Lógica en la Informática / Logic in Computer Science January 17th, 2018. Time: 2h30min. No books or lecture notes.

Note on evaluation: eval(propositional logic) $=\max \{\operatorname{eval}($ Problems $1,2,3)$, eval(partial exam) $\}$. $\operatorname{eval}($ first-order logic $)=\operatorname{eval}($ Problems $4,5,6)$.

1a) Let F and G be propositional formulas. Is it true that always $F \models G$ or $F \models \neg G$? Prove it using only the definitions of propositional logic.

1b) Let F and G be propositional formulas. Is it true that $F \models G$ iff $F \wedge \neg G$ is unsatisfiable? Prove it using only the definitions of propositional logic.
2) We are interested in the optimization problem, called minOnes: given a set S of clauses over variables $\left\{x_{1}, \ldots, x_{n}\right\}$, finding a minimal model I (if it exists), that is, a model of S with the minimal possible number of ones $I\left(x_{1}\right)+\ldots+I\left(x_{n}\right)$. Explain very briefly your answers to the following questions:
2a) Does every S have a unique minimal model, or can there be several minimal models?
2b) Given the set S and an arbitrary natural number k, what is the complexity of deciding whether S has any model I with at most k ones, that is, such that $I\left(x_{1}\right)+\ldots+I\left(x_{n}\right) \leq k$?
2c) Same question as 2 a, if S is a set of Horn Clauses.
2d) Same question as 2 b, if S is a set of Horn Clauses.
3) We want to encode pseudo-Boolean constraints into SAT with the minimal set of clauses, and using no auxiliary variables. For $2 x+3 y+5 z+6 u+8 v \leq 11$, the clauses are:

$$
\neg v \vee \neg u \quad \neg v \vee \neg z \quad \neg v \vee \neg x \vee \neg y \quad \neg u \vee \neg z \vee \neg y \quad \neg u \vee \neg z \vee \neg x
$$

Write the minimal set of clauses for $2 x+3 y+5 z+6 u+8 v \geq 11$ (give no explanations).
4) For each one of the following cases, write a formula F of first-order logic without equality such that F fulfils the requirement. Keep F as simple as you can and give no explanations.
4a) F is unsatisfiable.
4b) F is a tautology.
4c) F is satisfiable and has no model I with $\left|D_{I}\right|<3$.
4d) F is satisfiable but has no model with finite domain.
4e) F is satisfiable and all models I of F have $\left|D_{I}\right|=2$.
4f) Same question as 4 e , but for first-order logic with equality.
5a) Explain in a few words how to formally prove $F \not \models G$ for given first-order formulas F and G.
5b) Same question for $F \models G$.
5c) F is $\forall x p(a, x) \wedge \exists y \neg q(y)$ and G is $\exists v \exists w \neg q(w) \wedge p(v, a)$. Do we have $F \models G$? Prove it.
5d) F is $\forall x \exists y p(x, y)$ and G is $\exists y \forall x p(x, y)$. Do we have $F \models G$? Prove it.
6) Consider the following Prolog program and its well-known behaviour:
animals([dog,lion,elephant]).
bigger(lion, cat).
faster(lion, cat).
better(X,Y):- animals(L), member(X,L), bigger(X,Y), faster(X,Y).
?- better (U,V).
U = lion
$\mathrm{V}=\mathrm{cat}$
In Prolog, a list like [dog, lion, elephant] is in fact represented as a term f(dog,f(lion,f(elephant,emptylist))).
Therefore, we assume that the program also contains the standard clauses for member like this:

```
member( E, f(E,_) ).
```

member ($\mathrm{E}, \mathrm{f}(\mathrm{Z}, \mathrm{L})$):- member (E, L).

Express the program as a set of first-order clauses P and prove that $\exists u \exists v \operatorname{better}(u, v)$ is a logical consequence of P. Which values did the variables u and v get (by unification) in your proof? Only write the steps and values. No explanations.

