Topic 7. Complexity

Data Structures and Algorithms

FIB

Antoni Lozano
(translated by Albert Oliveras)

Q2 2017-2018
Version of December 19, 2018

- Decision problems
- Polynomial and exponential time
- Nondeterminism

2 Reductions

- Concept of reduction
- Examples of reductions
- Properties

3 NP-completeness

- NP-completeness theory
- NP-complete problems
- Decision problems
- Polynomial and exponential time
- Nondeterminism
- Concept of reduction
- Examples of reductions
- Properties

3 NP-completeness

- NP-completeness theory
- NP-complete problems

Classes

Algorithm analysis studies the amount of resources that an algorithm needs to solve a problem.

Complexity theory considers all possible algorithms that solve the same problem.

Algorithm analysis focuses on algorithms, whereas complexity theory
focuses on problems
We will study some basic tools to classify problems according to their

Classes

Algorithm analysis studies the amount of resources that an algorithm needs to solve a problem.

Complexity theory considers all possible algorithms that solve the same problem.

- Algorithm analysis focuses on algorithms, whereas complexity theory focuses on problems
- We will study some basic tools to c
problems according to their

Classes

Algorithm analysis studies the amount of resources that an algorithm needs to solve a problem.

Complexity theory considers all possible algorithms that solve the same problem.

- Algorithm analysis focuses on algorithms, whereas complexity theory focuses on problems
- We will study some basic tools to classify problems according to their complexity

Decision problems

In order to better classify problems, we will consider their decision versions.

Definition

A decision problem is a problem where one has to determine whether an instance satisfies a certain property.

Decision problems

Lots of problems seen so far are or can be made decisional.
Some decision problems on graphs:

- connectivity: given a graph, determine whether it is connected
- reachability: given a graph $G=(V, E)$ and two vertices $i, j \in V$, determine whether there is a path from i to j in G
- shortest path: given a graph $G=(V, E)$, two vertices $i, j \in V$ and a natural number k, determine whether there is a path between i and j in G of length at most k
- longest path: given a graph $G=(V, E)$, two vertices $i, j \in V$ and a natural number k, determine whether there is a path between i and j in G of length at least k
- 3-colorability: given a graph, determine whether it is 3-colorable

Decision problems

Some problems do not make sense in their decision version.

Decision n-queens problem (1st version)
Given a natural number n, determine whether we can place n queens on an $n \times n$ board so that no two queens threaten each other.

It is known that there are solutions for all $n \neq 2,3$. Hence, the following algorithm decides the problem in time $\Theta(1)$.

QUEENS (n)
if $n=2$ o $n=3$ then
return FALSE
else
return TRUE

Decision problems

What is interesting is not whether there is a solution, but finding one.

Decision n-queens problem (2nd version)

Given a natural number n and k values $r_{1}, \ldots r_{k}$, with $k \leq n$, determine whether we can place n queens on an $n \times n$ board so that no two queens threaten each other and for all i such that $1 \leq i \leq k$, the queen in row i is in column r_{i}.

This version, despite being decisional, allows one to find a solution with

$$
(n-1)+(n-2) \cdots+2=\sum_{i=2}^{n-1} i=\frac{n(n-1)}{2}-1 \in \Theta\left(n^{2}\right)
$$

executions of the algorithm that solves it.

Decision problems

Some other decision problems:
(1) primality: given a natural number, determine whether it is a prime
(2) traveling salesperson problem (TSP): given n cities, the distances among them and a number of kilometers k, determine whether there is a route of at most k kilometers that visits each city exactly once and goes back to the origin

A decision problem is a set consisting of an infinite number of instances.
If a problem consists of a finite number of instances, it can be solved by a constant-time algorithm (e.g. 8-queens).

Decision problems

A decision problem is formally represented as a set.

If T is a property that can be checked on the elements of an instance set E, we can formulate the following decision problem:

Problem A

Given $x \in E$, determine whether $T(x)$ holds.
Formally, A can be described as the set:

$$
A=\{x \in E \mid T(x)\} .
$$

Decision problems

The problem instances will belong to some concrete domains such as:

- natural numbers
- tuples of natural numbers
- graphs
- weighted dags
- Boolean formulas

In each case, we will consider a size or length function.

Size function

Given $x \in E$, where E is a domain, the size of x, represented as $|x|$, is the number of symbols of a standard encoding of x.

Decision problems

Given a problem A defined over an input set E, we will distinguish between

- positive instances: the ones belonging to A
- negative instances: the ones belonging to $E-A$

Or formally as the set of positive inputs:

Decision problems

Given a problem A defined over an input set E, we will distinguish between

- positive instances: the ones belonging to A
- negative instances: the ones belonging to $E-A$

Primality

The primality problem can be described informally
Primality (PRIMES)
Given a natural number x, determine whether x is prime.
Or formally as the set of positive inputs:

$$
\text { PRIMES }=\{x \in \mathbb{N} \mid x \text { is prime }\} .
$$

A size function for the natural numbers counts the number of digits of its binary representation:

$$
|x|=\text { number of digits of } x \text { in binary }=\left\lfloor\log _{2} x\right\rfloor+1 .
$$

Decision problems

Once we can describe problems as mathematical objects (decision problems as sets), we can group them into classes according to their complexity.

- We will consider classes of problems that can be solved using a certain amount of resources
- A class groups problems in the same way as a problem groups instances
- We have to distinguish between three levels of abstraction:
- Instances $\longrightarrow>$ strings of characters
- Problems —-> sets of instances
- Classes ——> sets of problems

Polynomial and exponential time

Let us assume that $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$is a function.

Algorithms of cost t

We say that an algorithm \mathcal{A} has cost t if its worst-case cost belongs to $O(t)$.

Problems decidable in time t

If an algorithm \mathcal{A} takes inputs from a set E and has a binary output, we write

$$
\mathcal{A}: E \rightarrow\{0,1\} .
$$

We say that a decision problem A is decidable in time t if there exists an algorithm $\mathcal{A}: E \rightarrow\{0,1\}$ of cost t such that, for all $x \in E$:

$$
\begin{aligned}
& x \in A \Rightarrow \mathcal{A}(x)=1 \\
& x \notin A \Rightarrow \mathcal{A}(x)=0
\end{aligned}
$$

Polynomial and exponential time

Class TIME(t)

Given a function $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$, we group the problems decidable in time t :
$\operatorname{TIME}(t)=\{A \mid A$ is decidable in time $t\}$.

We remind that there is a huge difference between having a polynomial or an exponential algorithm for a problem. In Topic 1 we saw two tables showing:

- quantitative differences (table 1)
- qualitative differences (table 2)
between polynomials and exponentials.

