
Lógica en la Informática / Logic in Computer Science

Thursday April 18th, 2013

Time: 1h45min. No books, lecture notes or formula sheets allowed.

1A) Is it true that if F is unsatisfiable then ¬F is a tautology? Prove it using only the formal
definitions of propositional logic.

Answer: F unsatisfiable iff, by definition, ∀I, evalI(F) = 0, which implies ∀I, 1 − evalI(F) = 1,
which, by definition of evaluation of ¬F , implies ∀I, evalI(¬F) = 1, which is the same as ∀I, I |= ¬F
and ¬F tautology.

1B) Is it true that if F,G,H are formulas such that F ∧ G 6|= H then F ∧ G ∧H is unsatisfiable?
Prove it using only the formal definitions of propositional logic.

Answer: This is false. Counterexample: F = p, G = p, H = q. Then p ∧ p 6|= q, but p ∧ p ∧ q is
satisfiable.

2) Using the Tseitin transformation, we can transform an arbitrary propositional formula F into a
set of clauses T (F) (a CNF with auxiliary variables) that is equisatisfiable: F is SAT iff T (F) is SAT.
Moreover, the size of T (F) is linear in the size of F .
2A) Is there any transformation T ′ into an equisatisfiable linear-size DNF? If yes, which one? If not,
why?

Answer: No (unless P = NP). If such a similar transformation existed, then we could solve an
NP-complete problem (is F SAT?) by transforming F in linear time into the DNF T ′(F), and then
deciding whether the DNF T ′(F) is satisfiable (which, as we know, can be done in linear time for
DNFs).

2B) Is there any similar transformation T ′ into a linear-size DNF, such that F is a tautology iff
T ′(F) is a tautology? If yes, which one? If not, why?

Answer: Yes. F is a tautology iff ¬F is unsatisfiable iff the normal Tseitin transformation T (¬F)
is unsatisfiable iff ¬T (¬F) is a tautology. And indeed ¬T (¬F) can be easily transformed into a
DNF: T (¬F) is a conjunction of claues C1 ∧ . . . ∧ Cn. Its negation ¬(C1 ∧ . . . ∧ Cn) is equivalent to
¬C1 ∨ . . . ∨ ¬Cn, and each ¬Ci is of the form ¬(l1 ∨ . . . ∨ lm) which is equivalent to ¬l1 ∧ . . . ∧ ¬lm.
Note that, unlike what happened in the previous case, here we transform an NP-complete problem
into another NP-complete problem.

3) A pseudo-Boolean constraint has the form a1x1 + . . .+ anxn ≤ k (or the same with ≥), where the
coefficients ai and the k are natural numbers and the xi are propositional variables. Which clauses are
needed to encode the pseudo-Boolean constraint 2x+3y+5z+6u+8v ≤ 11 into SAT, if no auxiliary
variables are used? Which clauses are needed in general, with no auxiliary variables, for a constraint
a1x1 + . . .+ anxn ≤ k?

Answer: To encode 2x + 3y + 5z + 6u + 8v ≤ 11, for every (minimal) subset of variables such that
the sum of its coefficients is more than 11, we forbid that all of them are true. In this case, it suffices
to have five clauses: ¬v ∨ ¬u, ¬v ∨ ¬z, ¬v ∨ ¬x ∨ ¬y, ¬u ∨ ¬z ∨ ¬y and ¬u ∨ ¬z ∨ ¬x.

Note that “minimal” here means that, for example, the clause ¬v ∨¬z ∨¬y is not needed because
it is subsumed by the stronger clause ¬v ∨ ¬z.

In general, given a constraint a1x1 + . . .+ anxn ≤ k, we need one clause ¬xi1 ∨ . . . ∨ ¬xik for each
subset S = {i1 . . . ik} of {1 . . . n} such that ai1 + · · · + aik > k, and such that moreover S is minimal
(ai1 + · · · + aik − aij ≤ k for every j with 1 ≤ j ≤ k).

4) For organizing the general elections in Ecuador, we need to decide where to locate the polling places
(the places where people can vote). To do this, we have a long list L = {1 . . . N} of possible places

(schools, town halls, etc), and for each inhabitant i of the m inhabitants of Ecuador (i ∈ {1 . . . m}),
a sublist Li of L with those places that are close enough to i’s home. To save costs, we would like to
only open K polling places, but of course guaranteeing that every inhabitant i can vote at one of the
places on its list Li. Which (and how many) variables and clauses do we need to solve this problem
using SAT?

Answer: We introduce variables xi meaning “polling place i is opened”, for all i with 1 ≤ i ≤ N . We
need to express that for each inhabitant i, at least one of the polling places of its list Li = {i1 . . . ip}
is opened. This we can express with one clause of length |Li| = p of the form xi1 ∨ . . .∨xip (one clause
per inhabitant: m clauses). We also need to express that at most K polling places are opened: this
we do by encoding into SAT an at-most-K constraint x1 + · · ·+ xN ≤ K, which we can express using
any of the standard methods for these constraints, for example, using sorting networks (O(Nlog2N)
clauses) or cardinality networks (O(Nlog2K) clauses) or with no auxiliary variables (

(N
K+1

)

clauses).

5) We have a computing facility with N identical computers, and we need to handle T computing
tasks, with T > N . Each task i ∈ {1 . . . T} has a duration of di seconds. Each computer can handle no
more than one task at the same time. We want to determine whether it is possible to distribute the
tasks over these computers in such a way that after less than K seconds all tasks are finished. Which
(and how many) variables and clauses do we need to solve this problem using SAT? Note: if needed,
you can leave arithmetical constraints (at-most-one, cardinality, pseudo-Boolean...) without encoding
them into SAT.

Answer: We introduce variables xi,j meaning “task i will be run at computer j”, for all i with
1 ≤ i ≤ T and for all j with 1 ≤ j ≤ N (total: N · T variables).

We need to express that each task i, will be run at at least one computer. This we do with one
N -literal clause per task i, of the form xi,1 ∨ . . . ∨ xi,N (that is, T clauses). We also need to express
that the tasks scheduled at each computer have a total duration of no more than k. This we can do
with one pseudo-Boolean constraint per computer j of the form d1 · x1,j + · · · + dT · xT,j ≤ k (N
pseudo-Boolean constraints).

Note that a solution does not tell us in which order the tasks are handled (any order is ok), and
also note that it is not really necessary to express that each task is at at most one computer: in any
solution where some task is scheduled at more than one computer we can simply choose one of these
computers.

