
Lógica en la Informática / Logic in Computer Science

Tuesday April 22nd, 2014

Time: 1h55min. No books, lecture notes or formula sheets allowed.

1A) Let F and G be two propositional formulas such that F |= G. Is it true that F ≡ F ∧G? Prove
it using only the formal definitions of propositional logic.

Solution: It is true. The proof has two parts:
A) Let I be any model of F . We prove that then I |= F ∧ G. If I |= F and F |= G, we have
I |= G (by definition of F |= G). Then evalI(F) = evalI(G) = 1. And then I |= F ∧ G because
evalI(F ∧G) = min(evalI(F), evalI (G)) = min(1, 1) = 1.

B) Let I be any model of F ∧G. We prove that then I |= F . I |= F ∧G implies evalI(F) = evalI(G) =
min(evalI(F), evalI (G)), which implies that evalI(F) = evalI(G) = 1 and therefore I |= F .

1B) Given two propositional formulas F and G, is it true that either F |= G or F |= ¬G? Prove it
using only the formal definitions of propositional logic.

Solution: It is false. A counterexample is as follows: let F be the formula p and G be the formula q.
Then F 6|= G: for example, if we define I s.t. I(p) = 1 and I(q) = 0 then we have I |= F but I 6|= G.
And F 6|= ¬G: now, if we define I(p) = 1 and I(q) = 1 then again I |= F but I 6|= ¬G.

2) If S is a set of clauses, let us denote by UP (S) the set of all literals that can be obtained from
S by zero or more steps of unit propagation. Imagine you have a C++ program P that does unit
propagation in linear time, taking as input any set of clauses S and returning UP (S). Explain your
answers to the following questions:
2A): Is it true that l ∈ UP (S) implies S |= l?
Solution: Yes, if I is a model of given a clause l ∨ l1 ∨ . . .∨ ln and unit clauses ¬l1, . . . ¬ln then also
I |= l, since 1 = evalI(l∨ l1∨ . . .∨ ln) = max{evalI(l), evalI (l1), . . . evalI(ln)} = max{evalI(l), 0 . . . 0}
which implies evalI(l) = 1.

2B): Let l be any literal. Is it true that S |= l implies l ∈ UP (S)?
Solution: No. Counterexample: if S = {p ∨ q, ¬p ∨ q}, then S |= q but q /∈ UP (S).

2C): Can you use your program P to decide 2-SAT in polynomial time?
Solution: No. The program by itself cannot.

2D): Can you use your program P to decide Horn-SAT in polynomial time?
Solution: Yes, because a set of Horn clauses is satisfiable if and only if the output UP (S) of P
contains any pair of contradictory literals l and ¬l (see also exercise 25 of “3. Deduccion en Logica
Proposicional”):

If for some l, we have UP (S) ⊇ {l,¬l} then by 2A), we have S |= l and S |= ¬l and hence S |= l∧¬l
so S is unsatisfiable.

For the reverse implication: if there is no l such that UP (S) ⊇ {l,¬l}, then S is satisfiable, since it
has the model I defined as I(l) = 1 iff l is a unit clause in UP (S). This is true because Horn clauses
have at most one positive literal, so there are only two possible kinds of clauses:

A) (one positive literal): for evey clause l ∨ C in S, if I 6|= C then by unit propagation we have
l ∈ UP (S) and I |= l ∨ C. and

B) (no positive literals): for every clause clause C of the form ¬l1 ∨ . . . ∨ ¬ln in S, if I 6|= C then
I |= li for all i, so li ∈ UP (S). But then by unit propagation also ¬li would belong to UP (S).

3A) Write all clauses needed to express the cardinality constraint x1 + · · · + x6 ≤ 4 without using
any auxiliary variables (do not write any unnecessary clauses).

Solution: Of all subsets of 5 at least one is false:
¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5 ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x6 ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x5 ∨ ¬x6
¬x1∨¬x2∨¬x4∨¬x5∨¬x6 ¬x1∨¬x3∨¬x4∨¬x5∨¬x6 ¬x2∨¬x3∨¬x4∨¬x5∨¬x6

3B) Write all clauses needed to express the Pseudo-Boolean constraint 1x+ 3y + 4z + 5u+ 8v ≥ 14
without using any auxiliary variables (do not write any unnecessary clauses). Hint: write one clause
for each (minimal) subset S of the variables such that not all variables of S can be false.
Solution: v, u ∨ z, u ∨ y, z ∨ y ∨ x.

