Topic 7. Complexity

Data Structures and Algorithms

FIB

Antoni Lozano (translated by Albert Oliveras)

Q2 2017–2018 Version of December 19, 2018

Data Structures and Algorithms (FIB)

Topic 7. Complexity

Fall 2018 1 / 108

Topic 7. Complexity

1 Classes

- Decision problems
- Polynomial and exponential time
- Nondeterminism

2 Reductions

- Concept of reduction
- Examples of reductions
- Properties

3 NP-completeness

- NP-completeness theory
- NP-complete problems

Topic 7. Complexity

1 Classes

- Decision problems
- Polynomial and exponential time
- Nondeterminism

2 Reductions

- Concept of reduction
- Examples of reductions
- Properties

3 NP-completeness

- NP-completeness theory
- NP-complete problems

Algorithm analysis studies the amount of resources that an algorithm needs to solve a problem.

Complexity theory considers all possible algorithms that solve the same problem.

- Algorithm analysis focuses on algorithms, whereas complexity theory focuses on problems
- We will study some basic tools to classify problems according to their complexity

Algorithm analysis studies the amount of resources that an algorithm needs to solve a problem.

Complexity theory considers all possible algorithms that solve the same problem.

- Algorithm analysis focuses on algorithms, whereas complexity theory focuses on problems
- We will study some basic tools to classify problems according to their complexity

Algorithm analysis studies the amount of resources that an algorithm needs to solve a problem.

Complexity theory considers all possible algorithms that solve the same problem.

- Algorithm analysis focuses on algorithms, whereas complexity theory focuses on problems
- We will study some basic tools to classify problems according to their complexity

In order to better classify problems, we will consider their decision versions.

Definition

A decision problem is a problem where one has to determine whether an instance satisfies a certain property.

Lots of problems seen so far are or can be made decisional.

Some decision problems on graphs:

- connectivity: given a graph, determine whether it is connected
- **reachability**: given a graph G = (V, E) and two vertices $i, j \in V$, determine whether there is a path from *i* to *j* in *G*
- **shortest path**: given a graph G = (V, E), two vertices $i, j \in V$ and a natural number k, determine whether there is a path between i and j in G of length at most k
- longest path: given a graph G = (V, E), two vertices i, j ∈ V and a natural number k, determine whether there is a path between i and j in G of length at least k
- 3-colorability: given a graph, determine whether it is 3-colorable

Some problems do not make sense in their decision version.

Decision *n*-queens problem (1st version)

Given a natural number *n*, determine whether we can place *n* queens on an $n \times n$ board so that no two queens threaten each other.

It is known that there are solutions for all $n \neq 2, 3$. Hence, the following algorithm decides the problem in time $\Theta(1)$.

```
QUEENS(n)

if n = 2 o n = 3 then

return FALSE

else

return TBUE
```

What is interesting is not whether there is a solution, but finding one.

Decision *n*-queens problem (2nd version)

Given a natural number *n* and *k* values $r_1, \ldots r_k$, with $k \le n$, determine whether we can place *n* queens on an $n \times n$ board so that no two queens threaten each other and for all *i* such that $1 \le i \le k$, the queen in row *i* is in column r_i .

This version, despite being decisional, allows one to find a solution with

$$(n-1)+(n-2)\cdots+2=\sum_{i=2}^{n-1}i=\frac{n(n-1)}{2}-1\in\Theta(n^2)$$

executions of the algorithm that solves it.

Some other decision problems:

- **I primality**: given a natural number, determine whether it is a prime
- 2 traveling salesperson problem (TSP): given n cities, the distances among them and a number of kilometers k, determine whether there is a route of at most k kilometers that visits each city exactly once and goes back to the origin
- A decision problem is a set consisting of an infinite number of instances.
- If a problem consists of a finite number of instances, it can be solved by a constant-time algorithm (e.g. 8-queens).

A decision problem is formally represented as a set.

If T is a property that can be checked on the elements of an instance set E, we can formulate the following decision problem:

Problem A Given $x \in E$, determine whether T(x) holds.

Formally, A can be described as the set:

 $A = \{ x \in E \mid T(x) \}.$

The problem instances will belong to some concrete domains such as:

- natural numbers
- tuples of natural numbers
- graphs
- weighted dags
- Boolean formulas

In each case, we will consider a size or length function.

Size function

Given $x \in E$, where *E* is a domain, the size of *x*, represented as |x|, is the number of symbols of a standard encoding of *x*.

Decision problems

Given a problem A defined over an input set E, we will distinguish between

- positive instances: the ones belonging to A
- negative instances: the ones belonging to E − A

Primality

The primality problem can be described informally

Primality (PRIMES) Given a natural number *x*, determine whether *x* is prime.

Or formally as the set of positive inputs:

 $\mathsf{PRIMES} = \{ x \in \mathbb{N} \mid x \text{ is prime } \}.$

A size function for the natural numbers counts the number of digits of its binary representation:

|x| = number of digits of x in binary = $\lfloor \log_2 x \rfloor + 1$.

Decision problems

Given a problem A defined over an input set E, we will distinguish between

- positive instances: the ones belonging to A
- negative instances: the ones belonging to E A

Primality

The primality problem can be described informally

```
Primality (PRIMES)
Given a natural number x, determine whether x is prime.
```

Or formally as the set of positive inputs:

 $\mathsf{PRIMES} = \{ x \in \mathbb{N} \mid x \text{ is prime } \}.$

A size function for the natural numbers counts the number of digits of its binary representation:

|x| = number of digits of x in binary = $\lfloor \log_2 x \rfloor + 1$.

Once we can describe problems as mathematical objects (decision problems as sets), we can group them into classes according to their complexity.

- We will consider classes of problems that can be solved using a certain amount of resources
- A class groups problems in the same way as a problem groups instances
- We have to distinguish between three levels of abstraction:
 - Instances ——> strings of characters
 - Problems ---> sets of instances

Polynomial and exponential time

Let us assume that $t : \mathbb{N} \to \mathbb{R}^+$ is a function.

Algorithms of cost t

We say that an algorithm \mathcal{A} has cost *t* if its worst-case cost belongs to O(t).

Problems decidable in time t

If an algorithm A takes inputs from a set E and has a binary output, we write

 $\mathcal{A}: E \to \{0,1\}.$

We say that a decision problem *A* is decidable in time *t* if there exists an algorithm $A : E \to \{0, 1\}$ of cost *t* such that, for all $x \in E$:

 $x \in A \Rightarrow \mathcal{A}(x) = 1$

$$x \notin A \Rightarrow \mathcal{A}(x) = 0$$

Polynomial and exponential time

Class TIME(*t*)

Given a function $t : \mathbb{N} \to \mathbb{R}^+$, we group the problems decidable in time *t*:

 $TIME(t) = \{A \mid A \text{ is decidable in time } t\}.$

We remind that there is a huge difference between having a polynomial or an exponential algorithm for a problem. In Topic 1 we saw two tables showing:

- quantitative differences (table 1)
- qualitative differences (table 2)

between polynomials and exponentials.

