Lógica en la Informática / Logic in Computer Science June 17th, 2019. Time: 2h30min. No books or lecture notes.

Note on evaluation: eval(propositional logic) $=\max \{\operatorname{eval}($ Problems $1,2,3)$, eval(partial exam) $\}$. $\operatorname{eval}($ first-order logic $)=\operatorname{eval}($ Problems $4,5,6)$.

1) Let F and G be arbitrary propositional formulas. Prove your answers using only the definitions of propositional logic.
A) Is it true that if $F \models G$ and $F \models \neg G$ then F is unsatisfiable?
B) Is it true that if F is unsatisfiable then $(G \vee F) \rightarrow G$ is a tautology?

Abstract

Answer: A). yes. By contradiction. Assume F satisfiable. Then, there exists an I such that $I \models F$ exists I such that $I \models G$ and $I \models \neg G$ exists I such that $\operatorname{eval}_{I}(G)=1$ and $\operatorname{eval}_{I}(\neg G)=1$ exists I such that $e v a l_{I}(G)=1$ and $1-e v a l_{I}(G)=1$ exists I such that $\operatorname{eval}_{I}(G)=1$ and $\operatorname{eval}_{I}(G)=0$ by definition of satisfiable, which, since $F \models G$ and $F \models \neg G$, implies which by definition of $=$ implies which by definition of $\operatorname{eval}_{I}(\neg)$ implies which by definition of $e v a l_{I}$ implies which is a contradiction.

For B), also yes: $(G \vee F) \rightarrow G$ is a tautology iff by definition of tautology for all $I, e v a l_{I}((G \vee F) \rightarrow G)=1$ iff for all $I, e v a l_{I}(\neg(G \vee F) \vee G)=1 \mathrm{iff}$ for all $I, \max \left(\operatorname{eval}_{I}(\neg(G \vee F)), \operatorname{eval}_{I}(G)\right)=1$ iff for all $I, \max \left(1-\operatorname{eval}_{I}(G \vee F), \operatorname{eval}_{I}(G)\right)=1$ iff for all $I, \max \left(1-\max \left(\operatorname{eval}_{I}(G), e v a l_{I}(F)\right), \operatorname{eval}_{I}(G)\right)=1$ iff for all $I, \max \left(1-\max \left(e v a l_{I}(G), 0\right), e v a l_{I}(G)\right)=1$ iff

2) Using the Tseitin transformation, we can transform an arbitrary propositional formula F into a set of clauses $T(F)$ (a CNF with auxiliary variables) that is equisatisfiable: F is SAT iff $T(F)$ is SAT. Moreover, the size of $T(F)$ is linear in the size of F.
2A) Assuming $P \neq N P$, is there any transformation T^{\prime} into an equisatisfiable linear-size DNF? If yes, which one? If not, why?

Answer: No (unless $P=N P$). If such a similar transformation existed, then we could solve an NP-complete problem (is F SAT?) by transforming F in linear time into the DNF $T^{\prime}(F)$, and then deciding whether the DNF $T^{\prime}(F)$ is satisfiable (which, as we know, can be done in linear time for DNFs).

2B) Is there any similar transformation T^{\prime} into a linear-size DNF, such that F is a tautology iff $T^{\prime}(F)$ is a tautology? If yes, which one? If not, why?

Answer: Yes. F is a tautology iff $\neg F$ is unsatisfiable iff the Tseitin transformation $T(\neg F)$ is unsatisfiable iff $\neg T(\neg F)$ is a tautology. And indeed $\neg T(\neg F)$ can be easily transformed into a DNF: $T(\neg F)$ is a conjunction of claues $C_{1} \wedge \ldots \wedge C_{n}$. Its negation $\neg\left(C_{1} \wedge \ldots \wedge C_{n}\right)$ is equivalent to $\neg C_{1} \vee \ldots \vee \neg C_{n}$, and each $\neg C_{i}$ is of the form $\neg\left(l_{1} \vee \ldots \vee l_{m}\right)$ which is equivalent to $\neg l_{1} \wedge \ldots \wedge \neg l_{m}$. Note that, unlike what happened in the previous case, here we transform an NP-complete problem into another NP-complete problem.
3) A pseudo-Boolean constraint has the form $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq k$ (or the same with \geq), where the coefficients a_{i} and the k are natural numbers and the x_{i} are propositional variables. Which clauses are needed to encode the pseudo-Boolean constraint $2 x+3 y+4 z+6 u+8 v \leq 10$ into SAT, if no auxiliary
variables are used? Which clauses are needed in general, with no auxiliary variables, for a constraint $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq k ?$

Answer: To encode $2 x+3 y+4 z+6 u+8 v \leq 10$, for every (minimal) subset of variables such that the sum of its coefficients is more than 10 , we forbid that all of them are true. In this case, it suffices to have five clauses: $\quad \neg v \vee \neg y, \quad \neg v \vee \neg z, \quad \neg v \vee \neg u, \quad \neg u \vee \neg z \vee \neg y, \quad \neg u \vee \neg z \vee \neg x \quad$ and $\quad \neg u \vee \neg y \vee \neg x$.

Note that "minimal" here means that, for example, the clause $\neg v \vee \neg y \vee \neg x$ is not needed because it is subsumed by the stronger clause $\neg v \vee \neg y$.

In general, given a constraint $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq k$, we need one clause $\neg x_{i_{1}} \vee \ldots \vee \neg x_{i_{k}}$ for each subset $S=\left\{i_{1} \ldots i_{k}\right\}$ of $\{1 \ldots n\}$ such that $a_{i_{1}}+\cdots+a_{i_{k}}>k$, and such that moreover S is minimal $\left(a_{i_{1}}+\cdots+a_{i_{k}}-a_{i_{j}} \leq k\right.$ for every j with $\left.1 \leq j \leq k\right)$.
4) Formalize and prove by resolution that sentence D is a logical consequence of the other three. Use (among others) a binary predicate symbol $\operatorname{OwnsCar}(x, y)$ meaning " x owns the car y ".
A : Paul McCartney is rich.
B : All cars with diesel engines smell badly.
C : Rich people's cars never smell badly.
D : Paul McCartney owns no diesel car.

