Lógica en la Informática / Logic in Computer Science

Friday November 24, 2017
Permutation B. Time: 1h20min. No books, lecture notes or formula sheets allowed.

1) Below F, G, H denote arbitrary propositional formulas. Mark with an X the boxes of the true statements (give no explanations).
1. If $F \wedge G \not \models H$ then $F \wedge G \wedge H$ is unsatisfiable.
2. If F es a tautology, then for every G we have $G \models F$.
3. If F is unsatisfiable then $\neg F$ is a tautology.
4. If $F \wedge G \models \neg H$ then $F \wedge G \wedge H$ is unsatisfiable.
5. If $F \vee G \models H$ then $F \wedge \neg H$ is unsatisfiable.
6. The formula $p \vee p$ is a logical consequence of $(p \vee q \vee r) \wedge(\neg q \vee r) \wedge(\neg r)$.
7. If F is unsatisfiable, then for every G we have $G \models F$.
8. It can happen that $F \models G$ and $F \models \neg G$.
9. The formula $(p \vee q) \wedge(\neg p \vee q) \wedge(\neg p \vee \neg q) \wedge(\neg q \vee p)$ is unsatisfiable.
10. If F is a tautology, then for every G we have $F \models G$.
11. If F is unsatisfiable then $\neg F \models F$.
12. F is satisfiable if, and only if, all logical consequences of F are satisfiable formulas.
2) Let C_{1} and C_{2} be propositional clauses, and let D be the conclusion by resolution of C_{1} and C_{2}.

2a) Is D a logical consequence of $C_{1} \wedge C_{2}$? Prove it formally, using only the definitions of propositional logic.

2b) Let S be a set of propositional clauses and let $\operatorname{Res}(S)$ be its closure under resolution. Is it true that $S \equiv \operatorname{Res}(S)$? Very briefly explain why.
3) Every propositional formula F over n variables can also expressed by a Boolean circuit with n inputs and one output. In fact, sometimes the circuit can be much smaller than F because each subformula only needs to be represented once. For example, if F is

$$
x_{1} \wedge\left(x_{3} \wedge x_{4} \vee x_{3} \wedge x_{4}\right) \quad \vee \quad x_{2} \wedge\left(x_{3} \wedge x_{4} \vee x_{3} \wedge x_{4}\right)
$$

a circuit C for F with only five gates exists. Representing the output of each logical gate as a new auxiliary variable a_{i} and using a_{0} as the output of C, we can write C as:

$$
\begin{array}{lll}
\mathrm{a} 0=\operatorname{or}(\mathrm{a} 1, \mathrm{a} 2) & \mathrm{a} 1=\operatorname{and}(\mathrm{x} 1, \mathrm{a} 3) & \mathrm{a} 3=\operatorname{or}(\mathrm{a} 4, \mathrm{a} 4) \\
\mathrm{a} 2=\operatorname{and}(\mathrm{x} 2, \mathrm{a} 3) & \mathrm{a} 4=\operatorname{and}(\mathrm{x} 3, \mathrm{x} 4)
\end{array}
$$

Explain very briefly how you would use a standard SAT solver for CNFs to efficiently determine whether two circuits C_{1} and C_{2}, represented like this, are logically equivalent. Note: assume different names $b_{0}, b_{1}, b_{2} \ldots$ are used for the auxiliary variables of C_{2}.