Table 1 (Garey/Johnson, Computers and Intractability)

Comparison between polynomial and exponential functions.

cost	10	20	30	40	50
n	0.00001 s	0.00002 s	0.00003 s	0.00004 s	0.00005 s
n ²	0.0001 s	0.0004 s	0.0009 s	0.0016 s	0.0025 s
n ³	0.001 s	0.008 s	0.027 s	0.064 s	0.125 s
п ⁵	0.1 s	3.2 s	24.3 s	1.7 min	5.2 min
2 ⁿ	0.001 s	1.0 s	17.9 min	12.7 days	35.7 years
3 ⁿ	0.059 s	58 min	6.5 years	3855 cents.	2×10^8 cents.

Table 2 (Garey/Johnson, Computers and Intractability)

Effect of technological improvements on polynomial and exponential algorithms.

cost	current technology	technology ×100	technology ×1000
n	N ₁	100 <i>N</i> 1	1000 <i>N</i> 1
n²	N ₂	10 <i>N</i> 2	31.6 <i>N</i> ₂
n ³	N ₃	4.64 <i>N</i> ₃	10 <i>N</i> 3
n ⁵	N ₄	2.5 <i>N</i> 4	3.98 <i>N</i> 4
2 ⁿ	N ₄	$N_4 + 6.64$	<i>N</i> ₄ + 9.97
3 ⁿ	N ₅	$N_{5} + 4.19$	$N_{5} + 6.29$

Class P

We define the class P as the union of all polynomial-time classes:

$$\mathbf{P} = \bigcup_{k>0} \mathsf{TIME}(n^k).$$

That is, a problem belongs to P if it is decidable in time n^k for some k.

Class EXP

We define the class EXP as the union as the union of all exponential classes:

$$\mathrm{EXP} = \bigcup_{k>0} \mathsf{TIME}(2^{n^k}).$$

That is, a problem is in EXP if it is decidable in time 2^{n^k} for some *k*.

Polynomial and exponential time

Examples

Problems in P:

- connectivity
- reachability
- primality
- shortest path
- 2-colorability

Problems in EXP (not known to be in P):

- Iongest path
- 3-colorability
- travelling salesperson problem

Other problems in EXP:

• generalized chess, checkers and go

Theorem

 $P \subsetneq EXP.$

Strict inclusion in the theorem can be divided into two parts:

O $P \subseteq EXP$. Obvious from the definitions:

$$\mathbf{P} = \bigcup_{k>0} \mathsf{TIME}(n^k) \subseteq \bigcup_{k>0} \mathsf{TIME}(2^{n^k}) = \mathsf{EXP}$$

2 $P \neq EXP$. Proved using the diagonalization technique

Polynomial and exponential time

- Algorithms seen so far are deterministic: they follow a unique computation path from the input to the output
- The execution of an algorithm A : E → {0, 1} on a domain E can be seen as a path:

Nondeterminism

A nondeterministic algorithm can reach a result via different paths. Its behavior is more similar to a tree.

Nondeterministic algorithms (informal idea)

An algorithm $\mathcal{A} : E \to \{0, 1\}$ is *nondeterministic* if it can use a new function CHOOSE(*y*)

that, for an input x and $y \le x$, splits the computation into y branches, and returns a distinct value between 0 and y on each branch.

- **Computation tree**: The computation starts in a deterministic way until the first CHOOSE instruction; for every value returned by CHOOSE, an independent computation branch is generated with the corresponding value
- **Returned value**: We say that *A* returns 1 if some branch returns 1; otherwise, *A* returns 0
- **Cost**: The cost of A is that of the branch with highest cost

Nondeterminism

A nondeterministic algorithm can reach a result via different paths. Its behavior is more similar to a tree.

Nondeterministic algorithms (informal idea)

An algorithm $\mathcal{A} : E \to \{0, 1\}$ is *nondeterministic* if it can use a new function CHOOSE(γ)

that, for an input x and $y \le x$, splits the computation into y branches, and returns a distinct value between 0 and y on each branch.

- Computation tree: The computation starts in a deterministic way until the first CHOOSE instruction; for every value returned by CHOOSE, an independent computation branch is generated with the corresponding value
- **Returned value**: We say that A returns 1 if some branch returns 1; otherwise, A returns 0
- Cost: The cost of A is that of the branch with highest cost

Example: Composites

The problem

```
COMPOSITES = {x \mid \exists y \mid 1 < y < x \text{ and } y \text{ divides } x }
```

has a trivial exponential deterministic algorithm

```
input x
for y = 2 until x - 1
if y divides x then
return 1
return 0
```

and a polynomial nondeterministic algorithm

```
input x

y \leftarrow CHOOSE(x - 1)

if y > 1 and y divides x then

return 1

return 0
```

Data Structures and Algorithms (FIB)

Nondeterminism

- In the previous example, we say that 3 is a witness of the fact that 27 is not a prime
- That is, in the problem COMPOSITES there exist:
 - Possible witnesses (y < x) of the fact that x is composite
 - A polynomial-time verifier algorithm that, given x and y, checks whether y divides x

Unlike **COMPOSITES**, the problem **GENERALIZED CHESS** has no short witnesses that allow one to check that a player has a winning strategy.

But there are a lot of problems for which it is easy to find short witnesses. For all of them, there are polynomial nondeterministic algorithms.

Example: 3-colorability

The 3-colorability problem, represented by the set

```
3-COLOR = { G \mid G is 3-colorable }
```

has an exponential-time brute-force algorithm

```
input G = (V, E)

n \leftarrow |V|

for each tuple (c_1, \dots, c_n) where \forall i \le n \ c_i \in \{0, 1, 2\}

if (c_1, \dots, c_n) is a 3-coloring of G then

return 1

return 0
```

Data Structures and Algorithms (FIB)

Example: 3-colorability

and a polynomial nondeterministic algorithm

```
input G = (V, E)

n \leftarrow |V|

for i = 1 until n

c_i \leftarrow CHOOSE(2)

if (c_1, \dots, c_n) is a 3-coloring of G then

return 1

else

return 0
```

The formal definition of nondeterministic polynomial algorithms distinguishes:

- the witness computation
- the deterministic computations

Decidability in nondeterministic polynomial time

Let Σ be an alphabet and *A* a decision problem defined over inputs of a set *E*. We say that *A* is decidable in nondeterministic polynomial time if there exist

- a polynomial algorithm $\mathcal{V}: E \times \Sigma^* \to \{0, 1\}$ (called verifier) and
- a polynomial p(n)

such that for all $x \in E$, we have

$$x \in A \Rightarrow \mathcal{V}(x, y) = 1$$
 for some $y \in \Sigma^*$ such that $|y| = p(|x|)$

 $x \notin A \Rightarrow \mathcal{V}(x, y) = 0$ for all $y \in \Sigma^*$ such that |y| = p(|x|)

If $x \in A$, the y such that $\mathcal{V}(x, y) = 1$ are called witnesses or certificates.

