Légica en la Informatica / Logic in Computer Science
Tuesday April 22nd, 2014

Time: 1h55min. No books, lecture notes or formula sheets allowed.

1A) Let F and G be two propositional formulas such that F' = G. Is it true that F' = F' A G7 Prove
it using only the formal definitions of propositional logic.

Solution: It is true. The proof has two parts:

A) Let I be any model of F. We prove that then I = FAG. If I = F and F | G, we have
I = G (by definition of F' = G). Then eval;(F) = eval;(G) = 1. And then I = F A G because
evalf(F' A\ G) = min(eval;(F),eval;(G)) = min(1,1) = 1.

B) Let I be any model of F'AG. We prove that then I = F. I = FAG implies eval;(F) = eval;(G) =
min(evalr(F'), eval;(G)), which implies that eval;(F') = eval;(G) = 1 and therefore I = F.

1B) Given two propositional formulas F' and G, is it true that either ' = G or F' = =G? Prove it
using only the formal definitions of propositional logic.

Solution: It is false. A counterexample is as follows: let F' be the formula p and G be the formula gq.
Then F' [~ G: for example, if we define I s.t. I(p) =1 and I(q) = 0 then we have I = F but I [~ G.
And F [~ —G: now, if we define I(p) =1 and I(¢) = 1 then again I = F but I = -G.

2) If S is a set of clauses, let us denote by UP(S) the set of all literals that can be obtained from
S by zero or more steps of unit propagation. Imagine you have a C4++ program P that does unit
propagation in linear time, taking as input any set of clauses S and returning UP(S). Explain your
answers to the following questions:

2A): Is it true that [€ UP(S) implies S |= 17

Solution: Yes, if I is a model of given a clause [VI V...V [, and unit clauses —ly, ... =i, then also
IE1 since 1 =eval;(IVIV...VI,) = max{eval;(l),evali(ly),...eval;(l,)} = mazx{eval;(1),0...0}
which implies eval;(l) = 1.

2B): Let [be any literal. Is it true that S = [implies [€ UP(S5)?

Solution: No. Counterexample: if S = {pV ¢, —pV g}, then S = ¢ but ¢ ¢ UP(S).

2C): Can you use your program P to decide 2-SAT in polynomial time?
Solution: No. The program by itself cannot.

2D): Can you use your program P to decide Horn-SAT in polynomial time?

Solution: Yes, because a set of Horn clauses is satisfiable if and only if the output UP(S) of P
contains any pair of contradictory literals | and —l (see also exercise 25 of “3. Deduccion en Logica
Proposicional”):

If for some [, we have UP(S) D {l,—l} then by 2A), we have S =l and S |= =l and hence S = [Al
so S is unsatisfiable.

For the reverse implication: if there is no [such that UP(S) D {l,—l}, then S is satisfiable, since it
has the model I defined as I(l) = 1 iff [is a unit clause in UP(S). This is true because Horn clauses
have at most one positive literal, so there are only two possible kinds of clauses:

A) (one positive literal): for evey clause [V C in S, if I &£ C then by unit propagation we have
leUP(S)and I =1V C. and

B) (no positive literals): for every clause clause C' of the form =iy V...V =i, in S, if I [~ C then
I = 1; for all i, so [; € UP(S). But then by unit propagation also —I; would belong to UP(S).

3A) Write all clauses needed to express the cardinality constraint z; + - -+ + x¢ < 4 without using
any auxiliary variables (do not write any unnecessary clauses).

Solution: Of all subsets of 5 at least one is false:
=1V xoe V xg VvV oxy Vs =1V xoe V oxg VvV oxy V xg =1V xo V oxg VvV oxs V xg
=1V xeVoxyVoxsV oz —x1VxgVoxgVoxsV xg —xoVxsgVoxyVxsV Zg

3B) Write all clauses needed to express the Pseudo-Boolean constraint 1x + 3y + 4z + 5u + 8v > 14
without using any auxiliary variables (do not write any unnecessary clauses). Hint: write one clause
for each (minimal) subset S of the variables such that not all variables of S can be false.

Solution: v, uV z, uVy, zVyVez.

4) We want to use a SAT solver to do factoring: given a natural number n, find two natural numbers
p and ¢ with p > 2 and ¢ > 2, such that n = p-q. Of course, the SAT solver will return “unsatisfiable”
if and only if n is a prime number. (Curiosity: if we could factor large n, we could break many
cryptographic systems!).

4A) Let a and b be bits (propositional variables). Write the seven clauses meeded to express that
the two-bit number cd is the result of the sum a+b, that is, ¢ is the “carry” (¢ = a A b) and d means
“exactly one of a,b is 17 (exclusive or: ¢ = xor(a,b)).

Solution:
-cVa -cVb cV-aV b
-dV —aV —b -dVaVb dVaV —b dV -aVb

4B) Here we will factor numbers n of four bits ngngnj ng only, so n < 15. This means that, since
we want to find p > 2 and ¢ > 2, we know that p < 8 and ¢ < 8 so for p and for ¢ three bits each are
sufficient, which we will call ps p1 po and ¢2 g1 ¢o. Graphically, we can express the multiplication as we
would do it “by hand”:

P2 P1 Do

a2 41 Qo

T2 X1 Zo

y2 y1 Yy O

Z9 21 20 0 0

0 nyg mMo2 N1 nNo

using 9 intermediate auxiliary variables (called z,y, z, with subindices), where in fact we already know
that zo must be 0. Using these auxiliary variables, and a few other auxiliary variables expressing the
“carries” (please call them c,), write here the expressions, like ny = xor(z1,yo), cardinality constraints,
etc., needed to ensure that indeed n = p - ¢q. After that, write the concrete clauses needed for each
expression.

Solution: Since xg = ng, we can directly define ng = and(qo,po). Every and of this kind generates
three clauses as we wrote above for ¢ = a A b. We also have: x1 = and(qo,p1), x2 = and(qo,p2),
Yo = and(q1,po), Y1 = and(qi,p1), y2 = and(qi,p2), 20 = and(g2,po), 21 = and(ge,p1).
Since zo must be 0, we need the clause —qy V —1ps.

We need two carry bits: ¢ = and(z1,y0), ¢1 = atleasttwo(cy,x2,y1,20), and also one clause
—cp V gy V —yp V —zp) (otherwise the sum is too large) and the bits for the result: n; = zor(xy,yo)
(four clauses as above), ny = odd(co, x2,y1,20), and mn3 = or(ci,y2,21). This last sum must give
no carry: atmostone(ci,y2,21). To encode this into CNF:

¢1 = atleasttwo(cy, 2, Y1, z0) can be expressed, e.g., making ¢; be the second output bit of a 4-bit
sorting network, or with clauses: ¢y V -xo Ve, —cV-—y1 Ve, ... —y1V-ozgVe, and
coVxaVy1 Ve, cVaaVz,V-oe, coVy1Vz,V-oe, xaVyVz,V-cer.

ng = odd(cg, x2,y1, 20) can be expressed by all 16 cases:

—cgV xoeV oy V-oz,Vong, eV oxeVoypVz,Vng, .o gV VyrVz,Vng.

ng = or(ci,y2, 21) can be expressed similarly to a binary or, with clauses:

ng V —cy n3 V —ys ng VvV -zq —n3zV eV oy Voozy.

