computation with range
numbers or approximation-error numbers is recommended as a better

procedure when precise statements of small maximum error are desired.

. T T e = e o g2t
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‘ 2.10 Relative errors and significant numbers. If z is known and e
Js, lfnown, the maximum relative error may be calculated by (2.6.1).  If
¢’ is known (say positive) and 7 is an upper bound for the absolute
value of ¢, we may state

n

<l) Er(x) < |
. xr — 1

(?onsider the approximate number 1.295(135) of section 2.2. Appli-
cation of (1) gives

0.135 0.135
1.295 — 0.135  1.160

&) < = 0.1164 = 11.649%,

The application of (1) to significant numbers yields
1.107

)] &) < ——re )
z' — 3107

where 107 indicates the unit in the last recorded position of the signifi-
cant 'number. The theory relating relative errors and significant fig-
ures 13 conventionally developed [A] by considering the three cases
P < 0, =0,p>0. The treatment here reduces these three cases to
a single case with the use of the following lemma. If z is any signifi-
cc‘znt_number, there 1s a significant integer T having the same number of
synificant figures and having the same relative error.

The first part of this lemma follows from (2.5.1). Also we know that

I-r _r10°~2"10° 2z -z
z-10° h

®@ &(I) =

= &(z).

. T.he use of this lemma enables us to calculate the relative errors of
&gryﬁcant pumbers without any consideration of the position of the
decimal point, since all significant numbers with the same significant
figures have the same relative error as the significant integer to which
they may be transformed. :

The application of (3) to (1) then gives

(2]

I

(4) €r = € e
® = olD) <

For example, the relative error of the significant number 7.16 is indi-
cated by
1
o)< —2 -0
716 - % 7155

= 0.000699.
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Now a bound for the relative error of a significant number may be
determined quite accurately by a simple formula that depends only on
the first digit of the approximate number and the number of digits in
the number. Thus if k is the first non-zero digit of a number, and if the
total number of significant digits is n, we may say

I'>k10"7  and I>k-1001-3%

so that
3 1

k10" — 3 2k.10" — 1

&(@) = () <

In general, since 2k-10""' — 1 > k-10""", for k>0 and n > 1, we
have
(5) e1'(313) = 6,.(1) < m‘

The restriction k > 0 implies that n > 1. If k=1 and n = 1, we
have the largest possible value of e.(x), subject to the restriction, with
the relative error equal to unity. The error is as large as the number.
For example, the significant number 1, when written as an approxima-
tion for the exact number 0.5, is in error by 0.5.

The statement (5) is useful in setting some sort of an upper bound for
the value of the relative error without making detailed calculations
with (4). A better inequality than (5) is easily obtained if an additional
condition, usually satisfied, is made on the significant number. If the
significant number has at least one non-zero digit besides the first digit,

we may write
I' > k10" +1-109,

where | is a non-zero digit and « is an integer equal to or greater than

zero. Application of (4) gives
1
ko107 4 1-10% — & 2k-10""! 4 21-10% — 1

(S

(6) &) &) <

1
< —
= 2k-10"!

since 2!-10* — 1 > 1 for all permissible values of ! and «.
A useful special case of (6) results when £k = 5, for we then have

1

) &(x) < T(F
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These formulas provide bounds for the relative error without the
necessity of detailed calculation. Thus we may say at once that the
relative errors of 1000, 1001, 5001 are not greater than 0.001, 0.0005,
0.0001, respectively. Decimal points may be inserted at any place in
any of the three numbers without changing the relative errors.

It is clear that there is a close association between relative error and
significant digits. The above formulas have been provided for estimat-
ing an upper bound from a knowledge of the significant numbers. The
following pages arc devoted to the problem of finding the number of
significant digits in a significant number when the maximum relative
error is known.

The number of significant digits of the significant number z is the
same as the number of significant digits of the significant integer I. It is
then only necessary to get a bound for the absolute error of 7 in order
to indicate the number of proved significant places in z since

(8) e(I) = Ie(I).
We first prove the thebrem: If the relative error of a significant number

1
e.(r) < W » where k is the frst significant digit of z, then the

error of x is not more than one unit in the n-th figure of . This follows
since multiplication of I and ¢.(I) in

I< (k+1)10""

rI S*‘*"
“ < o

results in
' e(l) < 1.

In this case we are not permitied to say that  is significant to n places,
since the error may be larger than one-half unit in the last position.
We can say only that

) <1
9) €(x) < 1 unit in the nth digital position.

We next prove the theorem : If the relative error of a significant number
1

L — ki .. L.
=20+ D1 where k is the first digit of x, then x has n significant
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digits. This follows at once, since now

I < (k+ 1)10m?

e(l) < W
so that
«(I) < 3%
and
(10) e(z) < 1 unit in the nth position of z.

i ignificant figures.
In this case we may say that 2 hasn signi ur
nA third theorem is sometimes used in determining the number of

significant figures when the relative error is known: If the relative crror of .

a significant number, e (z) < 1/(2-10"), then x s significant to n figures.
This follows since I < (k + 1)10"~!, with

1
G(I)<ﬁi0—_<_%(fork= 1,2 ---,9)
- 2

50
(11) e(z) < 1 in the nth position of 2.