Polynomial and exponential time

Table 1 (Garey/Johnson, Computers and Intractability)

Comparison between polynomial and exponential functions.

cost	10	20	30	40	50
n	0.00001 s	0.00002 s	0.00003 s	0.00004 s	0.00005 s
n^{2}	0.0001 s	0.0004 s	0.0009 s	0.0016 s	0.0025 s
n^{3}	0.001 s	0.008 s	0.027 s	0.064 s	0.125 s
n^{5}	0.1 s	3.2 s	24.3 s	1.7 min	5.2 min
2^{n}	0.001 s	1.0 s	17.9 min	12.7 days	35.7 years
3^{n}	0.059 s	58 min	6.5 years	3855 cents.	2×10^{8} cents.

Polynomial and exponential time

Table 2 (Garey/Johnson, Computers and Intractability)

Effect of technological improvements on polynomial and exponential algorithms.

cost	current technology	technology $\times 100$	technology $\times 1000$
n	N_{1}	$100 N_{1}$	$1000 N_{1}$
n^{2}	N_{2}	$10 N_{2}$	$31.6 N_{2}$
n^{3}	N_{3}	$4.64 N_{3}$	$10 N_{3}$
n^{5}	N_{4}	$2.5 N_{4}$	$3.98 N_{4}$
2^{n}	N_{4}	$N_{4}+6.64$	$N_{4}+9.97$
3^{n}	N_{5}	$N_{5}+4.19$	$N_{5}+6.29$

Polynomial and exponential time

Class P

We define the class P as the union of all polynomial-time classes:

$$
\mathrm{P}=\bigcup_{k>0} \operatorname{TIME}\left(n^{k}\right) .
$$

That is, a problem belongs to P if it is decidable in time n^{k} for some k.

Class EXP

We define the class EXP as the union as the union of all exponential classes:

$$
\operatorname{EXP}=\bigcup_{k>0} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

That is, a problem is in EXP if it is decidable in time $2^{n^{k}}$ for some k.

Polynomial and exponential time

Examples

Problems in P:

- connectivity
- reachability
- primality
- shortest path
- 2-colorability

Problems in EXP (not known to be in P):

- longest path
- 3-colorability
- travelling salesperson problem

Other problems in EXP:

- generalized chess, checkers and go

Theorem

$\mathrm{P} \subsetneq$ EXP.

Strict inclusion in the theorem can be divided into two parts:
(1) P EXP. Obvious from the definitions:

$$
\mathrm{P}=\bigcup_{k>0} \operatorname{TIME}\left(n^{k}\right) \subseteq \bigcup_{k>0} \operatorname{TIME}\left(2^{n^{k}}\right)=\operatorname{EXP}
$$

(2) $\mathrm{P} \neq$ EXP. Proved using the diagonalization technique

Nondeterminism

- Algorithms seen so far are deterministic: they follow a unique computation path from the input to the output
- The execution of an algorithm $\mathcal{A}: E \rightarrow\{0,1\}$ on a domain E can be seen as a path:

Nondeterminism

A nondeterministic algorithm can reach a result via different paths. Its behavior is more similar to a tree.
returns a distinct value between 0 and y on each branch
Comnutation tree: The comnutation starts in a deterministic way until the first CHOOSE instruction; for every value returned by CHOOSE, an independent computation branch is generated with the corresponding value

Returned value: We say that \mathcal{A} returns 1 if some branch returns 1 otherwise, \mathcal{A} returns 0

Nondeterminism

A nondeterministic algorithm can reach a result via different paths. Its behavior is more similar to a tree.

Nondeterministic algorithms (informal idea)

An algorithm $\mathcal{A}: E \rightarrow\{0,1\}$ is nondeterministic if it can use a new function

$$
\text { choose }(y)
$$

that, for an input x and $y \leq x$, splits the computation into y branches, and returns a distinct value between 0 and y on each branch.

- Computation tree: The computation starts in a deterministic way until the first CHOOSE instruction; for every value returned by CHOOSE, an independent computation branch is generated with the corresponding value
- Returned value: We say that \mathcal{A} returns 1 if some branch returns 1 ; otherwise, \mathcal{A} returns 0
- Cost: The cost of \mathcal{A} is that of the branch with highest cost

Nondeterminism

Example: Composites

The problem

$$
\text { COMPOSITES }=\{x \mid \exists y \quad 1<y<x \text { and } y \text { divides } x\}
$$

has a trivial exponential deterministic algorithm

```
input }
for }y=2\mathrm{ until }x-
    if }y\mathrm{ divides }x\mathrm{ then
        return 1
```

return 0
and a polynomial nondeterministic algorithm
input x
$y \leftarrow \operatorname{Choose}(x-1)$
if $y>1$ and y divides x then return 1
return 0

Nondeterminism

- In the previous example, we say that 3 is a witness of the fact that 27 is not a prime
- That is, in the problem composites there exist:
- Possible witnesses $(y<x)$ of the fact that x is composite
- A polynomial-time verifier algorithm that, given x and y, checks whether y divides x

Unlike COMPOSITES, the problem GENERALIZED CHESS has no short witnesses that allow one to check that a player has a winning strategy.

But there are a lot of problems for which it is easy to find short witnesses. For all of them, there are polynomial nondeterministic algorithms.

Nondeterminism

Example: 3-colorability

The 3-colorability problem, represented by the set

$$
3 \text {-COLOR }=\{G \mid G \text { is 3-colorable }\}
$$

has an exponential-time brute-force algorithm
input $G=(V, E)$
$n \leftarrow|V|$
for each tuple $\left(c_{1}, \ldots, c_{n}\right)$ where $\forall i \leq n \quad c_{i} \in\{0,1,2\}$
if $\left(c_{1}, \ldots, c_{n}\right)$ is a 3 -coloring of G then return 1
return 0

Nondeterminism

Example: 3-colorability

and a polynomial nondeterministic algorithm

```
input \(G=(V, E)\)
\(n \leftarrow|V|\)
for \(i=1\) until \(n\)
    \(c_{i} \leftarrow \operatorname{CHOOSE}(2)\)
if \(\left(c_{1}, \ldots, c_{n}\right)\) is a 3 -coloring of \(G\) then
    return 1
else
        return 0
```

The formal definition of nondeterministic polynomial algorithms distinguishes:

- the witness computation
- the deterministic computations

Nondeterminism

Decidability in nondeterministic polynomial time

Let Σ be an alphabet and A a decision problem defined over inputs of a set E. We say that A is decidable in nondeterministic polynomial time if there exist

- a polynomial algorithm $\mathcal{V}: E \times \Sigma^{*} \rightarrow\{0,1\}$ (called verifier) and
- a polynomial $p(n)$
such that for all $x \in E$, we have

$$
\begin{aligned}
& x \in A \Rightarrow \mathcal{V}(x, y)=1 \text { for some } y \in \Sigma^{*} \text { such that }|y|=p(|x|) \\
& x \notin A \Rightarrow \mathcal{V}(x, y)=0 \text { for all } y \in \Sigma^{*} \text { such that }|y|=p(|x|)
\end{aligned}
$$

If $x \in A$, the y such that $\mathcal{V}(x, y)=1$ are called witnesses or certificates.