In order to know that a problem *A* is decidable in nondeterministic polynomial time we will have to check that:

- positive inputs have polynomial-sized witnesses (witnesses have to be defined)
- Witnesses can be verified in polynomial time (a verifier has to be designed)

Nondeterminism

Composites

Let us consider the problem

COMPOSITES = { $x \mid \exists y \mid 1 < y < x \text{ and } y \text{ divides } x$ }

- The witnesses for x are all $y \neq 1, x$ that divide x
- 2 The polynomial is p(n) = n
- 3 The verifier is

```
\mathcal{V}(x, y)
if (1 < y < x) and (y \text{ divides } x) then
return 1
else
return 0
```

COMPOSITES is decidable in nondeterministic polynomial time because

 $x \in \text{COMPOSITES} \Leftrightarrow \mathcal{V}(x, y) = 1$ for some y s.t. |y| = p(|x|)

3-colorability

Let us consider the problem

```
3\text{-}COLOR = \{ \ G \mid G \text{ is } 3\text{-}colorable \}
```

- **1** The witnesses for G = (V, E) are all 3-colorings C of G of the form $C = (c_1, c_2, ..., c_n)$, where n = |V| and $c_i \in \{0, 1, 2\}$ for all $i \leq n$
- 2 The polynomial (with reasonable encodings of G and C) can be p(n) = n
- 3 The verifier is

```
\mathcal{V}(G, C)
if C is a 3-coloring of G then
return 1
else
return 0
```

All problems decidable in nondeterministic polynomial time are grouped in one class.

Class NP

We define the class NP (from nondeterministic polynomial time) as:

NP = { $A \mid A$ is decidable in nondeterministic polynomial time}.

How does NP compare to P and EXP?

All problems decidable in nondeterministic polynomial time are grouped in one class.

Class NP

We define the class NP (from nondeterministic polynomial time) as:

NP = { $A \mid A$ is decidable in nondeterministic polynomial time}.

How does NP compare to P and EXP?

Main difference between P and NP:

- solutions to problems in P can be found in polynomial time
- solutions to problems in NP can be verified in polynomial time

Example: Perfect squares and composites

• SQUARES = $\{x \in \mathbb{N} \mid \exists y \mid 1 \le y < x \text{ and } x = y^2 \}$

2 COMPOSITES = $\{x \in \mathbb{N} \mid \exists y \mid 1 < y < x \text{ and } y \text{ divides } x\}$

Example: 2 and 3-colorability

1 2-COLOR = $\{ G \mid G \text{ is } 2\text{-colorable } \}$

2 3-COLOR = $\{ G \mid G \text{ is } 3\text{-colorable } \}$

Main difference between P and NP:

- solutions to problems in P can be found in polynomial time
- solutions to problems in NP can be verified in polynomial time

Example: Perfect squares and composites

) SQUARES =
$$\{x \in \mathbb{N} \mid \exists y \mid 1 \le y < x \text{ and } x = y^2\}$$

2 COMPOSITES = { $x \in \mathbb{N} \mid \exists y \ 1 < y < x \text{ and } y \text{ divides } x$ }

Example: 2 and 3-colorability

1 2-COLOR = $\{ G \mid G \text{ is } 2\text{-colorable } \}$

```
2 3-COLOR = { G | G is 3-colorable }
```

Main difference between P and NP:

- solutions to problems in P can be found in polynomial time
- solutions to problems in NP can be verified in polynomial time

Example: Perfect squares and composites

1 SQUARES =
$$\{x \in \mathbb{N} \mid \exists y \mid 1 \le y < x \text{ and } x = y^2 \}$$

2 COMPOSITES = { $x \in \mathbb{N} \mid \exists y \ 1 < y < x \text{ and } y \text{ divides } x$ }

Example: 2 and 3-colorability

1 2-COLOR =
$$\{ G | G \text{ is } 2\text{-colorable } \}$$

2 3-COLOR =
$$\{ G \mid G \text{ is } 3\text{-colorable } \}$$

Theorem

 $P \subseteq NP.$

Proof

Any deterministic algorithm is nondeterministic (but does not use CHOOSE).

Equivalently, for all $A \in P$, we can create verifiers \mathcal{V} such that for any *x*:

$$x \in A \Rightarrow \mathcal{V}(x, y) = 1$$
 for all $y \in \Sigma^*$ such that $|y| = |x|$

$$x \notin A \Rightarrow \mathcal{V}(x, y) = 0$$
 for all $y \in \Sigma^*$ such that $|y| = |x|$

To find $\mathcal{V}(x, y)$, it is only needed to simulate $\mathcal{A}(x)$ and return the same value 0 or 1 (independently of *y*). Hence, $A \in NP$.

Differences between NP and EXP:

- problems in NP have solutions verifiable in polynomial time
- problems in EXP can have exponentially large solutions
- in order to solve problems in NP there is a standard algorithm that searches for a witness, but this is not the case for EXP problems

Nondeterminism

Theorem

 $NP \subseteq EXP.$

Proof

Let $A \in NP$. Hence, there is a polynomial p(n) and a verifier \mathcal{V} such that

$$x \in A \Rightarrow \mathcal{V}(x,y) = 1$$
 for some $y \in \Sigma^*$ such that $|y| = p(|x|)$

 $x \notin A \Rightarrow \mathcal{V}(x, y) = 0$ for all $y \in \Sigma^*$ such that |y| = p(|x|)

We can consider an exponential algorithm for A that looks for a witness:

```
input x
for all y such that |y| = p(|x|)
if \mathcal{V}(x, y) = 1 then
return 1
return 0
```

It is easy to see that the previous algorithm is exponential and decides A. Hence, $A \in EXP$.

Data Structures and Algorithms (FIB)

Topic 7. Complexity

Nondeterminism

- We know that $P \subseteq NP \subseteq EXP$
- We also know that $P \neq EXP$
- Thus, we can assure that either $P \neq NP$ or $NP \neq EXP$ (or both), and we are left with three possibilities:

We will take (a) as our working hypothesis.