A fourth theorem is: If the relative error of a sigm‘ﬁalmf n‘unfﬁ)cr e,(z)
< 1/10", then x has at least n 7 (1)”31!1%1{7((175! zl’(l)ticff) <Tl1n/S( ;cs _l:al )).11% :l_). -
cit m 1, since 1/10™ = . < 0"~
ﬁa}cflzlt:?vgftg: (:)crixas z’m error no largel('i than unity in the nth position,

— 1 values are guaranteed.

¥ 2t}11.2;.t t’};‘i: fundamental operations with.sign_iﬁC?nt number;. WeI are
now in a position to discuss calcul.a,tion w1_th significant num ers. tix(;nzf
general way a significant number is a special case of an gpprfomma on-
error number, so it would seem that the gcnfzral rpetho s 0 2c<gmpi o
tion with approximation-error numbers‘o.utlmed in section 2. ;?iot
be applicable to significant numbers. 'll}ls 'would be true wfer(? Dot
for the fact that the limited ranges of significant numbers‘ E)m(.aﬁ) :
siderable rounding off so that the results may be rcc.orded as sxgrzll 1can

numbers. This rounding-off process del‘lberately dlscards. essen :ia..tlr.l-
formation for the sake of ease of recording and (fomputatl'on, an 1t b is
not to be recommended if precise resu}ts are desired and if compu ;ng
machines are available. However, it 1sb ‘the method usually presente

i i ith approximate numbers,

N ’?‘ﬁzk:u‘li:salfl:rg ;c;ditio?lpand subtraction‘ of sigr}iﬁcant numbers follox;
those of section 2.8. The only difference is t‘hat it is necessa.ri to roune
off the result sufficiently to obtain some significant number whose rang

B T —

PO
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includes the true range. Thus 1.68 + 7.43 = 9.11, with a possible
error of 0.01. Although the answer is indicated accurately with the
error number 9.11(1) or the range number [gg] , we are forced to use
the significant number 9.1, which is identical with the range number

[gég} if the answer is to be expressed as a significant number. Simi-

. 4
larly, the value = 4 1.37 = 3.142 + 137 = 4.512(5) = [i;éﬂ can-

not be represented by the significant number 4.51 = [:g(l)g] . It is
4.55

necessary to use the significant number 4.5 = [ 4 45J , which has a

much larger range.

The case with which the sums and differences of approximation-error
numbers can be computed, when compared with the arbitrariness of ~
significant numbers, indicates the use of approximation-error numbers
rather than significant numbers in pure addition and subtraction.

The situation is somewhat the same in the case of multiplication and
division. There is unnecessary restriction in expressing the results in
the form of significant numbers. However, the number of significant
figures may be determined, without the extensive computation de-
msanded by approximation-error numbers, from a rule that is developed
from the theorems of the last section, This rule is: The product (or
quotient) of two numbers, each containing n sigrificant figures (at least
two of which are not zero), is a significent number of at least n — 2 Sfig-
ures. If the leading digits of these numbers are both equal to or greater
than 2, then the product (or quolient) has at least n — 1 significant figures.
Let I, and I, be the significant integers corresponding to z; and z,.
Then

I < ky-10"71 1107,

so that by (2.10.6)

Iy < ko 10771 4 7-10%

1 1
(1) L ————  and r(Ig) £ ——v—.
“) S e md e(h) 2y 10" y
It follows from application of (2.10.3) and (2.94) that
1 1

(1) &(1119) = &(I15) =

oy 1071 T k1071

1 ( 1 i 1) 1 < 1
T 2\ky | ky/ 1071 S e
for all values of &; and k.
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Now by Theorem 4 of the last section, the value of zyz, is guaranteed
to only n — 2 places. If, however, ky > 2 and kg > 2, (1) becomes

@ &(2172) < 31071

and 7,7, is guaranteed to n — 1 figures by Theorerp 3.
An almost identical argument holds for the quthent.
Application of this rule does not lead to precise results. Thus the

3.5
product of 1.23 and 2.34 is given by the significant number 3 = [2.5J .

The use of approximation-error numbers in 2.8 shows that a much bet-

2.896
ter answer is 2.878(18) = [2.860] .

If the factors of the product have different numbcr_s of significant
places, the number of significant places in the p}'oduct is controlleq b;/
the factor having the smallest number of significant places. T!ns is
shown by applying (2.10.6) to (2.94). A similar rule holds for quotlfants.