Nondeterminism

In order to know that a problem A is decidable in nondeterministic polynomial time we will have to check that:
(1) positive inputs have polynomial-sized witnesses (witnesses have to be defined)
(2) witnesses can be verified in polynomial time
(a verifier has to be designed)

Nondeterminism

Composites

Let us consider the problem

$$
\text { COMPOSITES }=\{x \mid \exists y \quad 1<y<x \text { and } y \text { divides } x\}
$$

(1) The witnesses for x are all $y \neq 1, x$ that divide x
(2) The polynomial is $p(n)=n$
(3) The verifier is
$\mathcal{V}(x, y)$
if $(1<y<x)$ and (y divides x) then
return 1
else
return 0

COMPOSITES is decidable in nondeterministic polynomial time because

$$
x \in \text { COMPOSITES } \Leftrightarrow \mathcal{V}(x, y)=1 \text { for some } y \text { s.t. }|y|=p(|x|)
$$

Nondeterminism

3-colorability

Let us consider the problem

$$
3-\mathrm{COLOR}=\{G \mid G \text { is 3-colorable }\}
$$

(1) The witnesses for $G=(V, E)$ are all 3-colorings C of G of the form $C=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$, where $n=|V|$ and $c_{i} \in\{0,1,2\}$ for all $i \leq n$
(2) The polynomial (with reasonable encodings of G and C) can be $p(n)=n$
(3) The verifier is
$\mathcal{V}(G, C)$
if C is a 3-coloring of G then return 1
else
return 0

Nondeterminism

All problems decidable in nondeterministic polynomial time are grouped in one class.

Class NP

We define the class NP (from nondeterministic polynomial time) as: $\mathrm{NP}=\{A \mid A$ is decidable in nondeterministic polynomial time $\}$.

Nondeterminism

All problems decidable in nondeterministic polynomial time are grouped in one class.

Class NP

We define the class NP (from nondeterministic polynomial time) as: $\mathrm{NP}=\{A \mid A$ is decidable in nondeterministic polynomial time $\}$.

How does NP compare to P and EXP?

Nondeterminism

Main difference between P and NP:

- solutions to problems in P can be found in polynomial time
- solutions to problems in NP can be verified in polynomial time

Nondeterminism

Main difference between P and NP:

- solutions to problems in P can be found in polynomial time
- solutions to problems in NP can be verified in polynomial time

Example: Perfect squares and composites

(1) SQUARES $=\left\{x \in \mathbb{N} \mid \exists y \quad 1 \leq y<x\right.$ and $\left.x=y^{2}\right\}$
(2) COMPOSITES $=\{x \in \mathbb{N} \mid \exists y \quad 1<y<x$ and y divides $x\}$

Nondeterminism

Main difference between P and NP:

- solutions to problems in P can be found in polynomial time
- solutions to problems in NP can be verified in polynomial time

Example: Perfect squares and composites

(1) SQUARES $=\left\{x \in \mathbb{N} \mid \exists y \quad 1 \leq y<x\right.$ and $\left.x=y^{2}\right\}$
(2) COMPOSITES $=\{x \in \mathbb{N} \mid \exists y \quad 1<y<x$ and y divides $x\}$

Example: 2 and 3-colorability

(1) 2 -COLOR $=\{G \mid G$ is 2-colorable $\}$
(2) 3 -COLOR $=\{G \mid G$ is 3-colorable $\}$

Nondeterminism

Theorem

$\mathrm{P} \subseteq \mathrm{NP}$.

Proof

Any deterministic algorithm is nondeterministic (but does not use CHOOSE).
Equivalently, for all $A \in \mathrm{P}$, we can create verifiers \mathcal{V} such that for any x :

$$
\begin{aligned}
& x \in A \Rightarrow \mathcal{V}(x, y)=1 \text { for all } y \in \Sigma^{*} \text { such that }|y|=|x| \\
& x \notin A \Rightarrow \mathcal{V}(x, y)=0 \text { for all } y \in \Sigma^{*} \text { such that }|y|=|x|
\end{aligned}
$$

To find $\mathcal{V}(x, y)$, it is only needed to simulate $\mathcal{A}(x)$ and return the same value 0 or 1 (independently of y). Hence, $A \in \mathrm{NP}$.

Nondeterminism

Differences between NP and EXP:

- problems in NP have solutions verifiable in polynomial time
- problems in EXP can have exponentially large solutions
- in order to solve problems in NP there is a standard algorithm that searches for a witness, but this is not the case for EXP problems

Nondeterminism

Theorem

$\mathrm{NP} \subseteq$ EXP.
Proof
Let $A \in \mathrm{NP}$. Hence, there is a polynomial $p(n)$ and a verifier \mathcal{V} such that

$$
\begin{gathered}
x \in A \Rightarrow \mathcal{V}(x, y)=1 \text { for some } y \in \Sigma^{*} \text { such that }|y|=p(|x|) \\
x \notin A \Rightarrow \mathcal{V}(x, y)=0 \text { for all } y \in \Sigma^{*} \text { such that }|y|=p(|x|)
\end{gathered}
$$

We can consider an exponential algorithm for A that looks for a witness:

$$
\text { input } x
$$

for all y such that $|y|=p(|x|)$
if $\mathcal{V}(x, y)=1$ then return 1

return 0

It is easy to see that the previous algorithm is exponential and decides A. Hence, $A \in$ EXP.

- We know that $\mathrm{P} \subseteq \mathrm{NP} \subseteq$ EXP
- We also know that $\mathrm{P} \neq \mathrm{EXP}$
- Thus, we can assure that either $\mathrm{P} \neq \mathrm{NP}$ or NP \neq EXP (or both), and we are left with three possibilities:

We will take (a) as our working hypothesis.

- Decision problems
- Polynomial and exponential time
andeterminism

2 Reductions

- Concept of reduction
- Examples of reductions
- Properties

3 NP-completeness
\square NP-completeness theory
NP-complete problems

- NP-complete problems

Concept of reduction

The cup of tea story

Concept of reduction

Reductions

Let A and B be two decision problems with input sets E and E^{\prime}, respectively. We say A reduces to B in polynomial time if there exists a polynomial-time algorithm \mathcal{F} such that

$$
\begin{aligned}
& x \in A \Rightarrow \mathcal{F}(x) \in B \\
& x \notin A \Rightarrow \mathcal{F}(x) \notin B
\end{aligned}
$$

In this case, we write $A \leq^{p} B$ (or $A \leq^{p} B$ via \mathcal{F}) and we say that \mathcal{F} is a polynomial-time reduction from A to B.

