Lógica en la Informática / Logic in Computer Science

Friday November 24, 2017

Permutation B. Time: 1h20min. No books, lecture notes or formula sheets allowed.

1) Below F, G, H denote arbitrary propositional formulas. Mark with an X the boxes of the true statements (give no explanations).
1. If $F \wedge G \not \vDash H$ then $F \wedge G \wedge H$ is unsatisfiable.False
2. If F es a tautology, then for every G we have $G \models F$.True
3. If F is unsatisfiable then $\neg F$ is a tautology.True
4. If $F \wedge G \models \neg H$ then $F \wedge G \wedge H$ is unsatisfiable.True
5. If $F \vee G \models H$ then $F \wedge \neg H$ is unsatisfiable.True
6. The formula $p \vee p$ is a logical consequence of $(p \vee q \vee r) \wedge(\neg q \vee r) \wedge(\neg r)$.True
7. If F is unsatisfiable, then for every G we have $G \models F$.False
8. It can happen that $F \models G$ and $F \models \neg G$.
9. The formula $(p \vee q) \wedge(\neg p \vee q) \wedge(\neg p \vee \neg q) \wedge(\neg q \vee p)$ is unsatisfiable.True
10. If F is a tautology, then for every G we have $F \models G$.False
11. If F is unsatisfiable then $\neg F \models F$.False
12. F is satisfiable if, and only if, all logical consequences of F are satisfiable formulas.True
2) Let C_{1} and C_{2} be propositional clauses, and let D be the conclusion by resolution of C_{1} and C_{2}.

2a) Is D a logical consequence of $C_{1} \wedge C_{2}$? Prove it formally, using only the definitions of propositional logic.

[^0][remember: Resolution is a deduction rule where from two clauses of the form $p \vee C$ and $\neg p \vee D$ (the premises), the new clause $C \vee D$ (the conclusion) is obtained. Here p is a predicate symbol, and C and D are (possibly empty) clauses. The closure under resolution $\operatorname{Res}(S)$ contains all clauses that can be obtained from S by zero or more resolution steps; formally, it is the union, for i in $0 . . \infty$, of all S_{i} where $S_{0}=S$ and $S_{i+1}=S_{i} \cup \operatorname{Res}_{1}\left(S_{i}\right)$, where $\operatorname{Res}_{1}\left(S_{i}\right)$ is the set of clauses that can be obtained by

It is true that $\left(p \vee C_{1}^{\prime}\right) \wedge\left(\neg p \vee C_{2}^{\prime}\right) \vDash C_{1}^{\prime} \vee C_{2}^{\prime}$. By definition of logical consequence, we have to
by definition of satisfaction, that by definition of evaluation of \wedge, that by definition of \min, that by definition of evaluation of \vee, that by definition of evaluation of \neg, that by definition of $e v a l_{I}(p)$, that since $I(p)=1$, that
$\max \left(e v a l_{I}\left(C_{1}^{\prime}\right), \operatorname{eval}_{I}\left(C_{2}^{\prime}\right)\right)=1$ which implies, $\operatorname{eval}_{I}\left(C_{1}^{\prime} \vee C_{2}^{\prime}\right)=1$ which implies, $I \models C_{1}^{\prime} \vee C_{2}^{\prime}$.

Case B): $I(p)=0$.
The proof is analogous to Case A, with the difference that now from $\min \left(\operatorname{eval}_{I}\left(p \vee C_{1}^{\prime}\right), \operatorname{eval}_{I}(\neg p \vee\right.$ $\left.\left.C_{2}^{\prime}\right)\right)=1$ we obtain $\operatorname{eval}_{I}\left(p \vee C_{1}^{\prime}\right)=1$ and hence (since $I(p)=0$) $\operatorname{eval}_{I}\left(C_{1}^{\prime}\right)=1$ which implies $\operatorname{eval}_{I}\left(C_{1}^{\prime} \vee C_{2}^{\prime}\right)=1$ and hence $I \models C_{1}^{\prime} \vee C_{2}^{\prime}$.

2b) Let S be a set of propositional clauses and let $\operatorname{Res}(S)$ be its closure under resolution. Is it true that $S \equiv \operatorname{Res}(S)$? Very briefly explain why.

