Lógica en la Informática / Logic in Computer Science

Friday November 24, 2017

Permutation B. Time: 1h20min. No books, lecture notes or formula sheets allowed.

1) Below F, G, H denote arbitrary propositional formulas. Mark with an X the boxes of the true statements (give no explanations).

1.	If $F \wedge G \not\models H$ then $F \wedge G \wedge H$ is unsatisfiable.	\Box False
2.	If F es a tautology, then for every G we have $G \models F$.	□ True
3.	If F is unsatisfiable then $\neg F$ is a tautology.	□ True
4.	If $F \wedge G \models \neg H$ then $F \wedge G \wedge H$ is unsatisfiable.	□ True
5.	If $F \lor G \models H$ then $F \land \neg H$ is unsatisfiable.	□ True
6.	The formula $p \lor p$ is a logical consequence of $(p \lor q \lor r) \land (\neg q \lor r) \land (\neg r)$.	□ True
7.	If F is unsatisfiable, then for every G we have $G \models F$.	\Box False
8.	It can happen that $F \models G$ and $F \models \neg G$.	□ True
9.	The formula $(p \lor q) \land (\neg p \lor q) \land (\neg p \lor \neg q) \land (\neg q \lor p)$ is unsatisfiable.	□ True
10.	If F is a tautology, then for every G we have $F \models G$.	\Box False
11.	If F is unsatisfiable then $\neg F \models F$.	\Box False
12.	F is satisfiable if, and only if, all logical consequences of F are satisfiable formulas.	□ True

2) Let C_1 and C_2 be propositional clauses, and let D be the conclusion by resolution of C_1 and C_2 . 2a) Is D a logical consequence of $C_1 \wedge C_2$? Prove it formally, using only the definitions of propositional logic.

Answer:

[remember: Resolution is a deduction rule where from two clauses of the form $p \vee C$ and $\neg p \vee D$ (the premises), the new clause $C \vee D$ (the conclusion) is obtained. Here p is a predicate symbol, and C and D are (possibly empty) clauses. The closure under resolution Res(S) contains all clauses that can be obtained from S by zero or more resolution steps; formally, it is the union, for i in $0..\infty$, of all S_i where $S_0 = S$ and $S_{i+1} = S_i \cup Res_1(S_i)$, where $Res_1(S_i)$ is the set of clauses that can be obtained by one step of resolution with premises in S_i .]

It is true that $(p \vee C'_1) \wedge (\neg p \vee C'_2) \models C'_1 \vee C'_2$. By definition of logical consequence, we have to prove that for all I, if $I \models (p \vee C'_1) \wedge (\neg p \vee C'_2)$ then $I \models C'_1 \vee C'_2$.

We prove it by case analysis. Take an arbitrary I. Assume $I \models (p \lor C'_1) \land (\neg p \lor C'_2)$. Case A): I(p) = 1. $I \models (p \lor C'_1) \land (\neg p \lor C'_2)$ implies, by definition of satisfaction, that $eval_I((p \lor C'_1) \land (\neg p \lor C'_2)) = 1$ which implies, by definition of evaluation of \wedge , that $min(eval_I(p \lor C'_1), eval_I(\neg p \lor C'_2)) = 1$ which implies, by definition of *min*, that $eval_I(\neg p \lor C'_2) = 1$ which implies, by definition of evaluation of \vee , that $max(eval_I(\neg p), eval_I(C'_2)) = 1$ which implies, by definition of evaluation of \neg , that $max(1 - eval_I(p), eval_I(C'_2)) = 1$ which implies, by definition of $eval_I(p)$, that $max(1 - I(p), eval_I(C'_2)) = 1$ which implies, since I(p) = 1, that $max(0, eval_I(C'_2)) = 1$ which implies $eval_I(C'_2) = 1$ which implies

 $max(eval_I(C'_1), eval_I(C'_2)) = 1$ which implies, $eval_I(C'_1 \lor C'_2) = 1$ which implies, $I \models C'_1 \lor C'_2$.

Case B): I(p) = 0.

The proof is analogous to Case A, with the difference that now from $min(eval_I(p \lor C'_1), eval_I(\neg p \lor C'_2)) = 1$ we obtain $eval_I(p \lor C'_1) = 1$ and hence (since I(p) = 0) $eval_I(C'_1) = 1$ which implies $eval_I(C'_1 \lor C'_2) = 1$ and hence $I \models C'_1 \lor C'_2$.

2b) Let S be a set of propositional clauses and let Res(S) be its closure under resolution. Is it true that $S \equiv Res(S)$? Very briefly explain why.

Answer: Yes. We have $Res(S) \models S$ (all models of Res(S) are models of S) because $Res(S) \supseteq S$. We also have $S \models Res(S)$. Let I be a model of S. Res(S) is obtained from S by finitely many times adding to the set a new clause that (as we have seen in 2a) is a logical consequence of two clauses we already have. So each time we add a new clause $C \lor D$ to a set of the form $Set \cup \{ p \lor C \neg p \lor D \}$, we will have $I \models Set \cup \{ p \lor C \neg p \lor D \}$ and then also $I \models Set \cup \{ p \lor C \neg p \lor D \}$.

3) Every propositional formula F over n variables can also expressed by a Boolean circuit with n inputs and one output. In fact, sometimes the circuit can be much smaller than F because each subformula only needs to be represented once. For example, if F is

 $x_1 \wedge (x_3 \wedge x_4 \vee x_3 \wedge x_4) \vee x_2 \wedge (x_3 \wedge x_4 \vee x_3 \wedge x_4),$

a circuit C for F with only five gates exists. Representing the output of each logical gate as a new auxiliary variable a_i and using a_0 as the output of C, we can write C as:

a0 = or(a1,a2)	a1 = and(x1,a3)	a3 = or(a4,a4)
	a2 = and(x2,a3)	a4 = and(x3, x4)

Explain very briefly how you would use a standard SAT solver for CNFs to efficiently determine whether two circuits C_1 and C_2 , represented like this, are logically equivalent. Note: assume different names $b_0, b_1, b_2 \ldots$ are used for the auxiliary variables of C_2 .

Answer: We can apply the Tseitin transformation directly to each sub-circuit: each gate already has its auxiliary variable. Each gate $a_i = and(x, y)$, generates three clauses: $\neg a_i \lor x$, $\neg a_i \lor y$, and $a_i \lor \neg x \lor \neg y$, and each gate $a_i = or(x, y)$ another three: $a_i \lor \neg x$, $a_i \lor \neg y$, and $\neg a_i \lor x \lor y$. Negations can also be handled as usual.

Let S_1 and S_2 be the resulting sets of clauses for the gates of C_1 and C_2 , respectively. Then we have:

 $C_1 \equiv C_2$ (both circuits have the same models) iff

there is no model of $S_1 \cup S_2$ such that the root variables a_0 and b_0 get different values iff

on (CNF) input $S_1 \cup S_2 \cup \{ \neg a_0 \lor \neg b_0, a_0 \lor b_0 \}$, the SAT solver returns unsatisfiable.

Note: if we first transform the circuits (directed acyclic graphs) into formulas (trees) and then apply Tseitin, the CNF can become much larger, due to multiple copies of sub-circuits.