
Lógica en la Informática / Logic in Computer Science

Tuesday January 13th, 2015

Time: 2h30min. No books, lecture notes or formula sheets allowed.
The propositional logic part comprises questions 1 to 4.

1) Let F be a propositional formula. Is it true that F is a tautology if and only if ¬F is unsatisfiable?
Prove it using only the definition of propositional logic.

Solution: Yes. F tautology iff, by definition, ∀I, evalI(F ) = 1 iff ∀I, 1 − evalI(F ) = 0, iff, by
definition of evaluation of ¬F , ∀I, evalI(¬F ) = 0 iff ∀I, I 6|= ¬F iff ¬F unsatisfiable.

2) How would you efficiently decide whether a given propositional formula in DNF is satisfiable?

Solution: A formula in DNF is a disjunction of cubes c, where each cube is a conjunction of literals.
Such a DNF c1 ∨ . . . cn is satisfiable iff exists interpretation I s.t. I |= c1 ∨ . . . ∨ cn iff exists I
evalI(c1 ∨ . . . ∨ cn) = 1 iff exists I max(evalI(c1), . . . evalI(cn)) = 1, that is, if at least one of the
cubes ci is satisfiable. This can be checked as follows: a cube l1 ∧ . . . ∧ lm is satisfiable if for some I
all lits literals are true in I. It is easy to see that such an I exists iff {l1 . . . lm} contains no pair of
complementary literals, of the form p and ¬p (if there is no such a pair then I can simply set the
positive literals of the cube to 1 and the negative ones to 0). This can be checked in linear time.

3) We want to solve a certain problem with a SAT solver. It contains a number of at-most-one
constraints of the form x1 + . . . + xn ≤ 1, each one of which has to be encoded (expressed as a
set of clauses). A good property of such an encoding is that, as soon as one of the variables xi
becomes true, the unit propagation mechanism of the SAT solver will set to false all the other variables
x1 . . . xi−1, xi+1 . . . xn. Does the Heule-3 encoding have this property? Briefly explain why.

Solution: The Heule-3 encoding uses the fact that amo(x1 . . . xn) iff amo(x1, x2, x3, aux) AND
amo(¬aux, x4 . . . xn). Then the part amo(¬aux, x4 . . . xn), which has n− 2 variables, can be encoded
recursively in the same way, and amo(x1, x2, x3, aux) can be expressed using the quadratic encoding
with 6 clauses. In this way, for eliminating two variables we need one auxiliary variable end six clauses,
so in total we need n/2 variables and 3n clauses.

The Heule-3 encoding does have the property. We can prove it, for example, by induction on n.
Base case: if n ≤ 4 the quadratic encoding part is the whole constraint. For example, for n = 4 we

have ¬x1 ∨ ¬x2, ¬x1 ∨ ¬x3, ¬x1 ∨ ¬x4, ¬x2 ∨¬x3, ¬x2 ∨¬x4, and ¬x3 ∨ ¬x4. For every distinct
pair i, j ⊂ {1 . . . 4} we have a clause ¬xi ∨ ¬xj, so if xi becomes true, all other variables xj become
false by unit propagation.

Induction case: If n > 4 the part amo(x1, x2, x3, aux) is expressed using the quadratic encoding
with 6 clauses: ¬x1∨¬x2, ¬x1∨¬x3, ¬x1∨¬aux, ¬x2∨¬x3, ¬x2∨¬aux, and ¬x3∨¬aux. Now there
are two cases: A) some variable of {x1, x2, x3} becomes true, or B) some variable of x4 . . . xn becomes
true. In case A, as before, unit propagation will set the other variables in {x1, x2, x3, aux} to false, and
hence ¬aux becomes true, and then we can apply the induction hypothesis since amo(¬aux, x4 . . . xn)
has two variables less: unit propagation will set all variables in {x4 . . . xn} to false.

In case B, by induction hypothesis, since amo(¬aux, x4 . . . xn) has two variables less, unit propa-
gation will set all other variables in {x4 . . . xn,¬aux} to false and hence aux becomes true, and by the
clauses ¬x1 ∨ ¬aux, ¬x2 ∨ ¬aux, ¬x3 ∨ ¬aux, unit propagation will set x1, x2, and x3 to false.

4) The Seat car manufacturer has a website where one can order a car, configuring all its (hundreds of)
properties: which type of engine you want, which color, type of music equipment, etc. The configuration
software has to take into account that there exist constraints relating pairs of properties, e.g., “this
type of air conditioning cannot go together with that kind of diesel engine”. In general such constraints
have the form: “property Pi cannot go together with property Pj”, or “if property Pi is true then also
property Pj must be true”, or “at least one of property Pi and property Pj must be true”. The software



should give a warning if the user tries to make a configuration that is forbidden with respect to these
constraints.
4a) Explain how you would do that using propositional logic (which variables and clauses you would
introduce, etc.).

