Lógica en la Informática / Logic in Computer Science

Tuesday April 22nd, 2014

Time: 1h55min. No books, lecture notes or formula sheets allowed.

1A) Let F and G be two propositional formulas such that $F \models G$. Is it true that $F \equiv F \wedge G$? Prove it using only the formal definitions of propositional logic.

Solution: It is true. The proof has two parts:
A) Let I be any model of F. We prove that then $I \models F \wedge G$. If $I \models F$ and $F \models G$, we have $I \models G$ (by definition of $F \models G$). Then $\operatorname{eval}_{I}(F)=\operatorname{eval}_{I}(G)=1$. And then $I \models F \wedge G$ because $\operatorname{eval}_{I}(F \wedge G)=\min \left(e v a l_{I}(F), \operatorname{eval}_{I}(G)\right)=\min (1,1)=1$.
B) Let I be any model of $F \wedge G$. We prove that then $I \models F . I \models F \wedge G$ implies $\operatorname{eval}_{I}(F)=e v a l_{I}(G)=$ $\min \left(e v a l_{I}(F), \operatorname{eval}_{I}(G)\right)$, which implies that $\operatorname{eval}_{I}(F)=\operatorname{eval}_{I}(G)=1$ and therefore $I \models F$.

1B) Given two propositional formulas F and G, is it true that either $F \models G$ or $F \models \neg G$? Prove it using only the formal definitions of propositional logic.

Solution: It is false. A counterexample is as follows: let F be the formula p and G be the formula q. Then $F \not \vDash G$: for example, if we define I s.t. $I(p)=1$ and $I(q)=0$ then we have $I \models F$ but $I \not \vDash G$. And $F \not \models \neg G$: now, if we define $I(p)=1$ and $I(q)=1$ then again $I \models F$ but $I \not \models \neg G$.
2) If S is a set of clauses, let us denote by $U P(S)$ the set of all literals that can be obtained from S by zero or more steps of unit propagation. Imagine you have a $\mathrm{C}++$ program P that does unit propagation in linear time, taking as input any set of clauses S and returning $U P(S)$. Explain your answers to the following questions:
2A): Is it true that $l \in U P(S)$ implies $S \models l$?
Solution: Yes, if I is a model of given a clause $l \vee l_{1} \vee \ldots \vee l_{n}$ and unit clauses $\neg l_{1}, \ldots \neg l_{n}$ then also $I \models l$, since $1=\operatorname{eval}_{I}\left(l \vee l_{1} \vee \ldots \vee l_{n}\right)=\max \left\{\operatorname{eval}_{I}(l), \operatorname{eval}_{I}\left(l_{1}\right), \ldots \operatorname{eval}_{I}\left(l_{n}\right)\right\}=\max \left\{\operatorname{eval}_{I}(l), 0 \ldots 0\right\}$ which implies $e v a l_{I}(l)=1$.
2B): Let l be any literal. Is it true that $S \models l$ implies $l \in U P(S)$?
Solution: No. Counterexample: if $S=\{p \vee q, \neg p \vee q\}$, then $S \models q$ but $q \notin U P(S)$.
2C): Can you use your program P to decide 2-SAT in polynomial time?
Solution: No. The program by itself cannot.
2D): Can you use your program P to decide Horn-SAT in polynomial time?
Solution: Yes, because a set of Horn clauses is satisfiable if and only if the output $U P(S)$ of P contains any pair of contradictory literals l and $\neg l$ (see also exercise 25 of "3. Deduccion en Logica Proposicional"):

If for some l, we have $U P(S) \supseteq\{l, \neg l\}$ then by 2 A), we have $S \models l$ and $S \models \neg l$ and hence $S \models l \wedge \neg l$ so S is unsatisfiable.