Examples of reductions

Parity

Let us consider the language of even numbers

$$
\operatorname{EVEN}=\{x \in \mathbb{N} \mid \exists y \in \mathbb{N} \quad x=2 y\}
$$

and that of odd numbers

$$
\text { ODD }=\{x \in \mathbb{N} \mid \exists y \in \mathbb{N} \quad x=2 y+1\}
$$

As one can see, EVEN reduces to ODD via an algorithm \mathcal{F} that adds 1 to the input: $\mathcal{F}(x)=x+1$. It is obvious that for all x :

$$
x \in \operatorname{EVEN} \Leftrightarrow \mathcal{F}(x) \in \mathrm{ODD} .
$$

Examples of reductions

Parity

Let us consider the language of even numbers

$$
\operatorname{EVEN}=\{x \in \mathbb{N} \mid \exists y \in \mathbb{N} \quad x=2 y\}
$$

and that of odd numbers

$$
\mathrm{ODD}=\{x \in \mathbb{N} \mid \exists y \in \mathbb{N} \quad x=2 y+1\}
$$

As one can see, EVEN reduces to ODD via an algorithm \mathcal{F} that adds 1 to the input: $\mathcal{F}(x)=x+1$. It is obvious that for all x :

$$
x \in \operatorname{EVEN} \Leftrightarrow \mathcal{F}(x) \in \mathrm{ODD} .
$$

In this case, one can also reduce ODD to EVEN using the same algorithm \mathcal{F}. That is, ODD \leq^{p} EVEN via \mathcal{F}.

Examples of reductions

Partitions

Consider the following two problems:

Partition

Given natural numbers $x_{1}, x_{2}, \ldots, x_{n}$, determine whether they can be divided into two groups having the same sum.

Knapsack

Given natural numbers $x_{1}, x_{2}, \ldots, x_{n}$ and a capacity $C \in \mathbb{N}$, determine whether there is a selection of the x_{i} 's that sums exactly C.

Examples of reductions

Partitions

Consider the following two problems:

Partition

Given natural numbers $x_{1}, x_{2}, \ldots, x_{n}$, determine whether they can be divided into two groups having the same sum.

Knapsack

Given natural numbers $x_{1}, x_{2}, \ldots, x_{n}$ and a capacity $C \in \mathbb{N}$, determine whether there is a selection of the x_{i} 's that sums exactly C.

Formally:

$$
\begin{aligned}
& \text { PARTITION }=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \exists I \subseteq\{1, \ldots, n\} \quad \sum_{i \in I} x_{i}=\sum_{i \notin I} x_{i}\right\} \\
& \text { KNAPSACK }=\left\{\left(x_{1}, \ldots, x_{n}, C\right) \mid \exists I \subseteq\{1, \ldots, n\} \quad \sum_{i \in I} x_{i}=C\right\}
\end{aligned}
$$

Examples of reductions

Partitions

The algorithm

$$
\begin{aligned}
& \mathcal{F}\left(x_{1}, \ldots, x_{n}\right) \\
& S \leftarrow \leftarrow \sum_{i=1}^{n} x_{i} \\
& \text { if } S \text { is odd then } \\
& \quad \text { return }\left(x_{1}, \ldots, x_{n}, S+1\right) \\
& \quad \text { else } \\
& \quad \text { return }\left(x_{1}, \ldots, x_{n}, S / 2\right)
\end{aligned}
$$

is a polynomial-time reduction from PARTITION to KNAPSACK:

$$
\left(x_{1}, \ldots, x_{n}\right) \in \text { PARTITION } \Leftrightarrow \mathcal{F}\left(x_{1}, \ldots, x_{n}\right) \in \text { KNAPSACK. }
$$

Examples of reductions

Exercise

We define the following collection of coloring problems:
k-Colorability (k-COLOR)
Given an undirected graph G, determine whether the vertices in G can be colored with at most k colors, so that each pair of adjacent vertices of get different colors.

Prove that, for all $k \geq 1$, it holds that:

$$
k \text {-COLOR } \leq^{p}(k+1) \text {-COLOR. }
$$

Examples of reductions

Definition

A Hamiltonian path in a graph G is a path in G containing all of its vertices without repetitions.

Exercise

We define the Hamiltonian path problem (HP) i and the Hamiltonian path problem between two points $\left(\mathrm{HP}_{2}\right)$ as:

- $H P=\{G \mid G$ has a Hamiltonian path $\}$
- $\mathrm{HP}_{2}=\{(G, u, v) \mid G$ has a Hamiltonian path with endpoints $u, v\}$

Propose:

(1) a reduction proving $\mathrm{HP} \leq^{p} \mathrm{HP}_{2}$
(2) a reduction proving $\mathrm{HP}_{2} \leq^{p} \mathrm{HP}$

Properties: Reflexivity

For all $A, \quad A \leq^{p} A$.

We can consider the algorithm that computes the identity function:
$\mathcal{F}(x)$
return x

It is obvious that, for all x

$$
x \in A \Leftrightarrow \mathcal{F}(x)=x \in A
$$

Properties: Transitivity

For all A, B, C, if $A \leq^{p} B$ and $B \leq^{p} C$, then $A \leq^{p} C$.

If

- $A \leq^{p} B$ via \mathcal{F} and
- $B \leq^{p} C$ via \mathcal{G},
then the composition $\mathcal{G} \circ \mathcal{F}\left(\mathcal{F} \mid \mathcal{G}\right.$ in UNIX pipe notation) proves that $A \leq^{p} C$.
We will consider that $\mathcal{G} \circ \mathcal{F}(x)=\mathcal{G}(\mathcal{F}(x))$.
ExerciseProve that

$$
3-\text { COLOR } \leq^{p} k \text {-COLOR }
$$

for all $k \geq 4$ by two different methods:
(1) using transitivity of reductions
(2) providing an explicit reduction

Properties

Corollary

Reductions form a preorder.

Question

Observe that, although reductions form a preorder, they do not form a partial order due to the fact that they do not satisfy antisymmetry:

Corollary

Reductions form a preorder.

Question

Observe that, although reductions form a preorder, they do not form a partial order due to the fact that they do not satisfy antisymmetry:

- $\forall A, B \quad A \leq^{p} B \wedge B \leq^{p} A \Rightarrow A=B$

Closure of P under reductions

For all A, B, if $A \leq^{p} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.

If

- \mathcal{B} is a polynomial algorithm for B and
- \mathcal{F} is a polynomial algorithm that proves $A \leq^{p} B$,
then the composition $\mathcal{F} \circ \mathcal{B}$ is a polynomial algorithm for A :
(1) $\mathcal{B} \circ \mathcal{F}$ is polynomial since it is a composition of polynomial-time
algorithms

Closure of P under reductions

For all A, B, if $A \leq^{p} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.

