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Permutation B. Time: 1h20min. No books, lecture notes or formula sheets allowed.

1) Below F,G,H denote arbitrary propositional formulas. Mark with an X the boxes of the true
statements (give no explanations).

1. If F ∧G 6|= H then F ∧G ∧H is unsatisfiable. ✷ False

2. If F es a tautology, then for every G we have G |= F . ✷ True

3. If F is unsatisfiable then ¬F is a tautology. ✷ True

4. If F ∧G |= ¬H then F ∧G ∧H is unsatisfiable. ✷ True

5. If F ∨G |= H then F ∧ ¬H is unsatisfiable. ✷ True

6. The formula p ∨ p is a logical consequence of (p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬r). ✷ True

7. If F is unsatisfiable, then for every G we have G |= F . ✷ False

8. It can happen that F |= G and F |= ¬G. ✷ True

9. The formula (p ∨ q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q) ∧ (¬q ∨ p) is unsatisfiable. ✷ True

10. If F is a tautology, then for every G we have F |= G. ✷ False

11. If F is unsatisfiable then ¬F |= F . ✷ False

12. F is satisfiable if, and only if, all logical consequences of F are satisfiable formulas. ✷ True

2) Let C1 and C2 be propositional clauses, and let D be the conclusion by resolution of C1 and C2.

2a) Is D a logical consequence of C1∧C2? Prove it formally, using only the definitions of propositional
logic.

Answer:
[ remember: Resolution is a deduction rule where from two clauses of the form p∨C and ¬p∨D (the
premises), the new clause C ∨ D (the conclusion) is obtained. Here p is a predicate symbol, and C

and D are (possibly empty) clauses. The closure under resolution Res(S) contains all clauses that can
be obtained from S by zero or more resolution steps; formally, it is the union, for i in 0..∞, of all Si

where S0 = S and Si+1 = Si ∪Res1(Si), where Res1(Si) is the set of clauses that can be obtained by
one step of resolution with premises in Si. ]

It is true that (p ∨ C ′
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2. By definition of logical consequence, we have to
prove that for all I, if I |= (p ∨ C ′
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2.
We prove it by case analysis. Take an arbitary I. Assume I |= (p ∨ C ′

1) ∧ (¬p ∨ C ′

2).
Case A): I(p) = 1.
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Case B): I(p) = 0.
The proof is analogous to Case A, with the difference that now from min(evalI(p∨C ′

1), evalI (¬p∨
C ′

2)) = 1 we obtain evalI(p ∨ C ′

1) = 1 and hence (since I(p) = 0) evalI(C
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2b) Let S be a set of propositional clauses and let Res(S) be its closure under resolution. Is it true
that S ≡ Res(S)? Very briefly explain why.

Answer: Yes. We have Res(S) |= S (all models of Res(S) are models of S) because Res(S) ⊇ S.
We also have S |= Res(S). Let I be a model of S. Res(S) is obtained from S by finitely many times
adding to the set a new clause that (as we have seen in 2a) is a logical consequence of two clauses we
already have. So each time we add a new clause C ∨D to a set of the form Set ∪ { p ∨ C ¬p ∨D},
we will have I |= Set ∪ { p ∨ C ¬p ∨D} and then also I |= Set ∪ { p ∨C ¬p ∨D C ∨D}.

3) Every propositional formula F over n variables can also expressed by a Boolean circuit with
n inputs and one output. In fact, sometimes the circuit can be much smaller than F because each
subformula only needs to be represented once. For example, if F is

x1 ∧ (x3 ∧ x4 ∨ x3 ∧ x4) ∨ x2 ∧ (x3 ∧ x4 ∨ x3 ∧ x4),
a circuit C for F with only five gates exists. Representing the output of each logical gate as a new
auxiliary variable ai and using a0 as the output of C, we can write C as:

a0 = or(a1,a2) a1 = and(x1,a3) a3 = or(a4,a4)

a2 = and(x2,a3) a4 = and(x3,x4)

Explain very briefly how you would use a standard SAT solver for CNFs to efficiently determine
whether two circuits C1 and C2, represented like this, are logically equivalent. Note: assume different
names b0, b1, b2 . . . are used for the auxiliary variables of C2.

Answer: We can apply the Tseitin transformation directly to each sub-circuit: each gate already
has its auxiliary variable. Each gate ai = and(x, y), generates three clauses: ¬ai ∨ x, ¬ai ∨ y, and
ai ∨¬x∨¬y, and each gate ai = or(x, y) another three: ai ∨¬x, ai ∨¬y, and ¬ai ∨ x∨ y. Negations
can also be handled as usual.

Let S1 and S2 be the resulting sets of clauses for the gates of C1 and C2, respectively. Then we
have:

C1 ≡ C2 (both circuits have the same models) iff
there is no model of S1 ∪ S2 such that the root variables a0 and b0 get different values iff
on (CNF) input S1 ∪ S2 ∪ { ¬a0 ∨ ¬b0, a0 ∨ b0 }, the SAT solver returns unsatisfiable.

Note: if we first transform the circuits (directed acyclic graphs) into formulas (trees) and then apply
Tseitin, the CNF can become much larger, due to multiple copies of sub-circuits.


