Lógica en la Informática / Logic in Computer Science

Friday November 24, 2017

Permutation B. Time: 1h20min. No books, lecture notes or formula sheets allowed.

1) Below F, G, H denote arbitrary propositional formulas. Mark with an X the boxes of the true statements (give no explanations).

	1. If $F \wedge G \not\models H$ then $F \wedge G \wedge H$ is unsatisfiable.	
	2. If F es a tautology, then for every G we have $G \models F$.	
	3. If F is unsatisfiable then $\neg F$ is a tautology.	
	4. If $F \wedge G \models \neg H$ then $F \wedge G \wedge H$ is unsatisfiable.	
	5. If $F \lor G \models H$ then $F \land \neg H$ is unsatisfiable.	
	6. The formula $p \lor p$ is a logical consequence of $(p \lor q \lor r) \land (\neg q \lor r) \land (\neg r)$.	
,	7. If F is unsatisfiable, then for every G we have $G \models F$.	
	8. It can happen that $F \models G$ and $F \models \neg G$.	
9	9. The formula $(p \lor q) \land (\neg p \lor q) \land (\neg p \lor \neg q) \land (\neg q \lor p)$ is unsatisfiable.	
1	0. If F is a tautology, then for every G we have $F \models G$.	
1	1. If F is unsatisfiable then $\neg F \models F$.	
1	2. F is satisfiable if, and only if, all logical consequences of F are satisfiable formulas.	

2) Let C_1 and C_2 be propositional clauses, and let D be the conclusion by resolution of C_1 and C_2 . 2a) Is D a logical consequence of $C_1 \wedge C_2$? Prove it formally, using only the definitions of propositional logic.

2b) Let S be a set of propositional clauses and let Res(S) be its closure under resolution. Is it true that $S \equiv Res(S)$? Very briefly explain why.

3) Every propositional formula F over n variables can also expressed by a Boolean circuit with n inputs and one output. In fact, sometimes the circuit can be much smaller than F because each subformula only needs to be represented once. For example, if F is

 $x_1 \wedge (x_3 \wedge x_4 \vee x_3 \wedge x_4) \vee x_2 \wedge (x_3 \wedge x_4 \vee x_3 \wedge x_4),$ a circuit *C* for *F* with only five gates exists. Representing the output of each logical gate as a new auxiliary variable a_i and using a_0 as the output of *C*, we can write *C* as:

a0 = or(a1,a2)	a1 = and(x1,a3)	a3 = or(a4,a4)
	a2 = and(x2,a3)	a4 = and(x3, x4)

Explain very briefly how you would use a standard SAT solver for CNFs to efficiently determine whether two circuits C_1 and C_2 , represented like this, are logically equivalent. Note: assume different names $b_0, b_1, b_2 \ldots$ are used for the auxiliary variables of C_2 .