Answer: We prove that $A \wedge B \wedge C \wedge \neg D$ is unsatisfiable.
A: \quad IsRich (paul)
$B: \quad \forall x \operatorname{Diesel}(x) \rightarrow \operatorname{Smells}(x)$
$C: \quad \forall x \quad \forall y((O w n s C a r(x, y) \wedge \operatorname{IsRich}(x)) \rightarrow \neg \operatorname{Smells}(y))$
$\neg D: \quad \exists x$ OwnsCar $($ paul,$x) \wedge \operatorname{Diesel}(x)$
In clausal form:
A: IsRich (paul)
$B: \quad \neg \operatorname{Diesel}(x) \vee \operatorname{Smells}(x)$
$C: \quad \neg$ OwnsCar $(x, y) \vee \neg \operatorname{IsRich}(x)) \vee \neg \operatorname{Smells}(y)$
$\neg D_{1}$: OwnsCar (paul, c_{x})
$\neg D_{2}: \quad \operatorname{Diesel}\left(c_{x}\right)$
Resolution:
6: \quad Smells $\left(c_{x}\right)$
7: $\left.\quad \neg \operatorname{OwnsCar}\left(x, c_{x}\right) \vee \neg \operatorname{IsRich}(x)\right)$
8: $\quad \neg$ OwnsCar $\left(\right.$ paul,$\left.c_{x}\right)$
9 : empty clause
$\left(\right.$ from $\neg D_{2}$ and B, where $\sigma=\left\{x=c_{x}\right\}$)
(from C and 6 , where $\sigma=\left\{y=c_{x}\right\}$)
(from A and 7 , where $\sigma=\{x=$ paul $\}$)
(from $\neg D_{1}$ and 8).

5A) Consider a binary function symbol s and the following first-order interpretations I and I^{\prime} :
I : where D_{I} is the set of natural numbers and where $s_{I}(n, m)=n+m$.
I^{\prime} : where $D_{I^{\prime}}$ is the set of integer numbers and where $s_{I^{\prime}}(n, m)=n+m$.
Write the simplest possible formula F in first-order logic with equality using only the function symbol s and the equality predicate $=$ (no other symbols), such that F is true in one of the interpretations and false in the other one. Do not give any explanations.

Answer: $F: \quad \forall x \forall y \exists z s(x, z)=y$ (that is, z, the difference $y-x$, is defined for all x, y)
Note: Of course it makes no sense to write anything like $\forall x \exists y s(x, y)=0$, because 0 is not a symbol of the syntax of F; it is a domain element.

5B) Consider binary function symbols s and p and the first-order interpretations I and I^{\prime} where D_{I} is the set of real numbers and I^{\prime} where $D_{I^{\prime}}$ is the set of complex numbers and where in both cases, s is interpreted as the sum (as before) and p is interpreted as the product. Same question as 5A: complete the formula F below, using only symbols s and $p: F: \quad \exists y \exists z((\forall x p(x, y)=\ldots) \wedge p(z, z)=s(\ldots))$

Answer: We express the existence of the square root z of a negative number, which does not hold in the real numbers, using the part $\exists z p(z, z)=s(\ldots)$. We make $s(\ldots)$ negative using $s(y, y)$ and expressing that y is -1 using the part $\exists y(\forall x p(x, y)=\ldots)$: make $x y=2 x y+x$, which implies $-(x y)=x$. Writing $x y=2 x y+x$ as $p(x, y)=s(s(p(x, y), p(x, y)), x)$, we get:
$F: \quad \exists y \exists z((\forall x p(x, y)=s(s(p(x, y), p(x, y)), x)) \wedge p(z, z)=s(y, y))$
Another answer: We force $y=1$ and then $z^{2}=y+2 z^{2}$, which implies $z^{2}=-y$.
$F: \quad \exists y \exists z((\forall x p(x, y)=x) \wedge p(z, z)=s(y, s(p(z, z), p(z, z))))$

6A) Let F be the formula $\forall x p(c, x) \wedge \exists y(q(y) \vee \neg p(y, y))$. Let G be the formula $\exists z(p(z, c) \vee q(z))$. Do we have $F \models G$? Prove it.

Answer: Yes. We prove $F \wedge \neg G$ insat by resolution. F gives two clauses:
$F_{1}: p(c, x)$ and
$F_{2}: q\left(c_{y}\right) \vee \neg p\left(c_{y}, c_{y}\right)$.
The formula $\neg G$ is $\neg \exists z(p(z, c) \vee q(z))$, which becomes $\forall z \neg p(z, c) \wedge \neg q(z)$, giving two clauses:
$G_{1}: \neg p(z, c)$ and
$G_{2}: \neg q(z)$.
By resolution between F_{1} and G_{1}, where $\sigma=\{z=c, x=c\}$, we get the empty clause.

6B) Let F be the formula $\forall x(p(x, x) \wedge \neg p(x, f(x)) \wedge \neg p(x, g(x)) \wedge \neg p(f(x), g(x)))$.
Is F satisfiable? If so, give a model with the smallest possible sized domain. If not, prove unsatisfiability.

Answer: Yes.
$D_{I}=\{0,1,2\}$
$p_{I}(n, m)=" n=m "$
$f(n)=(n+1) \bmod 3$
$g(n)=(n+2) \bmod 3$