Topic 7. Complexity

Classes

- Decision problems
- Polynomial and exponential time
- Nondeterminism

2 Reductions

- Concept of reduction
- Examples of reductions
- Properties

3 NP-completeness

- NP-completeness theory
- NP-complete problems

Concept of reduction

The cup of tea story

Data Structures and Algorithms (FIB)

Topic 7. Complexity

Reductions

Let *A* and *B* be two decision problems with input sets *E* and *E'*, respectively. We say *A* reduces to *B* in polynomial time if there exists a polynomial-time algorithm \mathcal{F} such that

 $x \in A \Rightarrow \mathcal{F}(x) \in B$ $x \notin A \Rightarrow \mathcal{F}(x) \notin B$

In this case, we write $A \leq^{p} B$ (or $A \leq^{p} B$ via \mathcal{F}) and we say that \mathcal{F} is a polynomial-time reduction from A to B.

Parity

Let us consider the language of even numbers

$$\mathsf{EVEN} = \{ x \in \mathbb{N} \mid \exists y \in \mathbb{N} \mid x = 2y \}$$

and that of odd numbers

$$\mathsf{ODD} = \{ x \in \mathbb{N} \mid \exists y \in \mathbb{N} \mid x = 2y + 1 \}$$

As one can see, EVEN reduces to ODD via an algorithm \mathcal{F} that adds 1 to the input: $\mathcal{F}(x) = x + 1$. It is obvious that for all x:

 $x \in \mathsf{EVEN} \Leftrightarrow \mathcal{F}(x) \in \mathsf{ODD}.$

In this case, one can also reduce ODD to EVEN using the same algorithm \mathcal{F} . That is, ODD \leq^p EVEN via \mathcal{F} .

Data Structures and Algorithms (FIB)

Parity

Let us consider the language of even numbers

$$\mathsf{EVEN} = \{ x \in \mathbb{N} \mid \exists y \in \mathbb{N} \mid x = 2y \}$$

and that of odd numbers

$$\mathsf{ODD} = \{x \in \mathbb{N} \mid \exists y \in \mathbb{N} \mid x = 2y + 1\}$$

As one can see, EVEN reduces to ODD via an algorithm \mathcal{F} that adds 1 to the input: $\mathcal{F}(x) = x + 1$. It is obvious that for all x:

 $x \in \mathsf{EVEN} \Leftrightarrow \mathcal{F}(x) \in \mathsf{ODD}.$

In this case, one can also reduce ODD to EVEN using the same algorithm \mathcal{F} . That is, ODD \leq^{p} EVEN via \mathcal{F} .

Partitions

Consider the following two problems:

Partition

Given natural numbers $x_1, x_2, ..., x_n$, determine whether they can be divided into two groups having the same sum.

Knapsack

Given natural numbers $x_1, x_2, ..., x_n$ and a capacity $C \in \mathbb{N}$, determine whether there is a selection of the x_i 's that sums exactly C.

Formally:

PARTITION = {
$$(x_1, ..., x_n) \mid \exists I \subseteq \{1, ..., n\}$$
 $\sum_{i \in I} x_i = \sum_{i \notin I} x_i$ }

KNAPSACK = {
$$(x_1, ..., x_n, C) \mid \exists l \subseteq \{1, ..., n\}$$
 $\sum x_i = C$ }

Partitions

Consider the following two problems:

Partition

Given natural numbers $x_1, x_2, ..., x_n$, determine whether they can be divided into two groups having the same sum.

Knapsack

Given natural numbers $x_1, x_2, ..., x_n$ and a capacity $C \in \mathbb{N}$, determine whether there is a selection of the x_i 's that sums exactly C.

Formally:

PARTITION = {
$$(x_1, ..., x_n) \mid \exists I \subseteq \{1, ..., n\}$$
 $\sum_{i \in I} x_i = \sum_{i \notin I} x_i$ }
KNAPSACK = { $(x_1, ..., x_n, C) \mid \exists I \subseteq \{1, ..., n\}$ $\sum_{i \in I} x_i = C$ }

Partitions

The algorithm

$$\begin{aligned} \mathcal{F}(x_1,\ldots,x_n) \\ & \mathcal{S} \leftarrow \sum_{i=1}^n x_i \\ & \text{if } \mathcal{S} \text{ is odd then} \\ & \text{return } (x_1,\ldots,x_n,S+1) \\ & \text{else} \\ & \text{return } (x_1,\ldots,x_n,S/2) \end{aligned}$$

is a polynomial-time reduction from PARTITION to KNAPSACK:

 $(x_1,\ldots,x_n) \in \mathsf{PARTITION} \Leftrightarrow \mathcal{F}(x_1,\ldots,x_n) \in \mathsf{KNAPSACK}.$

Exercise

We define the following collection of coloring problems:

k-Colorability (*k*-COLOR)

Given an undirected graph G, determine whether the vertices in G can be colored with at most k colors, so that each pair of adjacent vertices of get different colors.

Prove that, for all $k \ge 1$, it holds that:

k-COLOR $\leq^{p} (k+1)$ -COLOR.

Definition

A Hamiltonian path in a graph *G* is a path in *G* containing all of its vertices without repetitions.

Exercise

We define the Hamiltonian path problem (HP) i and the Hamiltonian path problem between two points (HP_2) as:

- $HP = \{G \mid G \text{ has a Hamiltonian path}\}$
- $HP_2 = \{ (G, u, v) | G \text{ has a Hamiltonian path with endpoints } u, v \}$

Propose:

- **1** a reduction proving $HP \leq^{p} HP_{2}$
- 2 a reduction proving $HP_2 \leq^{p} HP$

Properties: Reflexivity

For all A, $A \leq^{p} A$.

We can consider the algorithm that computes the identity function:

 $\begin{array}{c} \mathcal{F}(x) \\ \text{return } x \end{array}$

It is obvious that, for all x

 $x \in A \Leftrightarrow \mathcal{F}(x) = x \in A.$

Properties: Transitivity

For all A, B, C, if $A \leq^{p} B$ and $B \leq^{p} C$, then $A \leq^{p} C$.

lf

- $A \leq^{p} B$ via \mathcal{F} and
- $B \leq^{p} C$ via \mathcal{G} ,

then the composition $\mathcal{G} \circ \mathcal{F}$ ($\mathcal{F}|\mathcal{G}$ in UNIX *pipe* notation) proves that $A \leq^{p} C$.

We will consider that $\mathcal{G} \circ \mathcal{F}(x) = \mathcal{G}(\mathcal{F}(x))$.

Exercise

Prove that

3-COLOR $\leq^{p} k$ -COLOR

for all $k \ge 4$ by two different methods:

- using transitivity of reductions
- 2 providing an explicit reduction

Corollary

Reductions form a preorder.

Question

Observe that, although reductions form a preorder, they do not form a partial order due to the fact that they do not satisfy antisymmetry:

• $\forall A, B \ A \leq^p B \land B \leq^p A \Rightarrow A = B$

Corollary

Reductions form a preorder.

