symbolicOutput(0). % set to 1 for DEBUGGING: to see symbolic output only; 0 otherwise. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% A company needs to distribute its employees in working teams of size %% between minSize and maxSize. In order to avoid fights between them, %% the psychology department has computed a score (between 0 and 10) for %% each worker. This score estimates her leadership skills. It has been %% decided that two workers whose scores sum more than maxScore cannot %% be in the same team. %% %% Complete the following program in order to find a possible team %% distribution. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%% Example input: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% numWorkers(20). %% numTeams(5). % exact number of teams needed %% minSize(3). % min size of any team %% maxSize(6). % max size of any team %% maxScore(14). % two workers whose scores sum more than 14 cannot go together %% % score(workerId, score) %% score( 1, 2). %% score( 2, 6). %% score( 3, 3). %% score( 4, 4). %% score( 5, 6). %% score( 6, 10). %% score( 7, 2). %% score( 8, 1). %% score( 9, 4). %% score(10, 2). %% score(11, 7). %% score(12, 9). %% score(13, 3). %% score(14, 4). %% score(15, 9). %% score(16, 1). %% score(17, 3). %% score(18, 8). %% score(19, 2). %% score(20, 1). %%%%%%% End example input %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%% Some helpful definitions to make the code cleaner: ==================================== worker(W) :- numWorkers(N), between(1,N,W). workerScore(W,S) :- worker(W), score(W,S). team(T) :- numTeams(N), between(1,N,T). incompatibleWorkers(W1,W2) :- ... %% Complete this! %%%%%%% End helpful definitions =============================================================== %%%%%%% 1. SAT Variables: ==================================================================== % wt(W,T) means "worker W is in team T" satVariable( wt(W,T) ) :- worker(W), team(T). %%%%%%% 2. Clause generation for the SAT solver: ============================================= writeClauses :- .... %% Complete this! true,!. writeClauses :- told, nl, write('writeClauses failed!'), nl,nl, halt. %%%%%%% 3. DisplaySol: show the solution. Here M contains the literals that are true in the model: % displaySol(M) :- nl, write(M), nl, nl, fail. displaySol(M) :- team(T), write('Team '), write(T), write(': '), findall(W-score(S),(member(wt(W,T),M),workerScore(W,S)),L), write(L), findall(Sc, (member(W1-score(S1),L), member(W2-score(S2),L), W1 \= W2, Sc is S1+S2), ListSums), max_list(ListSums,Max), write(' ## Max sum of pairs '), write(Max), nl, fail. displaySol(_) :- nl. %%%%%%% ======================================================================================= %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Everything below is given as a standard library, reusable for solving %% with SAT many different problems. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%% Cardinality constraints on arbitrary sets of literals Lits: =========================== exactly(K,Lits) :- symbolicOutput(1), write( exactly(K,Lits) ), nl, !. exactly(K,Lits) :- atLeast(K,Lits), atMost(K,Lits),!. atMost(K,Lits) :- symbolicOutput(1), write( atMost(K,Lits) ), nl, !. atMost(K,Lits) :- % l1+...+ln <= k: in all subsets of size k+1, at least one is false: negateAll(Lits,NLits), K1 is K+1, subsetOfSize(K1,NLits,Clause), writeOneClause(Clause),fail. atMost(_,_). atLeast(K,Lits) :- symbolicOutput(1), write( atLeast(K,Lits) ), nl, !. atLeast(K,Lits) :- % l1+...+ln >= k: in all subsets of size n-k+1, at least one is true: length(Lits,N), K1 is N-K+1, subsetOfSize(K1, Lits,Clause), writeOneClause(Clause),fail. atLeast(_,_). negateAll( [], [] ). negateAll( [Lit|Lits], [NLit|NLits] ) :- negate(Lit,NLit), negateAll( Lits, NLits ),!. negate( -Var, Var) :- !. negate( Var, -Var) :- !. subsetOfSize(0,_,[]) :- !. subsetOfSize(N,[X|L],[X|S]) :- N1 is N-1, length(L,Leng), Leng>=N1, subsetOfSize(N1,L,S). subsetOfSize(N,[_|L], S ) :- length(L,Leng), Leng>=N, subsetOfSize( N,L,S). %%%%%%% Express equivalence between a variable and a disjunction or conjunction of literals === % Express that Var is equivalent to the disjunction