If

- \mathcal{B} is a polynomial algorithm for B and
- \mathcal{F} is a polynomial algorithm that proves $A \leq^{p} B$,
then the composition $\mathcal{F} \circ \mathcal{B}$ is a polynomial algorithm for A :
(1) $\mathcal{B} \circ \mathcal{F}$ is polynomial since it is a composition of polynomial-time algorithms

Properties

Closure of P under reductions

For all A, B, if $A \leq^{p} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.

If

- \mathcal{B} is a polynomial algorithm for B and
- \mathcal{F} is a polynomial algorithm that proves $A \leq^{p} B$,
then the composition $\mathcal{F} \circ \mathcal{B}$ is a polynomial algorithm for A :
(1) $\mathcal{B} \circ \mathcal{F}$ is polynomial since it is a composition of polynomial-time algorithms
(2) $\mathcal{B} \circ \mathcal{F}(x)$ accepts $\Leftrightarrow \mathcal{B}$ accepts $\mathcal{F}(x) \Leftrightarrow \mathcal{F}(x) \in B \Leftrightarrow x \in A$

Notation: Polynomial equivalence
Given two decision problems A, B, we write $A \equiv^{p} B$ if $A \leq^{p} B$ and $B \leq^{p} A$.

Notation: Polynomial equivalence

Given two decision problems A, B, we write $A \equiv^{p} B$ if $A \leq^{p} B$ and $B \leq^{p} A$.

Problem: Equivanlence classes of P

(1) Prove that \equiv^{p} is an equivalence relation (reflexive, symmetric, and transitive)
(2) Prove that for all A, B, if $A \in \mathrm{P}$ and $B \neq \emptyset, \Sigma^{*}$, then $A \leq^{p} B$
(3) Obtain the partition of P into equivalence classes induced by relation \equiv^{p}

1 Classes

- Decision problems
- Polynomial and exponential time
- Nondeterminism

2 Reductions

- Concept of reduction

Examples of reductions

- Properties

3 NP-completeness

- NP-completeness theory
- NP-complete problems

NP-completeness theory

- I can't find an efficient algorithm, I guess l'm just too dumb.

Garey \& Johnson, Computers and Intractability

- I can't find an efficient algorithm because no such algorithm is possible!

Garey \& Johnson, Computers and Intractability

- I can't find an efficient algorithm, but neither can all these famous people.

Garey \& Johnson, Computers and Intractability

NP-completeness theory

Definition

A problem A is NP-hard if for any problem $B \in \mathrm{NP}$ it holds that $B \leq^{p} A$.

NP-completeness theory

Definition

A problem A is NP-complete if it is NP-hard and $A \in$ NP.

NP-completeness theory

Any NP-complete problem "represents" the whole NP class in relation to P . More formally.

NP-completeness theory

Any NP-complete problem "represents" the whole NP class in relation to P.
More formally...

Proposition

Let A be an NP-complete problem. Then, $\mathrm{P}=\mathrm{NP}$ if and only if $A \in \mathrm{P}$.
\Rightarrow Since A is NP-complete, $A \in \mathrm{NP}$ and hence $A \in \mathrm{P}$.
\Leftrightarrow Let $A \in \mathrm{P}$.
(1) Due to the closure of P under reductions, we know that for all B such that $B \leq^{p} A$ we have $B \in \mathrm{P}$.
(2) Since A is NP-complete, we know that for all $B \in \mathrm{NP}, B \leq^{p} A$.

Using 1 and $2, \mathrm{NP} \subseteq \mathrm{P}$ and hence $\mathrm{P}=\mathrm{NP}$.

NP-completeness theory

Any two NP-complete problems are equivalent.

More formally.

NP-completeness theory

Any two NP-complete problems are equivalent.
More formally...

Definition

We write $A \equiv^{p} B$ when $A \leq^{p} B$ and $B \leq^{p} A$.

NP-completeness theory

Any two NP-complete problems are equivalent.
More formally...

Definition

We write $A \equiv^{p} B$ when $A \leq^{p} B$ and $B \leq^{p} A$.

Proposition

If A and B are NP-complete, then $A \equiv^{p} B$.

Since A and B are NP-complete, we have
(1) $A \in \mathrm{NP}$ and
(2) B is NP-hard
and then, $A \leq^{p} B$.
Symmetrically, we can argue that $B \leq^{p} A$. Therefore, $A \equiv^{p} B$.

But...do NP-complete problems exist?

NP-completeness theory

Boolean formulas

- A Boolean formula (BF) is a formula over Boolean variables with no quantifiers
- We will use the connectives:
\checkmark (disjunction), \wedge (conjunction) and \neg (negation)
For example,

$$
F(x, y, z)=(x \vee y \vee \neg z) \wedge \neg(x \wedge y \wedge z)
$$

is a Boolean formula.

NP-completeness theory

Boolean formulas

- A Boolean formula (BF) is a formula over Boolean variables with no quantifiers
- We will use the connectives:
\checkmark (disjunction), \wedge (conjunction) and \neg (negation)
For example,

$$
F(x, y, z)=(x \vee y \vee \neg z) \wedge \neg(x \wedge y \wedge z)
$$

is a Boolean formula.

Conjunctive Normal Form (CNF)

- A literal is a positive or negative variable $(x, \neg x)$
- A clause is a disjunction of literals $(x \vee \neg y \vee z)$
- A Boolean formula is in CNF if it is a conjunction of clauses

$$
F(x, y, z)=(x \vee \neg y \vee z) \wedge(\neg x \vee \neg z)
$$

NP-completeness theory

Satisfiability

A Boolean formula is satisfiable if there exists an assignment from variables to $\{0,1\}$ under which the formula evaluates to true. For example,

$$
F(x, y, z)=(x \vee \neg y \vee z) \wedge(\neg x \vee \neg z)
$$

is satisfiable with $x=1, y=0, z=0$. We write $F(100)=1$.
We define

$$
\begin{aligned}
& \text { SAT }=\{F \mid F \text { is a satisfiable Boolean formula }\} \\
& \text { CNF-SAT }=\{F \mid F \text { is a satisfiable BF in CNF }\}
\end{aligned}
$$

NP-completeness theory

Satisfiability

A Boolean formula is satisfiable if there exists an assignment from variables to $\{0,1\}$ under which the formula evaluates to true. For example,

$$
F(x, y, z)=(x \vee \neg y \vee z) \wedge(\neg x \vee \neg z)
$$

is satisfiable with $x=1, y=0, z=0$. We write $F(100)=1$.
We define

$$
\begin{aligned}
& \text { SAT }=\{F \mid F \text { is a satisfiable Boolean formula }\} \\
& \text { CNF-SAT }=\{F \mid F \text { is a satisfiable BF in CNF }\}
\end{aligned}
$$

Cook-Levin Theorem (1971)

CNF-SAT is NP-complete.