Question

Observe that, although reductions form a preorder, they do not form a partial order due to the fact that they do not satisfy antisymmetry:

• $\forall A, B \ A \leq^{p} B \land B \leq^{p} A \Rightarrow A = B$

Closure of P under reductions

For all A, B, if $A \leq^{p} B$ and $B \in P$, then $A \in P$.

lf

- B is a polynomial algorithm for B and
- \mathcal{F} is a polynomial algorithm that proves $A \leq^{\rho} B$,

then the composition $\mathcal{F} \circ \mathcal{B}$ is a polynomial algorithm for A:

 $\ \, \textcircled{I} \circ \mathcal{F} \ \, is \ \, polynomial \ \, since \ \, it \ \, is \ \, a \ \, composition \ \, of \ \, polynomial-time \ \, algorithms \ \ \ \, \\$

 $\bigcirc \ \mathcal{B} \circ \mathcal{F}(x) \text{ accepts} \Leftrightarrow \mathcal{B} \text{ accepts } \mathcal{F}(x) \Leftrightarrow \mathcal{F}(x) \in B \Leftrightarrow x \in A$

Closure of P under reductions

For all A, B, if $A \leq^{p} B$ and $B \in P$, then $A \in P$.

lf

- B is a polynomial algorithm for B and
- \mathcal{F} is a polynomial algorithm that proves $A \leq^{p} B$,

then the composition $\mathcal{F} \circ \mathcal{B}$ is a polynomial algorithm for A:

B
o F is polynomial since it is a composition of polynomial-time algorithms

$\bigcirc \mathcal{B} \circ \mathcal{F}(x) \text{ accepts} \Leftrightarrow \mathcal{B} \text{ accepts } \mathcal{F}(x) \Leftrightarrow \mathcal{F}(x) \in B \Leftrightarrow x \in A$

Closure of P under reductions

For all A, B, if $A \leq^{p} B$ and $B \in P$, then $A \in P$.

lf

- B is a polynomial algorithm for B and
- \mathcal{F} is a polynomial algorithm that proves $A \leq^{p} B$,

then the composition $\mathcal{F} \circ \mathcal{B}$ is a polynomial algorithm for A:

- B
 o F is polynomial since it is a composition of polynomial-time algorithms
- $(2) \ \mathcal{B} \circ \mathcal{F}(x) \text{ accepts } \Leftrightarrow \mathcal{B} \text{ accepts } \mathcal{F}(x) \Leftrightarrow \mathcal{F}(x) \in B \Leftrightarrow x \in A$

Notation: Polynomial equivalence

Given two decision problems *A*, *B*, we write $A \equiv^{p} B$ if $A \leq^{p} B$ and $B \leq^{p} A$.

Problem: Equivanlence classes of P

- Prove that ≡^ρ is an equivalence relation (reflexive, symmetric, and transitive)
- ② Prove that for all A, B, if $A \in P$ and $B
 eq \emptyset, \Sigma^*$, then $A \leq^{p} B$
- [3] Obtain the partition of P into equivalence classes induced by relation \equiv^{p}

Notation: Polynomial equivalence

Given two decision problems *A*, *B*, we write $A \equiv^{p} B$ if $A \leq^{p} B$ and $B \leq^{p} A$.

Problem: Equivanlence classes of P

- O Prove that =^p is an equivalence relation (reflexive, symmetric, and transitive)
- **2** Prove that for all A, B, if $A \in P$ and $B \neq \emptyset, \Sigma^*$, then $A \leq^p B$
- **(3)** Obtain the partition of P into equivalence classes induced by relation \equiv^{p}

Topic 7. Complexity

Classes

- Decision problems
- Polynomial and exponential time
- Nondeterminism

2 Reduction

- Concept of reduction
- Examples of reductions
- Properties

3 NP-completeness

- NP-completeness theory
- NP-complete problems

NP-completeness theory

- I can't find an efficient algorithm, I guess I'm just too dumb.

Garey & Johnson, Computers and Intractability

NP-completeness theory

- I can't find an efficient algorithm because no such algorithm is possible!

Garey & Johnson, Computers and Intractability

- I can't find an efficient algorithm, but neither can all these famous people.

Garey & Johnson, Computers and Intractability

Definition

A problem *A* is NP-hard if for any problem $B \in NP$ it holds that $B \leq^{p} A$.

Definition

A problem A is NP-complete if it is NP-hard and $A \in NP$.

Any NP-complete problem "represents" the whole NP class in relation to P. More formally...

Any NP-complete problem "represents" the whole NP class in relation to P. More formally...

Any two NP-complete problems are equivalent.

More formally...

Definition

We write $A \equiv^{p} B$ when $A \leq^{p} B$ and $B \leq^{p} A$.

Proposition

If *A* and *B* are NP-complete, then $A \equiv^{p} B$.

Since A and B are NP-complete, we have

- $I \in NP and$
- *B* is NP-hard

and then, $A \leq^{p} B$.

Symmetrically, we can argue that $B \leq^{p} A$. Therefore, $A \equiv^{p} B$.

Any two NP-complete problems are equivalent.

More formally ...

Definition

```
We write A \equiv^{p} B when A \leq^{p} B and B \leq^{p} A.
```

Proposition

If A and B are NP-complete, then $A \equiv^{p} B$.

Since A and B are NP-complete, we have

- $\bigcirc A \in NP \text{ and }$
- *B* is NP-hard

and then, $A \leq^{p} B$.

Symmetrically, we can argue that $B \leq^{p} A$. Therefore, $A \equiv^{p} B$.

Any two NP-complete problems are equivalent.

More formally ...

Definition

We write $A \equiv^{p} B$ when $A \leq^{p} B$ and $B \leq^{p} A$.

Proposition

If *A* and *B* are NP-complete, then $A \equiv^{p} B$.

Since A and B are NP-complete, we have

 $\bigcirc A \in NP \text{ and }$

B is NP-hard

and then, $A \leq^{p} B$.

Symmetrically, we can argue that $B \leq^{p} A$. Therefore, $A \equiv^{p} B$.

But...do NP-complete problems exist?

Boolean formulas

- A Boolean formula (BF) is a formula over Boolean variables with no quantifiers
- We will use the connectives:

 \vee (disjunction), \wedge (conjunction) and \neg (negation)

For example,

$$F(x, y, z) = (x \lor y \lor \neg z) \land \neg (x \land y \land z)$$

is a Boolean formula.