For the reverse implication: if there is no l such that $U P(S) \supseteq\{l, \neg l\}$, then S is satisfiable, since it has the model I defined as $I(l)=1$ iff l is a unit clause in $U P(S)$. This is true because Horn clauses have at most one positive literal, so there are only two possible kinds of clauses:
A) (one positive literal): for evey clause $l \vee C$ in S, if $I \not \vDash C$ then by unit propagation we have $l \in U P(S)$ and $I \models l \vee C$. and
B) (no positive literals): for every clause clause C of the form $\neg l_{1} \vee \ldots \vee \neg l_{n}$ in S, if $I \not \vDash C$ then $I \models l_{i}$ for all i, so $l_{i} \in U P(S)$. But then by unit propagation also $\neg l_{i}$ would belong to $U P(S)$.

3A) Write all clauses needed to express the cardinality constraint $x_{1}+\cdots+x_{6} \leq 4$ without using any auxiliary variables (do not write any unnecessary clauses).

Solution: Of all subsets of 5 at least one is false:

$$
\begin{array}{lcr}
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee \neg x_{4} \vee \neg x_{5} & \neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee \neg x_{4} \vee \neg x_{6} & \neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee \neg x_{5} \vee \neg x_{6} \\
\neg x_{1} \vee \neg x_{2} \vee \neg x_{4} \vee \neg x_{5} \vee \neg x_{6} & \neg x_{1} \vee \neg x_{3} \vee \neg x_{4} \vee \neg x_{5} \vee \neg x_{6} & \neg x_{2} \vee \neg x_{3} \vee \neg x_{4} \vee \neg x_{5} \vee \neg x_{6}
\end{array}
$$

3B) Write all clauses needed to express the Pseudo-Boolean constraint $1 x+3 y+4 z+5 u+8 v \geq 14$ without using any auxiliary variables (do not write any unnecessary clauses). Hint: write one clause for each (minimal) subset S of the variables such that not all variables of S can be false.
Solution: $v, \quad u \vee z, \quad u \vee y, \quad z \vee y \vee x$.
4) We want to use a SAT solver to do factoring: given a natural number n, find two natural numbers p and q with $p \geq 2$ and $q \geq 2$, such that $n=p \cdot q$. Of course, the SAT solver will return "unsatisfiable" if and only if n is a prime number. (Curiosity: if we could factor large n, we could break many cryptographic systems!).

4A) Let a and b be bits (propositional variables). Write the seven clauses meeded to express that the two-bit number $c d$ is the result of the sum $a+b$, that is, c is the "carry" ($c=a \wedge b)$ and d means "exactly one of a, b is 1 " (exclusive or: $c=\operatorname{xor}(a, b)$).

Solution:

$$
\begin{aligned}
& \neg c \vee a \quad \neg c \vee b \quad c \vee \neg a \vee \neg b \\
& \neg d \vee \neg a \vee \neg b \quad \neg d \vee a \vee b \quad d \vee a \vee \neg b \quad d \vee \neg a \vee b
\end{aligned}
$$

4B) Here we will factor numbers n of four bits $n_{3} n_{2} n_{1} n_{0}$ only, so $n \leq 15$. This means that, since we want to find $p \geq 2$ and $q \geq 2$, we know that $p<8$ and $q<8$ so for p and for q three bits each are sufficient, which we will call $p_{2} p_{1} p_{0}$ and $q_{2} q_{1} q_{0}$. Graphically, we can express the multiplication as we would do it "by hand":

$$
\begin{array}{rrrrr}
& & p_{2} & p_{1} & p_{0} \\
& & q_{2} & q_{1} & q_{0} \\
\cline { 3 - 5 } & & x_{2} & x_{1} & x_{0} \\
& y_{2} & y_{1} & y_{0} & 0 \\
z_{2} & z_{1} & z_{0} & 0 & 0 \\
\hline 0 & n_{3} & n_{2} & n_{1} & n_{0}
\end{array}
$$

using 9 intermediate auxiliary variables (called x, y, z, with subindices), where in fact we already know that z_{2} must be 0 . Using these auxiliary variables, and a few other auxiliary variables expressing the "carries" (please call them c_{*}), write here the expressions, like $n_{1}=\operatorname{xor}\left(x_{1}, y_{0}\right)$, cardinality constraints, etc., needed to ensure that indeed $n=p \cdot q$. After that, write the concrete clauses needed for each expression.