of Lits: expressOr( Var, Lits ) :- symbolicOutput(1), write( Var ), write(' <--> or('), write(Lits), write(')'), nl, !. expressOr( Var, Lits ) :- member(Lit,Lits), negate(Lit,NLit), writeOneClause([ NLit, Var ]), fail. expressOr( Var, Lits ) :- negate(Var,NVar), writeOneClause([ NVar | Lits ]),!. %% expressOr(a,[x,y]) genera 3 clausulas (como en la Transformación de Tseitin): %% a == x v y %% x -> a -x v a %% y -> a -y v a %% a -> x v y -a v x v y % Express that Var is equivalent to the conjunction of Lits: expressAnd( Var, Lits) :- symbolicOutput(1), write( Var ), write(' <--> and('), write(Lits), write(')'), nl, !. expressAnd( Var, Lits) :- member(Lit,Lits), negate(Var,NVar), writeOneClause([ NVar, Lit ]), fail. expressAnd( Var, Lits) :- findall(NLit, (member(Lit,Lits), negate(Lit,NLit)), NLits), writeOneClause([ Var | NLits]), !. %%%%%%% main: ================================================================================= main:- current_prolog_flag(os_argv, Argv), nth0(1, Argv, InputFile), main(InputFile), !. main:- write('Usage: $ ./ or ?- main().'), nl, halt. main(InputFile):- symbolicOutput(1), !, consult(InputFile), writeClauses, halt. % print the clauses in symbolic form and halt Prolog main(InputFile):- consult(InputFile), initClauseGeneration, tell(clauses), writeClauses, told, % generate the (numeric) SAT clauses and call the solver tell(header), writeHeader, told, numVars(N), numClauses(C), write('Generated '), write(C), write(' clauses over '), write(N), write(' variables. '),nl, shell('cat header clauses > infile.cnf',_), write('Calling solver....'), nl, shell('kissat -v infile.cnf > model', Result), % if sat: Result=10; if unsat: Result=20. treatResult(Result),!. treatResult(20) :- write('Unsatisfiable'), nl, halt. treatResult(10) :- write('Solution found: '), nl, see(model), symbolicModel(M), seen, displaySol(M), nl,nl,halt. treatResult( _) :- write('cnf input error. Wrote anything strange in your cnf?'), nl,nl, halt. initClauseGeneration:- %initialize all info about variables and clauses: retractall(numClauses( _)), retractall(numVars( _)), retractall(varNumber(_,_,_)), assert(numClauses( 0 )), assert(numVars( 0 )), !. writeOneClause([]) :- symbolicOutput(1),!, nl. writeOneClause([]) :- countClause, write(0), nl. writeOneClause([Lit|C]) :- w(Lit), writeOneClause(C),!. w(-Var) :- symbolicOutput(1), satVariable(Var), write(-Var), write(' '),!. w( Var) :- symbolicOutput(1), satVariable(Var), write( Var), write(' '),!. w(-Var) :- satVariable(Var), var2num(Var,N), write(-), write(N), write(' '),!. w( Var) :- satVariable(Var), var2num(Var,N), write(N), write(' '),!. w( Lit) :- told, write('ERROR: generating clause with undeclared variable in literal '), write(Lit), nl,nl, halt. % given the symbolic variable V, find its variable number N in the SAT solver: :- dynamic(varNumber / 3). var2num(V,N) :- hash_term(V,Key), existsOrCreate(V,Key,N),!. existsOrCreate(V,Key,N) :- varNumber(Key,V,N),!. % V already existed with num N existsOrCreate(V,Key,N) :- newVarNumber(N), assert(varNumber(Key,V,N)), !. % otherwise, introduce new N for V writeHeader :- numVars(N),numClauses(C), write('p cnf '),write(N), write(' '),write(C),nl. countClause :- retract( numClauses(N0) ), N is N0+1, assert( numClauses(N) ),!. newVarNumber(N) :- retract( numVars( N0) ), N is N0+1, assert( numVars(N) ),!. % Getting the symbolic model M from the output file: symbolicModel(M) :- get_code(Char), readWord(Char,W), symbolicModel(M1), addIfPositiveInt(W,M1,M),!. symbolicModel([]). addIfPositiveInt(W,L,[Var|L]) :- W = [C|_], between(48,57,C), number_codes(N,W), N>0, varNumber(_,Var,N),!. addIfPositiveInt(_,L,L). readWord( 99,W) :- repeat, get_code(Ch), member(Ch,[-1,10]), !, get_code(Ch1), readWord(Ch1,W),!. % skip line starting w/ c readWord(115,W) :- repeat, get_code(Ch), member(Ch,[-1,10]), !, get_code(Ch1), readWord(Ch1,W),!. % skip line starting w/ s readWord( -1,_) :-!, fail. %end of file readWord(C, []) :- member(C,[10,32]), !. % newline or white space marks end of word readWord(Char,[Char|W]) :- get_code(Char1), readWord(Char1,W), !. %%%%%%% =======================================================================================