Answer: Yes. We have $\operatorname{Res}(S) \models S$ (all models of $\operatorname{Res}(S)$ are models of S) because $\operatorname{Res}(S) \supseteq S$. We also have $S \models \operatorname{Res}(S)$. Let I be a model of S. $\operatorname{Res}(S)$ is obtained from S by finitely many times adding to the set a new clause that (as we have seen in 2a) is a logical consequence of two clauses we already have. So each time we add a new clause $C \vee D$ to a set of the form Set $\cup\{p \vee C \neg p \vee D\}$, we will have $I \models S e t \cup\{p \vee C \neg p \vee D\}$ and then also $I \models S e t \cup\{p \vee C \neg p \vee D C \vee D\}$.
3) Every propositional formula F over n variables can also expressed by a Boolean circuit with n inputs and one output. In fact, sometimes the circuit can be much smaller than F because each subformula only needs to be represented once. For example, if F is

$$
x_{1} \wedge\left(x_{3} \wedge x_{4} \vee x_{3} \wedge x_{4}\right) \quad \vee \quad x_{2} \wedge\left(x_{3} \wedge x_{4} \vee x_{3} \wedge x_{4}\right)
$$

a circuit C for F with only five gates exists. Representing the output of each logical gate as a new auxiliary variable a_{i} and using a_{0} as the output of C, we can write C as:

```
a0 = or (a1,a2) a1 = and(x1,a3) a3 = or (a4,a4)
a2 = and(x2,a3) a4 = and (x3,x4)
```

Explain very briefly how you would use a standard SAT solver for CNFs to efficiently determine whether two circuits C_{1} and C_{2}, represented like this, are logically equivalent. Note: assume different names $b_{0}, b_{1}, b_{2} \ldots$ are used for the auxiliary variables of C_{2}.

Answer: We can apply the Tseitin transformation directly to each sub-circuit: each gate already has its auxiliary variable. Each gate $a_{i}=\operatorname{and}(x, y)$, generates three clauses: $\neg a_{i} \vee x, \neg a_{i} \vee y$, and $a_{i} \vee \neg x \vee \neg y$, and each gate $a_{i}=o r(x, y)$ another three: $a_{i} \vee \neg x, a_{i} \vee \neg y$, and $\neg a_{i} \vee x \vee y$. Negations can also be handled as usual.

Let S_{1} and S_{2} be the resulting sets of clauses for the gates of C_{1} and C_{2}, respectively. Then we have:
$C_{1} \equiv C_{2}$ (both circuits have the same models) iff
there is no model of $S_{1} \cup S_{2}$ such that the root variables a_{0} and b_{0} get different values iff on (CNF) input $S_{1} \cup S_{2} \cup\left\{\neg a_{0} \vee \neg b_{0}, a_{0} \vee b_{0}\right\}$, the SAT solver returns unsatisfiable.
Note: if we first transform the circuits (directed acyclic graphs) into formulas (trees) and then apply Tseitin, the CNF can become much larger, due to multiple copies of sub-circuits.

[^0]: Answer: one step of resolution with premises in S_{i}.] prove that for all I, if $I \models\left(p \vee C_{1}^{\prime}\right) \wedge\left(\neg p \vee C_{2}^{\prime}\right)$ then $I \models C_{1}^{\prime} \vee C_{2}^{\prime}$.

 We prove it by case analysis. Take an arbitary I. Assume $I \models\left(p \vee C_{1}^{\prime}\right) \wedge\left(\neg p \vee C_{2}^{\prime}\right)$. Case A): $I(p)=1$.
 $I \models\left(p \vee C_{1}^{\prime}\right) \wedge\left(\neg p \vee C_{2}^{\prime}\right)$ implies,
 $\operatorname{eval}_{I}\left(\left(p \vee C_{1}^{\prime}\right) \wedge\left(\neg p \vee C_{2}^{\prime}\right)\right)=1$ which implies,
 $\min \left(e v a l_{I}\left(p \vee C_{1}^{\prime}\right), \operatorname{eval}_{I}\left(\neg p \vee C_{2}^{\prime}\right)\right)=1$ which implies,
 $e v a l_{I}\left(\neg p \vee C_{2}^{\prime}\right)=1$ which implies,
 $\max \left(e v a l_{I}(\neg p)\right.$, $\left.\operatorname{eval}_{I}\left(C_{2}^{\prime}\right)\right)=1$ which implies,
 $\max \left(1-\operatorname{eval}_{I}(p), \operatorname{eval}_{I}\left(C_{2}^{\prime}\right)\right)=1$ which implies,
 $\max \left(1-I(p)\right.$, eval $\left._{I}\left(C_{2}^{\prime}\right)\right)=1$ which implies,
 $\max \left(0, e v a l_{I}\left(C_{2}^{\prime}\right)\right)=1$ which implies
 $\operatorname{eval}_{I}\left(C_{2}^{\prime}\right)=1$ which implies