Solution: Since $x_{0}=n_{0}$, we can directly define $n_{0}=\operatorname{and}\left(q_{0}, p_{0}\right)$. Every and of this kind generates three clauses as we wrote above for $c=a \wedge b$. We also have: $x_{1}=\operatorname{and}\left(q_{0}, p_{1}\right), \quad x_{2}=\operatorname{and}\left(q_{0}, p_{2}\right)$, $y_{0}=\operatorname{and}\left(q_{1}, p_{0}\right), \quad y_{1}=\operatorname{and}\left(q_{1}, p_{1}\right), \quad y_{2}=\operatorname{and}\left(q_{1}, p_{2}\right), \quad z_{0}=\operatorname{and}\left(q_{2}, p_{0}\right), \quad z_{1}=\operatorname{and}\left(q_{2}, p_{1}\right)$. Since z_{2} must be 0 , we need the clause $\neg q_{2} \vee \neg p_{2}$.

We need two carry bits: $c_{0}=\operatorname{and}\left(x_{1}, y_{0}\right), \quad c_{1}=\operatorname{atleasttwo}\left(c_{0}, x_{2}, y_{1}, z_{0}\right)$, and also one clause $\neg c_{0} \vee \neg x_{2} \vee \neg y_{1} \vee \neg z_{0}$) (otherwise the sum is too large) and the bits for the result: $n_{1}=x \operatorname{or}\left(x_{1}, y_{0}\right)$ (four clauses as above), $n_{2}=\operatorname{odd}\left(c_{0}, x_{2}, y_{1}, z_{0}\right)$, and $n_{3}=\operatorname{or}\left(c_{1}, y_{2}, z_{1}\right)$. This last sum must give no carry: atmostone $\left(c_{1}, y_{2}, z_{1}\right)$. To encode this into CNF:
$c_{1}=$ atleasttwo $\left(c_{0}, x_{2}, y_{1}, z_{0}\right)$ can be expressed, e.g., making c_{1} be the second output bit of a 4 -bit sorting network, or with clauses: $\neg c_{0} \vee \neg x_{2} \vee c_{1}, \quad \neg c_{0} \vee \neg y_{1} \vee c_{1}, \quad \ldots \quad \neg y_{1} \vee \neg z_{0} \vee c_{1}$, and $c_{0} \vee x_{2} \vee y_{1} \vee \neg c_{1}, \quad c_{0} \vee x_{2} \vee z_{o} \vee \neg c_{1}, \quad c_{0} \vee y_{1} \vee z_{o} \vee \neg c_{1}, \quad x_{2} \vee y_{1} \vee z_{o} \vee \neg c_{1}$.
$n_{2}=\operatorname{odd}\left(c_{0}, x_{2}, y_{1}, z_{0}\right)$ can be expressed by all 16 cases:
$\neg c_{0} \vee \neg x_{2} \vee \neg y_{1} \vee \neg z_{o} \vee \neg n_{2}, \quad \neg c_{0} \vee \neg x_{2} \vee \neg y_{1} \vee z_{o} \vee n_{2}, \quad \ldots \quad c_{0} \vee x_{2} \vee y_{1} \vee z_{o} \vee \neg n_{2}$.
$n_{3}=\operatorname{or}\left(c_{1}, y_{2}, z_{1}\right)$ can be expressed similarly to a binary or, with clauses:
$n_{3} \vee \neg c_{1} \quad n_{3} \vee \neg y_{2} \quad n_{3} \vee \neg z_{1} \quad \neg n_{3} \vee \neg c_{1} \vee \neg y_{2} \vee \neg z_{1}$.