Conjunctive Normal Form (CNF)

- A literal is a positive or negative variable $(x, \neg x)$
- A clause is a disjunction of literals $(x \lor \neg y \lor z)$
- A Boolean formula is in CNF if it is a conjunction of clauses

$$F(x, y, z) = (x \lor \neg y \lor z) \land (\neg x \lor \neg z)$$

Boolean formulas

- A Boolean formula (BF) is a formula over Boolean variables with no quantifiers
- We will use the connectives:

 \vee (disjunction), \wedge (conjunction) and \neg (negation)

For example,

$$F(x, y, z) = (x \lor y \lor \neg z) \land \neg (x \land y \land z)$$

is a Boolean formula.

Conjunctive Normal Form (CNF)

- A literal is a positive or negative variable $(x, \neg x)$
- A clause is a disjunction of literals $(x \lor \neg y \lor z)$
- A Boolean formula is in CNF if it is a conjunction of clauses

$$F(x, y, z) = (x \lor \neg y \lor z) \land (\neg x \lor \neg z)$$

Satisfiability

A Boolean formula is satisfiable if there exists an assignment from variables to $\{0, 1\}$ under which the formula evaluates to true. For example,

$$F(x, y, z) = (x \lor \neg y \lor z) \land (\neg x \lor \neg z)$$

is satisfiable with x = 1, y = 0, z = 0. We write F(100) = 1.

We define

SAT = { F | F is a satisfiable Boolean formula }

 $CNF-SAT = \{ F \mid F \text{ is a satisfiable BF in CNF} \}$

Cook-Levin Theorem (1971)

CNF-SAT is NP-complete.

Satisfiability

A Boolean formula is satisfiable if there exists an assignment from variables to $\{0, 1\}$ under which the formula evaluates to true. For example,

$$F(x, y, z) = (x \lor \neg y \lor z) \land (\neg x \lor \neg z)$$

is satisfiable with x = 1, y = 0, z = 0. We write F(100) = 1.

We define

SAT = { F | F is a satisfiable Boolean formula }

 $CNF-SAT = \{ F | F \text{ is a satisfiable BF in CNF} \}$

Cook-Levin Theorem (1971)

CNF-SAT is NP-complete.

Cook-Levin Theorem (1971)

CNF-SAT is NP-complete.

In order to prove Cook-Levin theorem, we need to show:

CNF-SAT is NP-hard

(1) $CNF-SAT \in NP$

- The witnesses are functions from Boolean variables to {0,1}.
- In any reasonable encoding of a formula *F* with *n* variables, $n \le |F|$. Since a witness α has *n* bits, $|\alpha| = n \le |F|$.
- Hence, choosing p(n) = n, we have that $|\alpha| \le p(|F|)$.
- We can verify whether an assignment α satisfies F in polynomial time:
 - replace variables by their values given by α
 - evaluate the connectives bottom up

Example

If we consider the following BF in CNF

$$F(x, y, z) = (x \lor \neg y \lor z) \land (x \lor \neg z)$$

and the assignment $\alpha = 100$ (that is, x = 1, y = 0, z = 0), the verifier would evaluate:

- $F(\alpha) = (1 \lor \neg 0 \lor 0) \land (1 \lor \neg 0)$ (replace values)
- $F(\alpha) = (1 \lor 1 \lor 0) \land (1 \lor 1)$ (negations)
- $F(\alpha) = 1 \wedge 1$ (disjunctions)
- $F(\alpha) = 1$ (conjunctions)

Lemma

Given an algorithm $\mathcal{A} : E \to \{0, 1\}$ with worst-case polynomial-space cost, we can find a BF in CNF $F_{\mathcal{A}}$ in polynomial time such that for all $y \in E$:

$$F_{\mathcal{A}}(y) = 1 \Leftrightarrow \mathcal{A}(y) = 1$$

(2) CNF-SAT is NP-hard.

Let $A \in NP$. Then, there is a polynomial q and a verifier \mathcal{V} s.t. for all x:

$$x \in A \Leftrightarrow \exists y | y| = q(|x|) \land \mathcal{V}(x, y) = 1.$$

Let $\mathcal{V}_x(y)$ be a new verifier, for a fixed x, such that

$$\mathcal{V}_x(y) = 1 \Leftrightarrow |y| = q(|x|) \land \mathcal{V}(x,y) = 1.$$

Then,

$$x \in A \Leftrightarrow \exists y \; F_{\mathcal{V}_x}(y) \Leftrightarrow F_{\mathcal{V}_x}(y) \in \mathsf{CNF}\mathsf{-}\mathsf{SAT}.$$

Hence, $A \leq^{p} CNF-SAT$.

Finding a first NP-complete problem (CNF-SAT) makes it possible to find others via reductions.

Clique problem

We say that *H* is a complete subgraph of *G* if it contains all possible edges among its vertices, i.e., if *H* is isomorphic to K_i for some *i*. Now define

CLIQUE = { (G, k) | G has a complete subgraph with k vertices }.

Given graph G

Clique problem

We say that *H* is a complete subgraph of *G* if it contains all possible edges among its vertices, i.e., if *H* is isomorphic to K_i for some *i*. Now define

CLIQUE = { (G, k) | G has a complete subgraph with k vertices }.

Given graph G

Data Structures and Algorithms (FIB)

Theorem

CLIQUE is NP-complete

In order to prove that CLIQUE is NP-complete we have to see that:

- \bigcirc CLIQUE \in NP
- OLIQUE is NP-hard

(1) CLIQUE $\in NP$

Let (G, k) be an instance of CLIQUE.

- Witnesses are the vertices of a k-sized complete subgraph of G (in the previous example, the set C = {3,4,5,6})
- The polynomial p(n) = n is enough because a witness *C* satisfies $|C| \le |(G, k)| = p(|(G, k)|)$
- We can verify in polynomial time whether a set C is a witness: any pair of vertices in C should have an edge in G (ⁿ₂) ≤ n² checks)

Theorem

CLIQUE is NP-complete

In order to prove that CLIQUE is NP-complete we have to see that:

- \bigcirc CLIQUE \in NP
- 2 CLIQUE is NP-hard

(2) CLIQUE is NP-hard

We will prove that CNF-SAT \leq^{p} CLIQUE. Then,

- Since CNF-SAT is NP-hard, any $S \in$ NP satisfies $S \leq^p$ CNF-SAT
- By transitivity, any $S \in \text{NP}$ satisfies $S \leq^{p}$ CLIQUE
- Hence, CLIQUE is NP-hard

We can express the previous property in general.

PropositionLet A be an NP-complete problem and B a problem such that $B \in NP$ and $A \leq^{p} B$. Then, B is also NP-complete.