2.12 Roots and powers with significant numbers. The conventionel
rules for the number of significant places of powers and r‘oc?ts follow a
similar pattern. If the number has at least two non-zero digits, then by
(2.9.4) and (2.10.6) we have

p

1 e&(z”) < oh 101

Ifp =k, e(zP?) < 1/(2-10"") and ;" has at leasst n — 1 significant
digits by Theorem 3 of section 2.10, whereas, if p <10k, e(r®) <
1/(2-10""?) and z;® has n — 2 significant places. :

Similarly
1
1Py & e
(2) } fr(:Ll ) = 2pk-10"—1

If pk > 10, the right-hand value is equal to or less ths_m 1/(2- 10"? ard
the root has n significant figures. If pk < 10, the rlght-han-d §1de is
equal to or less than 1/ (2-10" ") and the root has n — 1 significant

figures. . .
The formula for square root is a special case with p = 2. Then

(2.9.4) gives

1
3) (V1)< —oe

-y

YETRRTE
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It follows that the square root of a n-place number is significant to
n — 1 places if the first digit of the number is 5 or less, and to n places
otherwise. '

The limitations of this conventional method of handling computa-
tions with approximate numbers are apparent when we apply it to the
problem of finding the square root of the approximate number 103.
Application of the rule leads to a two-place number, the significant

o 10.5
number 10 = [ 9.5
rumbers shows that the precise result is 10.149(25), with an error of
less than 3 in the fourth digit.

The reader is referred to Scarborough and to Walker and Sanford
[A] for further discussion of significant numbers.

2.13 Recommendations for computation with approximate numbers.
The selection of a suitable type of approximate number depends upon
the purpose of the computation. Operations with significant numbers,
particularly when supplemented with the use of the theory of the last
two sections, are easier and simpler than the corresponding operations
with range or approximation-error numbers. They are quite satisfac-
tory when additions, subtractions, or a single multiplication or division
are involved. They are also satisfactory when we are not concerned
with the loss of significant figures in each operation. In most computa-
tional work we cannot afford this luxury.

Range numbers or approximation-error numbers are preferred to
significant numbers for precise calculation with approximate numbers.
The methods used in obtaining range numbers are more accurate than
those used in getting approximation-error numbers, though the dif-
ference is trivial in the usual case in which the relative errors of the
numbers are very small.

For most operations, approximation-error numbers are preferable to
range numbers for ease of calculation. Computations with range num-
bers demand dual calculations at each step and constant attention to
signs. Approximation-error numbers demand a single computation for
tke approximation, with an suxiliary computation for the error, which
is usually accomplished easily with the machine. The use of approxi-
mation-error numbers, in general, requires the recording of fewer digits
than the use of range numbers.

Both range numbers and approximation-error numbers have this
undesirable property: different orders of computation in complex calcu-
lations may lead to different results. For example, the evaluation of a
determinant of approximate numbers by conventional methods and the
use of either range or approximation-error numbers may lead to dif-

], whereas calculation with approximation-error
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ferent bounds, depending on the choice of the terms in the elimination
process. Some general rules can be provided for situations of this sort,
as von Neumann and Goldstine have provided rules of algebra for
pseudo-operations [B]. For the basic linear problems the method of
the next paragraph is to be preferred.

An alternative method is the use of incomplete numbers. An Zncom-
plete number is an approximaticn-error number in which the error
term is omitted. These numbers look very much like significant num-
bers, but, unlike significant numbers, the results may be recorded to
any desired number of places. This method makes for ease with a
machine, since all numbers to be placed on the machine may be rounded
off to the same number of places. It must be remembered that any
recorded number is not necessarily a significant number in the technical
sense, that is, we do not know what the bound for the error may be.

Calculation with incomplete numbers, then, amounts to calculation
with a desirable form of the approximation term of an approximation-
error number. The omission of the calculation of the error term would
be very unsatisfactory were it nct for the fact that, frequently, inde-
pendent calculations of the error are available. Thess may be computed
separately and then be attached 1o the result obtained with the use of
incomplete numbers. Incomplete numbers are used in handling the
linear computations of this book, since seperate estimates may be made
of the maximum errors of determinants, solutions of simultaneous equa-
tions, and the elements of the inverse matrix.
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EXERCISES

2.43

1. Consider the number [2.1 6

] . Write it in approximation-error form, and

calculate its relative error.
2. Write the number 1.8923(46) in range form. Calculate its relative error.

Gt
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3. Express in scientific notation and in significant integer notation.
(a) 0.00639
(b) 63.9-108
(c) 92,500,000

(d) 62.5-10%

4. Perfprm the indicated operations.
297 0.88 192 -113
o [ _ .
(@) [2.83] + [0.86] [1.87] + -1423]
2.987 ro0.88
® [555] o]
2.83 0.86

2.97 0.88
@[ +[
2.83 0.66

2.24]
2.13

(&) = — V2 (to three decimal places)

o[ ]

<wr+[

6. Evaluate and express the results in approximaticn-error form.
(a) 8.321(15) + 6.297(2) — 1.777(77)
(b) 2.345(2) — 3.456(3)

2.345(2
(o) ——Q
3.456(3)
(d) V'2.345(2)
() 2.345(2) + 5

5

el 2.345(2)
6. Work exereise 5(c) and excreise 5(d), wsing relative error formulas.

7. Usi'ng ?onvent:iorfal rules, write the values of ab, a/b, and \/; in significant
number§ if @ is the f;lgmﬁczmt number 2.345 and b is the significant number 3.456.
8. Find the perimeter and the area of a rectangle with sides a = 163.0(2) feet

and b = 276.3(4) feet. Find the maximum relative error of the perimeter and of the
area.
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