Lógica en la Informática / Logic in Computer Science January 20th, 2020. Time: 2 h 30 min . No books or lecture notes.

Note on evaluation: eval(propositional logic) $=\max \{\operatorname{eval}($ Problems $1,2,3)$, eval(partial exam) $\}$. $\operatorname{eval}($ first-order logic $)=\operatorname{eval}($ Problems 4,5,6 $)$.

1) Let F and G be arbitrary propositional formulas. Prove your answers using only the definitions of propositional logic.
A) Is it true that if F is satisfiable then $(F \wedge G) \vee F$ is also satisfiable?
B) Is it true that if an interpretation I is not a model of F then I is not a model of $(F \wedge G) \vee F$?
C) Is there any interpretation I such that $I \models(F \wedge G) \vee F$ and $I \not \models F$?

2a) Let F be the propositional formula $(\neg p \wedge(p \vee(q \wedge r))) \vee(q \wedge r)$. Write the smallest and simplest possible clause set S that is logically equivalent to F.
2b) Write the clauses needed for encoding into CNF without auxiliary variables the formula $a \leftrightarrow(x \vee y)$. Do the same for the formula $a \leftrightarrow(x \wedge y)$.
2c) Write the Tseitin transformation of the formula F of 2 a) in terms of \leftrightarrow formulas like the ones given in 2 b) (no need to write the final clauses). Use auxiliary variables a_{0} (for the root), a_{1}, a_{2}, \ldots
3) We want to do model counting, that is, given a set of clauses S built over a set of n propositional symbols \mathcal{P}, determine how many different models $I: \mathcal{P} \rightarrow\{0,1\}$ it has. Explain very briefly:
3a) How would you do this without a SAT solver? How would you do this using a SAT solver? In which cases using the SAT solver is likely to be faster?
$\mathbf{3 b}$) What is the computational cost of this in the worst case (polynomial?, exponential?)?
3c) Answer the same questions for the case where S is Horn.

4a) Consider binary function symbols s and p and the first-order interpretations I and I^{\prime} where D_{I} is the set of rational numbers and I^{\prime} where $D_{I^{\prime}}$ is the set of real numbers and where in both cases, s is interpreted as the sum and p is interpreted as the product. Write the simplest possible formula F in first-order logic with equality using only the function symbols s and p (no other symbols) and the equality predicate $=$, such that F is true in one of the interpretations and false in the other one. Do not give any explanations. Hint: the square root of 2 is irrational.
4b) Consider the two first-order formulas:
F is $\forall z(\exists x p(x, z) \wedge \exists y p(z, y))$
G is $\exists x \exists y \forall z(p(x, z) \wedge p(z, y))$
Do we have $F \models G$? Prove it.
5) For each one of the following statements, indicate if it is true or false in propositional logic and also for first-order logic. Give no explanations why. Example: A: True in Prop Logic. True in F-O Logic. Below always F and G are formulas and I is an interpretation.
A) There are infinitely many different formulas, even if there is only one predicate symbol.
B) $F \models G$ iff $F \wedge \neg G$ is unsatisfiable.
C) F is a tautology iff $\neg F$ is unsatisfiable
D) Given I and F, it is decidable in linear time whether $I \models F$.
E) Given I and F, it is decidable whether $I \models F$.
F) Given F, it is decidable in polynomial time whether F is satisfiable.
G) Given F, it is decidable whether F is satisfiable.
6) Formalize the following five sentences by five first-order formulas $F_{1}, F_{2}, F_{3}, F_{4}, F_{5}$.

Is $F_{1} \wedge F_{2} \wedge F_{3} \wedge F_{4} \wedge F_{5}$ satisfiable? Prove it.
F_{1} : If a person has a bad health he/she cannot run fast.
F_{2} : Friends of sports professionals do not smoke.
F_{3} : Piqué is a sports professional and Shakira is his friend.
F_{4} : Smokers have a bad health.
F_{5} : Shakira cannot run fast.

