## Lógica en la Informática / Logic in Computer Science January 16th, 2019. Time: 2 h 30 min . No books or lecture notes.

Note on evaluation: eval(propositional logic) $=\max \{\operatorname{eval}($ Problems $1,2,3,4)$, eval(partial exam) $\}$. $\operatorname{eval}($ first-order logic $)=\operatorname{eval}($ Problems 5,6,7).

1a) Let $F$ and $G$ be propositional tautologies. Is it true that, for every propositional formula $H$, we have $H \models F \wedge G$ ? Prove it using only the definitions of propositional logic.

1b) Is it true that the formula $p$ is a logical consequence of the set $S$ of three clauses
$\{\quad p \vee q \vee r, \quad \neg q \vee r, \quad \neg r$ \}? Prove it in the simplest and shortest way you know. You may use any well-known property of propositional logic, even without proving that property.
2) Let $\operatorname{Res}(S)$ denote the closure under resolution of a set $S$ of propositional two-literal clauses. Which three properties of $\operatorname{Res}(S)$ do you find essential to prove that 2-SAT is polynomial? Answer in three lines like this:

1. ...
2. ...
3. ...
3) Given a propositional CNF, that is, a set of propositional clauses $S$, explain in two lines your best method to decide wether $S$ is a tautology.
4) Write the clauses needed for expressing $x_{1}+\ldots+x_{4} \leq 1$ using the ladder encoding. (Please write them in a clean and ordered way; give no explanations.)
5) Let $F$ be the folowing formula of first-order logic with equality: $\forall x \forall y \forall z f(x, f(y, z))=f(f(x, y), z) \wedge \forall x f(e, x)=x \wedge \quad \forall x f(i(x), x)=e \wedge \quad \forall x \forall y f(x, y)=f(y, x)$. Any model of $F$ is called a conmutative group (where $e$ is the neutral element for $f$ and $i$ its inverse).
5a) Give a well-known example of a conmutative group with infinite domain. Please write it as clean and simple as possible; give no explanations.

5b) Give an as simple as possible example of a conmutative group with a finite domain. Please write it as clean and simple as possible; give no explanations.
6) Formalize and prove by resolution that sentence $D$ is a logical consequence of the other three:
$A$ : Everybody loves his father and his mother.
$B$ : John is stupìd.
$C$ : When someone is stupid, at least one of his parents is stupid too.
$D$ : There are stupid people that are loved by someone.
Mandatory: use function symbols $f(x)$ and $m(x)$ meaning "father of $x$ " and "mother of $x$ ".
7) Consider a 1-ary function symbol $f$ and a 3 -ary predicate symbol $P$ and a first-order interpretation $I$ with a finite domain $D_{I}=\{a, b\}$ and the (finite) definition of the functions $f_{I}$ and $P_{I}$. Answer in a few words: Is it decidable whether $I$ satisfies a given formula $F$ (over $f$ and $P$ )? If so, what do you think is the complexity of this? (hint: any relationship with 3-SAT?).