NP-completeness theory

Cook-Levin Theorem (1971)

CNF-SAT is NP-complete.

In order to prove Cook-Levin theorem, we need to show:
(1) CNF-SAT \in NP
(2) CNF-SAT is NP-hard

NP-completeness theory

(1) CNF-SAT \in NP

- The witnesses are functions from Boolean variables to $\{0,1\}$.
- In any reasonable encoding of a formula F with n variables, $n \leq|F|$. Since a witness α has n bits, $|\alpha|=n \leq|F|$.
- Hence, choosing $p(n)=n$, we have that $|\alpha| \leq p(|F|)$.
- We can verify whether an assignment α satisfies F in polynomial time:
- replace variables by their values given by α
- evaluate the connectives bottom up

NP-completeness theory

Example

If we consider the following BF in CNF

$$
F(x, y, z)=(x \vee \neg y \vee z) \wedge(x \vee \neg z)
$$

and the assignment $\alpha=100$ (that is, $x=1, y=0, z=0$), the verifier would evaluate:

- $F(\alpha)=(1 \vee \neg 0 \vee 0) \wedge(1 \vee \neg 0)$ (replace values)
- $F(\alpha)=(1 \vee 1 \vee 0) \wedge(1 \vee 1)$ (negations)
- $F(\alpha)=1 \wedge 1$ (disjunctions)
- $F(\alpha)=1$ (conjunctions)

NP-completeness theory

Lemma

Given an algorithm $\mathcal{A}: E \rightarrow\{0,1\}$ with worst-case polynomial-space cost, we can find a BF in $\mathrm{CNF} F_{\mathcal{A}}$ in polynomial time such that for all $y \in E$:

$$
F_{\mathcal{A}}(y)=1 \Leftrightarrow \mathcal{A}(y)=1
$$

(2) CNF-SAT is NP-hard.

Let $A \in \mathrm{NP}$. Then, there is a polynomial q and a verifier \mathcal{V} s.t. for all x :

$$
x \in A \Leftrightarrow \exists y \quad|y|=q(|x|) \wedge \mathcal{V}(x, y)=1
$$

Let $\mathcal{V}_{x}(y)$ be a new verifier, for a fixed x, such that

$$
\mathcal{V}_{x}(y)=1 \Leftrightarrow|y|=q(|x|) \wedge \mathcal{V}(x, y)=1 .
$$

Then,

$$
x \in A \Leftrightarrow \exists y F_{\mathcal{V}_{x}}(y) \Leftrightarrow F_{\mathcal{V}_{x}}(y) \in \text { CNF-SAT. }
$$

Hence, $A \leq^{p}$ CNF-SAT.

Finding a first NP-complete problem (CNF-SAT) makes it possible to find others via reductions.

NP-complete problems

Clique problem

We say that H is a complete subgraph of G if it contains all possible edges among its vertices, i.e., if H is isomorphic to K_{i} for some i. Now define

$$
\text { CLIQUE }=\{(G, k) \mid G \text { has a complete subgraph with } k \text { vertices }\} .
$$

Given graph G

NP-complete problems

Clique problem

We say that H is a complete subgraph of G if it contains all possible edges among its vertices, i.e., if H is isomorphic to K_{i} for some i. Now define

$$
\text { CLIQUE }=\{(G, k) \mid G \text { has a complete subgraph with } k \text { vertices }\} .
$$

Given graph G

observe that $(G, 4) \in$ CLIQUE but $(G, 5) \notin$ CLIQUE.

NP-complete problems

Theorem

CLIQUE is NP-complete
In order to prove that CLIQUE is NP-complete we have to see that:
(1) clique $\in \mathrm{NP}$
(2) CLIQUE is NP-hard

(1) CLIQUE \in NP

Let (G, k) be an instance of CLIQUE.

- Witnesses are the vertices of a k-sized complete subgraph of G (in the previous example, the set $C=\{3,4,5,6\}$)
- The polynomial $p(n)=n$ is enough because a witness C satisfies $|C| \leq|(G, k)|=p(|(G, k)|)$
- We can verify in polynomial time whether a set C is a witness: any pair of vertices in C should have an edge in $G\left(\binom{n}{2} \leq n^{2}\right.$ checks)

NP-complete problems

Theorem

CLIQUE is NP-complete
In order to prove that CLIQUE is NP-complete we have to see that:
(1) clique $\in \mathrm{NP}$
(2) clique is NP-hard

(2) CLIQUE is NP-hard

We will prove that CNF-SAT \leq^{p} CLIQUE. Then,

- Since CNF-SAT is NP-hard, any $S \in$ NP satisfies $S \leq^{p}$ CNF-SAT
- By transitivity, any $S \in$ NP satisfies $S \leq^{p}$ CLIQUE
- Hence, Clique is NP-hard

NP-complete problems

We can express the previous property in general.

Proposition

Let A be an NP-complete problem and B a problem such that $B \in$ NP and $A \leq^{p} B$. Then, B is also NP-complete.

- Since A is NP-hard, any $S \in$ NP satisfies $S \leq^{p} A$
- By transitivity, any $S \in \mathrm{NP}$ satisfies $S \leq^{p} B$
- Hence, B is NP-hard

CNF-SAT \leq^{p} CLIQUE

Let F be a Boolean formula in CNF with:

- clauses C_{1}, \ldots, C_{m}
- literals I_{1}, \ldots, I_{r}

We define the reduction algorithm $\mathcal{R}(F)=(G, m)$, where $G=(V, E)$ is:

- $V=\left\{(i, j) \mid l_{i}\right.$ appears in $\left.C_{j}\right\}$
(Vertices represent occurrences of literals in clauses)
- $E=\left\{\{(i, j),(k, I)\} \mid j \neq I \wedge \neg I_{i} \neq I_{k}\right\}$
(Edges represent pairs of literals that can be simultaneously true)

NP-complete problems

Example

$F\left(x_{1}, x_{2}, x_{3}\right)=C_{1} \wedge C_{2} \wedge C_{3}$, where

- $C_{1}=\left(x_{1} \vee x_{2}\right), C_{2}=\left(\neg x_{1} \vee \neg x_{2}\right), C_{3}=\left(x_{2} \vee \neg x_{3}\right)$
- $I_{1}=x_{1}, I_{2}=x_{2}, I_{3}=x_{3}, I_{4}=\neg x_{1}, I_{5}=\neg x_{2}, I_{6}=\neg x_{3}$

The reduction $\mathcal{R}(F)=(G, 3)$, where G is the graph

NP-complete problems

In general, we have that $F \in$ CNF-SAT $\Leftrightarrow(G, m) \in$ CLIQUE:
\Rightarrow Let α be an assignment satisfying F. Hence, there are m literals that α simultaneously satisfies and hence they form a complete subgraph in G.