- Since A is NP-hard, any $S \in NP$ satisfies $S \leq^{p} A$
- By transitivity, any $S \in NP$ satisfies $S \leq^{\rho} B$
- Hence, B is NP-hard

$CNF-SAT \leq^{p} CLIQUE$

Let *F* be a Boolean formula in CNF with:

- clauses C_1, \ldots, C_m
- literals I_1, \ldots, I_r

We define the reduction algorithm $\mathcal{R}(F) = (G, m)$, where G = (V, E) is:

- V = {(i,j) | I_i appears in C_j } (Vertices represent occurrences of literals in clauses)
- $E = \{ \{(i,j), (k,l)\} \mid j \neq l \land \neg l_i \neq l_k \}$ (Edges represent pairs of literals that can be simultaneously true)

Example

 $F(x_1, x_2, x_3) = C_1 \wedge C_2 \wedge C_3$, where

•
$$C_1 = (x_1 \lor x_2), C_2 = (\neg x_1 \lor \neg x_2), C_3 = (x_2 \lor \neg x_3)$$

• $l_1 = x_1, l_2 = x_2, l_3 = x_3, l_4 = \neg x_1, l_5 = \neg x_2, l_6 = \neg x_3$

The reduction $\mathcal{R}(F) = (G, 3)$, where G is the graph

In general, we have that $F \in \text{CNF-SAT} \Leftrightarrow (G, m) \in \text{CLIQUE}$:

- Let α be an assignment satisfying F. Hence, there are m literals that α simultaneously satisfies and hence they form a complete subgraph in G.
- If G has a complete subgraph with m vertices, each vertex belongs to a different clause. Hence, we can simultaneously satisfy one literal in each clause, thus satisfying F.

Previous example with $l_2 = 1, l_4 = 1$

Definitions

- *H* is an independent subset of *G* if it consists of isolated vertices
- H is a vertex cover of G if it has an endpoint of any edge in G

Exercise

Given the following problems:

- CLIQUE = { (G, k) | G has a complete subgraph with k vertices }
- $IS = \{ (G, k) | G has an independent subset of k vertices \}$
- $VC = \{ (G, k) | G has a vertex cover of k vertices \}$

prove that

() CLIQUE \leq^{p} IS

 \bigcirc VC \leq^{p} CLIQUE

Lots of NP-complete problems have "particular cases" that are in P. For example, in CNF-SAT we can fix the number of literals per clause in order to obtain an infinite family of problems.

k-Bounded Satisfiability (k-SAT) Given a Boolean formula in CNF over n variables and at most kliterals per clause, determine whether it is satisfiable.

We will see how to classify k-SAT for the different values of k.

1-Bounded Satisfiability (1-SAT)

Given a Boolean formula F in CNF with n variables and 1 literal per clause, determine whether it is satisfiable.

For example,

$$F(x, y, z, t) = (x) \land (\neg y) \land (z) \land (\neg t).$$

1-sAT is decidable in polynomial time with the following algorithm input F if F has two contradictory literals then return 0 else

```
return 1
```

1-Bounded Satisfiability (1-SAT)

Given a Boolean formula F in CNF with n variables and 1 literal per clause, determine whether it is satisfiable.

For example,

$$F(x, y, z, t) = (x) \land (\neg y) \land (z) \land (\neg t).$$

1-SAT is decidable in polynomial time with the following algorithm:

input F
if F has two contradictory literals then
 return 0
else
 return 1

2-Bounded Satisfiability (2-SAT)

Given a Boolean formula F in CNF with n variables and \leq 2 literals per clause, determine whether it is satisfiable.

For example,

$$F(x, y, z) = (x \lor y) \land (x \lor \neg z) \land (\neg x \lor y) \land (\neg y \lor \neg z).$$

2-SAT is decidable in polynomial time

transforming the formula into a directed graph.

applying a paths algorithm to the graph

2-Bounded Satisfiability (2-SAT)

Given a Boolean formula F in CNF with n variables and \leq 2 literals per clause, determine whether it is satisfiable.

For example,

$$F(x, y, z) = (x \lor y) \land (x \lor \neg z) \land (\neg x \lor y) \land (\neg y \lor \neg z).$$

2-SAT is decidable in polynomial time

- transforming the formula into a directed graph
- applying a paths algorithm to the graph

Sketch of the algorithm

Given a 2-CNF Boolean formula

$$F(x, y, z) = (x \lor y) \land (x \lor \neg z) \land (\neg x \lor y) \land (\neg y \lor \neg z)$$

it can be rewritten using implications

$$F(x, y, z) = (\neg x \Rightarrow y) \land (z \Rightarrow x) \land (x \Rightarrow y) \land (y \Rightarrow \neg z)$$

that are based on the equivalences

•
$$(a \lor b) \equiv (\neg a \Rightarrow b) \equiv (\neg b \Rightarrow a)$$

•
$$(a) \equiv (a \lor a) \equiv (\neg a \Rightarrow a) \equiv (a \Rightarrow \neg a)$$

Data Structures and Algorithms (FIB)

The Boolean formula with implications

$$F(x, y, z) = (\neg x \Rightarrow y) \land (z \Rightarrow x) \land (x \Rightarrow y) \land (y \Rightarrow \neg z)$$

is transformed into a digraph D_F and we apply the following lemma.

Lemma

F is unsatisfiable if and only if $\exists x$ for which D_F has paths from x to $\neg x$ and from $\neg x$ to x.

Data Structures and Algorithms (FIB)

Topic 7. Complexity

Fall 2018 84 / 108

3-Bounded Satisfiability (3-SAT)

Given a Boolean formula *F* in CNF with *n* variables and \leq 3 literals per clause, determine whether it is satisfiable.

3-SAT is NP-complete.

To prove it, we need two facts:

- SAT ∈ NP (similar to CNF-SAT)
- ③ 3-SAT is NP-hard (we show CNF-SAT ≤^P 3-SAT)

3-Bounded Satisfiability (3-SAT)

Given a Boolean formula *F* in CNF with *n* variables and \leq 3 literals per clause, determine whether it is satisfiable.

Theorem

3-SAT is NP-complete.

To prove it, we need two facts:

2 3-SAT is NP-hard (we show CNF-SAT ≤^p 3-SAT)

CNF-SAT ≤^{*p*} 3-SAT

The following method transforms a Boolean formula in CNF into an equisatisfiable one in 3-CNF.

Given a BF F in CNF,

- Let F' be an empty BF
- **2** For each clause $C = (a_1 \lor \cdots \lor a_k)$ in F:
 - o if k ≤ 3, add C to F'
 - if k > 3, add the clause

 $(a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land (\neg z_2 \lor a_4 \lor z_3) \dots (\neg z_{k-3} \lor a_{k-1} \lor a_k)$

to F', where z_1, \ldots, z_{k-3} are new variables.

