Lógica en la Informática / Logic in Computer Science January 20th, 2020. Time: 2h30min. No books or lecture notes.

Note on evaluation: eval(propositional logic) = $\max\{ \text{ eval(Problems 1,2,3), eval(partial exam) } \}$. eval(first-order logic) = eval(Problems 4,5,6).

- 1) Let F and G be arbitrary propositional formulas. Prove your answers using only the definitions of propositional logic.
 - A) Is it true that if F is satisfiable then $(F \wedge G) \vee F$ is also satisfiable?
 - B) Is it true that if an interpretation I is not a model of F then I is not a model of $(F \wedge G) \vee F$?
 - C) Is there any interpretation I such that $I \models (F \land G) \lor F$ and $I \not\models F$?
- **2a)** Let F be the propositional formula $(\neg p \land (p \lor (q \land r))) \lor (q \land r)$. Write the smallest and simplest possible clause set S that is logically equivalent to F.
- **2b)** Write the clauses needed for encoding into CNF without auxiliary variables the formula $a \leftrightarrow (x \lor y)$. Do the same for the formula $a \leftrightarrow (x \land y)$.
- **2c)** Write the Tseitin transformation of the formula F of 2a) in terms of \leftrightarrow formulas like the ones given in 2b) (no need to write the final clauses). Use auxiliary variables a_0 (for the root), a_1, a_2, \ldots
- 3) We want to do model counting, that is, given a set of clauses S built over a set of n propositional symbols \mathcal{P} , determine how many different models $I: \mathcal{P} \to \{0,1\}$ it has. Explain very briefly:
- **3a)** How would you do this without a SAT solver? How would you do this using a SAT solver? In which cases using the SAT solver is likely to be faster?
- **3b)** What is the computational cost of this in the worst case (polynomial?, exponential?)?
- **3c)** Answer the same questions for the case where S is Horn.
- 4a) Consider binary function symbols s and p and the first-order interpretations I and I' where D_I is the set of rational numbers and I' where $D_{I'}$ is the set of real numbers and where in both cases, s is interpreted as the sum and p is interpreted as the product. Write the simplest possible formula F in first-order logic with equality using only the function symbols s and p (no other symbols) and the equality predicate =, such that F is true in one of the interpretations and false in the other one. Do not give any explanations. Hint: the square root of 2 is irrational.
- 4b) Consider the two first-order formulas:

```
F 	ext{ is } \forall z (\exists x \, p(x, z) \land \exists y \, p(z, y))

G 	ext{ is } \exists x \, \exists y \, \forall z \, (p(x, z) \land p(z, y))
```

Do we have $F \models G$? Prove it.

- 5) For each one of the following statements, indicate if it is true or false in propositional logic and also for first-order logic. Give no explanations why. Example: A: True in Prop Logic. True in F-O Logic. Below always F and G are formulas and I is an interpretation.
- A) There are infinitely many different formulas, even if there is only one predicate symbol.
- **B)** $F \models G$ iff $F \land \neg G$ is unsatisfiable.
- C) F is a tautology iff $\neg F$ is unsatisfiable
- **D)** Given I and F, it is decidable in linear time whether $I \models F$.
- **E)** Given I and F, it is decidable whether $I \models F$.
- F) Given F, it is decidable in polynomial time whether F is satisfiable.
- **G)** Given F, it is decidable whether F is satisfiable.
- 6) Formalize the following five sentences by five first-order formulas F_1, F_2, F_3, F_4, F_5 .

Is $F_1 \wedge F_2 \wedge F_3 \wedge F_4 \wedge F_5$ satisfiable? Prove it.

 F_1 : If a person has a bad health he/she cannot run fast.

 F_2 : Friends of sports professionals do not smoke.

 F_3 : Piqué is a sports professional and Shakira is his friend.

 F_4 : Smokers have a bad health.

 F_5 : Shakira cannot run fast.