4) We want to use a SAT solver to do factoring : given a natural number n, find two natural numbers
p and q with p ≥ 2 and q ≥ 2, such that n = p · q. Of course, the SAT solver will return “unsatisfiable”
if and only if n is a prime number. (Curiosity: if we could factor large n, we could break many
cryptographic systems!).

4A) Let a and b be bits (propositional variables). Write the seven clauses meeded to express that
the two-bit number c d is the result of the sum a+b, that is, c is the “carry” (c = a ∧ b) and d means
“exactly one of a, b is 1” (exclusive or: c = xor(a, b)).

Solution:
¬c ∨ a ¬c ∨ b c ∨ ¬a ∨ ¬b
¬d ∨ ¬a ∨ ¬b ¬d ∨ a ∨ b d ∨ a ∨ ¬b d ∨ ¬a ∨ b

4B) Here we will factor numbers n of four bits n3 n2 n1 n0 only, so n ≤ 15. This means that, since
we want to find p ≥ 2 and q ≥ 2, we know that p < 8 and q < 8 so for p and for q three bits each are
sufficient, which we will call p2 p1 p0 and q2 q1 q0. Graphically, we can express the multiplication as we
would do it “by hand”:

p2 p1 p0
q2 q1 q0
x2 x1 x0

y2 y1 y0 0
z2 z1 z0 0 0
0 n3 n2 n1 n0

using 9 intermediate auxiliary variables (called x, y, z, with subindices), where in fact we already know
that z2 must be 0. Using these auxiliary variables, and a few other auxiliary variables expressing the
“carries” (please call them c∗), write here the expressions, like n1 = xor(x1, y0), cardinality constraints,
etc., needed to ensure that indeed n = p · q. After that, write the concrete clauses needed for each
expression.

Solution: Since x0 = n0, we can directly define n0 = and(q0, p0). Every and of this kind generates
three clauses as we wrote above for c = a ∧ b. We also have: x1 = and(q0, p1), x2 = and(q0, p2),
y0 = and(q1, p0), y1 = and(q1, p1), y2 = and(q1, p2), z0 = and(q2, p0), z1 = and(q2, p1).
Since z2 must be 0, we need the clause ¬q2 ∨ ¬p2.

We need two carry bits: c0 = and(x1, y0), c1 = atleasttwo(c0, x2, y1, z0), and also one clause
¬c0 ∨ ¬x2 ∨ ¬y1 ∨ ¬z0) (otherwise the sum is too large) and the bits for the result: n1 = xor(x1, y0)
(four clauses as above), n2 = odd(c0, x2, y1, z0), and n3 = or(c1, y2, z1). This last sum must give
no carry: atmostone(c1, y2, z1). To encode this into CNF:

c1 = atleasttwo(c0, x2, y1, z0) can be expressed, e.g., making c1 be the second output bit of a 4-bit
sorting network, or with clauses: ¬c0 ∨ ¬x2 ∨ c1, ¬c0 ∨ ¬y1 ∨ c1, ... ¬y1 ∨ ¬z0 ∨ c1, and
c0 ∨ x2 ∨ y1 ∨ ¬c1, c0 ∨ x2 ∨ zo ∨ ¬c1, c0 ∨ y1 ∨ zo ∨ ¬c1, x2 ∨ y1 ∨ zo ∨ ¬c1.

n2 = odd(c0, x2, y1, z0) can be expressed by all 16 cases:
¬c0 ∨ ¬x2 ∨ ¬y1 ∨ ¬zo ∨ ¬n2, ¬c0 ∨ ¬x2 ∨ ¬y1 ∨ zo ∨ n2, ... c0 ∨ x2 ∨ y1 ∨ zo ∨ ¬n2.

n3 = or(c1, y2, z1) can be expressed similarly to a binary or, with clauses:
n3 ∨ ¬c1 n3 ∨ ¬y2 n3 ∨ ¬z1 ¬n3 ∨ ¬c1 ∨ ¬y2 ∨ ¬z1.