Return F'

Example

Given a clause with five literals $C = (a_1 \lor a_2 \lor a_3 \lor a_4 \lor a_5)$, the reduction returns

$$C' = (a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land (\neg z_2 \lor a_4 \lor a_5).$$

- It is obvious that if C is true with assignment α, C' can be satisfied with α and appropriate values for z₁ and z₂
- If C' is true with assignment β, some a_i will be true and C will be true with β

Definition

A graph G = (V, E) with *n* vertices is *k*-colorable if there exists a total function

$$\chi: V \to \{1, \ldots, k\}$$

such that $\chi(u) \neq \chi(v)$ for any edge $\{u, v\} \in E$. Function χ is a *k*-coloring.

With the number of colors k as an external parameter, we can formulate the coloring problem as a function of k.

k-Colorability (k-COLOR) Given a graph G, determine whether it is k-colorable.

Polynomial algorithms are known for the following cases:

- 1-COLOR
- 2-COLOR

For 3-COLOR, we prove NP-completeness:

- We already showed that 3-COLOR \in NP
- Next, we show that it is NP-complete via a reduction from 3-CNF-SAT

With the number of colors k as an external parameter, we can formulate the coloring problem as a function of k.

k-Colorability (k-COLOR) Given a graph G, determine whether it is k-colorable.

Polynomial algorithms are known for the following cases:

- 1-COLOR
- 2-COLOR

For 3-COLOR, we prove NP-completeness:

- We already showed that 3-COLOR \in NP
- Next, we show that it is NP-complete via a reduction from 3-CNF-SAT

CNF-SAT ≤^p 3-COLOR

Let F be a Boolean formula in CNF. We will construct a graph G that is 3-colorable if and only if F is satisfiable.

• There will be 3 special vertices called R, G, B forming a triangle:

We can assume that in any coloring, vertices R, G, B have the colors: $R \to \text{red}, \, G \to \text{green}, \, B \to \text{blue}$ We add a vertex for each literal. Then, we connect each literal and its negation to vertex B.

For each clause, we add a subgraph as follows. In the case

 $(x \lor y \lor \overline{z} \lor u \lor \overline{v} \lor w).$

Property: A coloring of the upper vertices with red or green can be extended to a global 3-coloring if and only if at least one has green color.

If all of the above are red....

If all of the above are red....

If all of the above are red....

If all of the above are red....

If all of the above are red....

If all of the above are red....

If all of the above are red....

If all of the above are red....

If at least one is green...

If at least one is green...

If at least one is green...

If at least one is green...

If at least one is green...

If at least one is green...

If at least one is green...

If at least one is green...

If the number of literals is odd, the rightmost vertex will be R. For example,

$$(x \vee y \vee \overline{z} \vee u \vee \overline{v})$$

If G is the graph with all vertices and edges defined as before, then

F is satisfiable \Leftrightarrow *G* is 3-colorable.

Since G can be constructed in polynomial time, we have that

 $CNF-SAT \leq^{p} 3-COLOR.$

Theorem

3-COLOR is NP-complete.

For the other *k*-COLOR problems, we have the following.

Proposition

For all k > 3, 3-COLOR $\leq^{p} k$ -COLOR.

The reduction consists of, given a graph G, adding to it a complete subgraph with k - 3 vertices connected to all vertices of G.

Corollary

For all k > 3, k-COLOR is NP-complete.

Hence, we have:

- k-COLOR \in P for all $k \leq 2$
- *k*-COLOR is NP-complete for all $k \ge 3$

For the other *k*-COLOR problems, we have the following.

Proposition

For all k > 3, 3-COLOR $\leq^{p} k$ -COLOR.

The reduction consists of, given a graph *G*, adding to it a complete subgraph with k - 3 vertices connected to all vertices of *G*.

Corollary

For all k > 3, k-COLOR is NP-complete.

Hence, we have:

- k-COLOR \in P for all $k \leq 2$
- *k*-COLOR is NP-complete for all $k \ge 3$

What can we say about colorability of planar graphs? Let us consider the following family of problems.

k-**Planar Colorability** (*k*-COLOR-PL) Given a planar graph *G*, determine whether it is *k*-colorable.

Planarity can be checked in polynomial time.

Definition

A graph is planar if it can be drawn on the plane without any edge intersection.

Planar graphs have applications in circuit design and graphics.

Kuratowski Theorem

A graph is planar if and only if it does not contain a subgraph homeomorphic to K_5 or $K_{3,3}$.

 $K_{3,3}$ and homeomorphic graph

Topic 7. Complexity

Kuratowski Theorem

A graph is planar if and only if it does not contain a subgraph homeomorphic to K_5 or $K_{3,3}$.

Planarity test

- Brute force: O(n⁶)
 - Contract edges of degree 2
 - Check whether some set of 5 vertices is K₅
 - Check whether some set of 6 vertices is K_{3,3}

• Efficient: O(n)

Apply DFS

$3\text{-}\text{COLOR} \leq^{p} 3\text{-}\text{COLOR-PL}$

Given a graph G, we will considered a representation of G, possibly with edge intersections. Each intersection will be replaced by the gadget W:

W has interesting properties:

- () in any 3-coloring of W, opposite extreme points have the same color
- any color assignment where opposite extreme points have the same color can be extended to a 3-coloring of W

$3\text{-}\text{COLOR} \leq^{p} 3\text{-}\text{COLOR-PL}$

Given a graph G, we will considered a representation of G, possibly with edge intersections. Each intersection will be replaced by the gadget W:

W has interesting properties:

- **()** in any 3-coloring of *W*, opposite extreme points have the same color
- 2 any color assignment where opposite extreme points have the same color can be extended to a 3-coloring of W

Data Structures and Algorithms (FIB)

There are two colors available for vertex *u*.

This allows two colorings (up to isomorphism).

It is easy to check that they fullfill properties (1) i (2).

Data Structures and Algorithms (FIB)

Topic 7. Complexity

Fall 2018 103 / 108

The graph we obtain after the replacements

in the representation of G

- is planar and
- is 3-colorable if and only if G is 3-colorable

Example

Let us assume that we have $K_{3,3}$ as input to 3-COLOR:

But we consider the following representation with just one intersection:

Data Structures and Algorithms (FIB)

Topic 7. Complexity

A 3-coloring for $K_{3,3}$ induces a 3-coloring for the this graph (and viceversa):

A 3-coloring for $K_{3,3}$ induces a 3-coloring for the this graph (and viceversa):

Corollary

3-COLOR-PL is NP-complete.

Hence, we have:

- k-COLOR-PL \in P for all $k \leq 2$
- 3-COLOR-PL is NP-complete
- k-COLOR-PL \in P for all $k \ge 4$

Corollary

3-COLOR-PL is NP-complete.

Hence, we have:

- k-COLOR-PL \in P for all $k \leq 2$
- 3-COLOR-PL is NP-complete
- k-COLOR-PL ∈ P for all k ≥ 4 (due to the 4-color theorem)

So far, we have seen the following tree of reductions.