Solution: Assume there are N different properties. For each property i ∈ 1 . . . 100 we introduce the
variable xi, meaning “property i is included”. Now for each constraint relating two properties i and j,
it suffices to have a binary clause of one of the following four forms: xi∨xj, or xi∨¬xj, or ¬xi∨xj, or
¬xi∨¬xj. Each property i the user selects will be a 1-literal clause xi. The whole problem of checking
if a configuration is allowed or forbidden is hence polynomial: a 2-SAT problem, that can be decided
in linear time (resolution solves it in quadratic time).

4b) How would you handle constraints relating more than two properties, such as “the user must
choose at least one of the three properties Pi, Pj or Pk”?

Solution: This requires having 3-literal clauses, and the problem becomes NP-hard, so in principle
one cannot do better than using a general-purpose SAT solver.

5) Consider two groups of 10 people each. In the first group, as expected, the percentage of people
with lung cancer among smokers is higher than among non-smokers. In the second group, the same is
the case. But if we consider the 20 people of the two groups together, then the situation is the opposite:
the proportion of people with lung cancer is higher among non-smokers than among smokers! Can this
be true? Write a little Prolog program to find it out.
Solution:

num(X):- between(1,7,X). % below, e.g. SNC1 denotes "num. smokers with no cancer group 1".

p:- num(SC1), num(SNC1), num(NSC1), num(NSNC1), 10 is SC1+SNC1+NSC1+NSNC1,

SC1/(SC1+SNC1) > NSC1/(NSC1+NSNC1),

num(SC2), num(SNC2), num(NSC2), num(NSNC2), 10 is SC2+SNC2+NSC2+NSNC2,

SC2/(SC2+SNC2) > NSC2/(NSC2+NSNC2),

(SC1+SC2)/(SC1+SNC1+SC2+SNC2) < (NSC1+NSC2)/(NSC1+NSNC1+NSC2+NSNC2),

write([ SC1,SNC1,NSC1,NSNC1,SC2,SNC2,NSC2,NSNC2]), nl, halt.

% smokers non-smokers

% cancer non-cancer cancer non-cancer

% ------------------------------------------------

% group 1: 2 1 4 3 2/3 > 4/7

% group 2: 2 4 1 3 2/6 > 1/4

% total 4 5 5 6 4/9 < 5/11

% another solution allowing zeroes:

% group1: 1 0 2 1 1/1 > 2/3

% group2: 1 3 0 1 1/4 > 0/1

% total: 2 3 2 2 2/5 < 2/4

6) Let F be the first-order formula ∃x∀y∃z p(z, y) ∧ ¬p(x, y).
6a) Give a model I with DI = {a, b, c}.
Solution: Intuitively, we can build the model considering. e.g., that the x that exists is a. Then we
need that ¬p(x, y) for all y, that is, pI(a, a) = 0, pI(a, b) = 0, pI(a, c) = 0. Furthermore, we need
that for all y, there exists a z such that p(z, y), which we can achieve by taking always the same z
(this is not necessary, but here it works): pI(b, a) = 1, pI(b, b) = 1, pI(b, c) = 1. This gives us a model
independently of how we define the remaining three cases pI(c, a), pI(c, b), pI(c, c).

6b) Is it true that F |= ∀x p(x, x)?
Solution: No. The model of F given in 6a does not satisfy ∀x p(x, x).

6c) Is there any model of F with a single-element domain?
Solution: No. Calling that single element a, i.e., Di = {a}, we would need pI(a, a) = 1 due to the
subformula p(z, y), but also pI(a, a)=0 due to the subformula ¬p(x, y).



7) In a certain village, the barber shaves all men that do not shave themselves, and only these men.
Formalize this sentence in first-order logic and prove by resolution that the barber is a woman (i.e.,
not a man).

Solution: Let the constant b0 represent the barber, let sh(x, y) mean “x shaves y”, and let m(x)
mean “x is a man”. Then the sentence F becomes ∀x (sh(b, x) ↔ (m(x) ∧ ¬sh(x, x))). We need to
prove that F |= ¬m(b), that is, F ∧m(b) is unsatisfiable. Transforming F into clausal form:

∀x (¬sh(b, x) ∨ (m(x) ∧ ¬sh(x, x))) ∧ (sh(b, x) ∨ ¬(m(x) ∧ ¬sh(x, x)))
∀x (¬sh(b, x) ∨ (m(x) ∧ ¬sh(x, x))) ∧ (sh(b, x) ∨ ¬m(x) ∨ sh(x, x))
∀x (¬sh(b, x) ∨ m(x)) ∧ (¬sh(b, x) ∨ ¬sh(x, x)) ∧ (sh(b, x) ∨ ¬m(x) ∨ sh(x, x))

And we get the clauses 1-4, which give the empty clause by resolution as follows:

1. m(b)
2. ¬sh(b, x) ∨ m(x)
3. ¬sh(b, x) ∨ ¬sh(x, x)
4. sh(b, x) ∨ ¬m(x) ∨ sh(x, x)
5. sh(b, b) 1 + 4 {x = b}
6. ¬sh(b, b) 3 + 5 {x = b}
7. emptyclause 5 + 6 { }