\LeftarrowIf G has a complete subgraph with m vertices, each vertex belongs to a different clause. Hence, we can simultaneously satisfy one literal in each clause, thus satisfying F.

Previous example with $I_{2}=1, I_{4}=1$

NP-complete problems

Definitions

- H is an independent subset of G if it consists of isolated vertices
- H is a vertex cover of G if it has an endpoint of any edge in G

Exercise

Given the following problems:

- CLIQUE $=\{(G, k) \mid G$ has a complete subgraph with k vertices $\}$
- IS $=\{(G, k) \mid G$ has an independent subset of k vertices $\}$
- $\mathrm{VC}=\{(G, k) \mid G$ has a vertex cover of k vertices $\}$
prove that
(1) clique \leq^{p} is
(2) is $\leq^{p} \mathrm{vc}$
(3) vc \leq^{p} clique

Lots of NP-complete problems have "particular cases" that are in P.
For example, in CNF-SAT we can fix the number of literals per clause in order to obtain an infinite family of problems.
k-Bounded Satisfiability (k-SAT)
Given a Boolean formula in CNF over n variables and at most k literals per clause, determine whether it is satisfiable.

We will see how to classify k-SAT for the different values of k.

1-Bounded Satisfiability (1-SAT)

Given a Boolean formula F in CNF with n variables and 1 literal per clause, determine whether it is satisfiable.

For example,

$$
F(x, y, z, t)=(x) \wedge(\neg y) \wedge(z) \wedge(\neg t)
$$

1-Bounded Satisfiability (1-SAT)

Given a Boolean formula F in CNF with n variables and 1 literal per clause, determine whether it is satisfiable.

For example,

$$
F(x, y, z, t)=(x) \wedge(\neg y) \wedge(z) \wedge(\neg t) .
$$

1-SAT is decidable in polynomial time with the following algorithm:
input F
if F has two contradictory literals then return 0
else
return 1

2-Bounded Satisfiability (2-SAT)

Given a Boolean formula F in CNF with n variables and ≤ 2 literals per clause, determine whether it is satisfiable.

For example,

$$
F(x, y, z)=(x \vee y) \wedge(x \vee \neg z) \wedge(\neg x \vee y) \wedge(\neg y \vee \neg z) .
$$

2-Bounded Satisfiability (2-SAT)

Given a Boolean formula F in CNF with n variables and ≤ 2 literals per clause, determine whether it is satisfiable.

For example,

$$
F(x, y, z)=(x \vee y) \wedge(x \vee \neg z) \wedge(\neg x \vee y) \wedge(\neg y \vee \neg z) .
$$

2-SAT is decidable in polynomial time

- transforming the formula into a directed graph
- applying a paths algorithm to the graph

Sketch of the algorithm

Given a 2-CNF Boolean formula

$$
F(x, y, z)=(x \vee y) \wedge(x \vee \neg z) \wedge(\neg x \vee y) \wedge(\neg y \vee \neg z)
$$

it can be rewritten using implications

$$
F(x, y, z)=(\neg x \Rightarrow y) \wedge(z \Rightarrow x) \wedge(x \Rightarrow y) \wedge(y \Rightarrow \neg z)
$$

that are based on the equivalences

- $(a \vee b) \equiv(\neg a \Rightarrow b) \equiv(\neg b \Rightarrow a)$
- $(a) \equiv(a \vee a) \equiv(\neg a \Rightarrow a) \equiv(a \Rightarrow \neg a)$

NP-complete problems

The Boolean formula with implications

$$
F(x, y, z)=(\neg x \Rightarrow y) \wedge(z \Rightarrow x) \wedge(x \Rightarrow y) \wedge(y \Rightarrow \neg z)
$$

is transformed into a digraph D_{F} and we apply the following lemma.

Lemma

F is unsatisfiable if and only if $\exists x$ for which D_{F} has paths from x to $\neg x$ and from $\neg x$ to x.

3-Bounded Satisfiability (3-SAT)

Given a Boolean formula F in CNF with n variables and ≤ 3 literals per clause, determine whether it is satisfiable.

NP-complete problems

3-Bounded Satisfiability (3-SAT)

Given a Boolean formula F in CNF with n variables and ≤ 3 literals per clause, determine whether it is satisfiable.

Theorem

3-SAT is NP-complete.

To prove it, we need two facts:
(1) 3-SAT $\in \mathrm{NP}$
(similar to CNF-SAT)
(2) 3-SAT is NP-hard
(we show CNF-SAT $\leq{ }^{p} 3$-SAT)

NP-complete problems

CNF-SAT $\leq P 3$-SAT

The following method transforms a Boolean formula in CNF into an equisatisfiable one in 3-CNF.

Given a BF F in CNF,
(1) Let F^{\prime} be an empty BF
(2) For each clause $C=\left(a_{1} \vee \cdots \vee a_{k}\right)$ in F :

- if $k \leq 3$, add C to F^{\prime}
- if $k>3$, add the clause

$$
\left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\neg z_{1} \vee a_{3} \vee z_{2}\right) \wedge\left(\neg z_{2} \vee a_{4} \vee z_{3}\right) \ldots\left(\neg z_{k-3} \vee a_{k-1} \vee a_{k}\right)
$$

to F^{\prime}, where z_{1}, \ldots, z_{k-3} are new variables.
(3) Return F^{\prime}

NP-complete problems

Example

Given a clause with five literals $C=\left(a_{1} \vee a_{2} \vee a_{3} \vee a_{4} \vee a_{5}\right)$, the reduction returns

$$
C^{\prime}=\left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\neg z_{1} \vee a_{3} \vee z_{2}\right) \wedge\left(\neg z_{2} \vee a_{4} \vee a_{5}\right)
$$

- It is obvious that if C is true with assignment α, C^{\prime} can be satisfied with α and appropriate values for z_{1} and z_{2}
- If C^{\prime} is true with assignment β, some \boldsymbol{a}_{i} will be true and C will be true with β

NP-complete problems

Definition

A graph $G=(V, E)$ with n vertices is k-colorable if there exists a total function

$$
\chi: V \rightarrow\{1, \ldots, k\}
$$

such that $\chi(u) \neq \chi(v)$ for any edge $\{u, v\} \in E$. Function χ is a k-coloring.

3-coloring

NP-complete problems

With the number of colors k as an external parameter, we can formulate the coloring problem as a function of k.

k-Colorability (k-COLOR)

Given a graph G, determine whether it is k-colorable.

Polynomial algorithms are known for the following cases:

- 1-COLOR
- 2-COLOR

For 3-cOLOR, we prove NP-completeness:

NP-complete problems

With the number of colors k as an external parameter, we can formulate the coloring problem as a function of k.

k-Colorability (k-COLOR)

Given a graph G, determine whether it is k-colorable.

Polynomial algorithms are known for the following cases:

- 1-COLOR
- 2-COLOR

For 3-COLOR, we prove NP-completeness:

- We already showed that 3-COLOR $\in \mathrm{NP}$
- Next, we show that it is NP-complete via a reduction from 3-CNF-SAT

NP-complete problems

CNF-SAT $\leq^{p} 3$-COLOR

Let F be a Boolean formula in CNF. We will construct a graph G that is 3 -colorable if and only if F is satisfiable.

- There will be 3 special vertices called R, G, B forming a triangle:

We can assume that in any coloring, vertices R, G, B have the colors:

$$
\mathrm{R} \rightarrow \text { red, } \mathrm{G} \rightarrow \text { green, } \mathrm{B} \rightarrow \text { blue }
$$

- We add a vertex for each literal. Then, we connect each literal and its negation to vertex B.

- For each clause, we add a subgraph as follows. In the case

$$
(x \vee y \vee \bar{z} \vee u \vee \bar{v} \vee w)
$$

Property: A coloring of the upper vertices with red or green can be extended to a global 3-coloring if and only if at least one has green color.

If all of the above are red....

...we cannot complete the 3-coloring.

If all of the above are red....

...we cannot complete the 3-coloring.

If all of the above are red....

...we cannot complete the 3-coloring.

If all of the above are red....

...we cannot complete the 3-coloring.

If all of the above are red....

...we cannot complete the 3-coloring.

If all of the above are red....

...we cannot complete the 3-coloring.

If all of the above are red....

...we cannot complete the 3-coloring.

If all of the above are red....

...we cannot complete the 3-coloring.

If at least one is green...

...we can obtain a global 3-coloring.

If at least one is green...

...we can obtain a global 3-coloring.

If at least one is green...

...we can obtain a global 3-coloring.

If at least one is green...

...we can obtain a global 3-coloring.

If at least one is green...

...we can obtain a global 3-coloring.

If at least one is green...

...we can obtain a global 3-coloring.

If at least one is green...

...we can obtain a global 3-coloring.

If at least one is green...

...we can obtain a global 3-coloring.

If the number of literals is odd, the rightmost vertex will be R. For example,

$$
(x \vee y \vee \bar{z} \vee u \vee \bar{v})
$$

NP-complete problems

If G is the graph with all vertices and edges defined as before, then

$$
F \text { is satisfiable } \Leftrightarrow G \text { is 3-colorable. }
$$

Since G can be constructed in polynomial time, we have that

$$
\text { CNF-SAT } \leq^{p} 3 \text {-COLOR. }
$$

Theorem
 3 -COLOR is NP-complete.

NP-complete problems

For the other k-COLOR problems, we have the following.

Proposition

For all $k>3$, 3 -COLOR $\leq^{p} k$-COLOR.

The reduction consists of, given a graph G, adding to it a complete subgraph with $k-3$ vertices connected to all vertices of G.

NP-complete problems

For the other k-COLOR problems, we have the following.

Proposition

For all $k>3$, 3 -COLOR $\leq^{p} k$-COLOR.

The reduction consists of, given a graph G, adding to it a complete subgraph with $k-3$ vertices connected to all vertices of G.

Corollary

For all $k>3, \quad k$-COLOR is NP-complete.

Hence, we have:

- k-COLOR $\in \mathrm{P}$ for all $k \leq 2$
- k-COLOR is NP-complete for all $k \geq 3$

What can we say about colorability of planar graphs? Let us consider the following family of problems.
k-Planar Colorability (k-COLOR-PL)
Given a planar graph G, determine whether it is k-colorable.

Planarity can be checked in polynomial time.

NP-complete problems

Definition

A graph is planar if it can be drawn on the plane without any edge intersection.

Planar graphs have applications in circuit design and graphics.

K_{5}

$K_{3,3}$

Kuratowski Theorem

A graph is planar if and only if it does not contain a subgraph homeomorphic to K_{5} or $K_{3,3}$.

$K_{3,3}$ and homeomorphic graph

NP-complete problems

Kuratowski Theorem

A graph is planar if and only if it does not contain a subgraph homeomorphic to K_{5} or $K_{3,3}$.

Planarity test

- Brute force: $O\left(n^{6}\right)$
- Contract edges of degree 2
- Check whether some set of 5 vertices is K_{5}
- Check whether some set of 6 vertices is $K_{3,3}$
- Efficient: $O(n)$
- Apply DFS

NP-complete problems

3 -COLOR $\leq^{p} 3$-COLOR-PL

Given a graph G, we will considered a representation of G, possibly with edge intersections. Each intersection will be replaced by the gadget W :

W has interesting properties:
in anly 3 -coloning of in, opposite extreme points have the same color
any color assignment where opposite extreme points have the same
color can be extended to a 3-coloring of W

NP-complete problems

3 -COLOR $\leq^{p} 3$-COLOR-PL

Given a graph G, we will considered a representation of G, possibly with edge intersections. Each intersection will be replaced by the gadget W :

W has interesting properties:
(1) in any 3-coloring of W, opposite extreme points have the same color
(2) any color assignment where opposite extreme points have the same color can be extended to a 3-coloring of W

There are two colors available for vertex u.

This allows two colorings (up to isomorphism).

It is easy to check that they fullfill properties (1) $i(2)$.

The graph we obtain after the replacements

in the representation of G

- is planar and
- is 3-colorable if and only if G is 3-colorable

NP-complete problems

Example

Let us assume that we have $K_{3,3}$ as input to 3-COLOR:

But we consider the following representation with just one intersection:

NP-complete problems

A 3-coloring for $K_{3,3}$ induces a 3-coloring for the this graph (and viceversa):

NP-complete problems

A 3-coloring for $K_{3,3}$ induces a 3-coloring for the this graph (and viceversa):

Corollary

3 -COLOR-PL is NP-complete.

Hence, we have:

- k-COLOR-PL $\in \mathrm{P}$ for all $k \leq 2$
- 3-COLOR-PL is NP-complete
- k-COLOR-PL $\in \mathrm{P}$ for all $k \geq 4$

Corollary

3 -COLOR-PL is NP-complete.

Hence, we have:

- k-COLOR-PL $\in \mathrm{P}$ for all $k \leq 2$
- 3-COLOR-PL is NP-complete
- k-COLOR-PL $\in \mathrm{P}$ for all $k \geq 4$ (due to the 4-color theorem)

So far, we have seen the following tree of reductions.

