Lógica en la Informática / Logic in Computer Science

Tuesday April 22nd, 2014

Time: 1h55min. No books, lecture notes or formula sheets allowed.

1A) Let F and G be two propositional formulas such that $F \models G$. Is it true that $F \equiv F \land G$? Prove it using only the formal definitions of propositional logic.

Solution: It is true. The proof has two parts:

A) Let I be any model of F. We prove that then $I \models F \land G$. If $I \models F$ and $F \models G$, we have $I \models G$ (by definition of $F \models G$). Then $eval_I(F) = eval_I(G) = 1$. And then $I \models F \land G$ because $eval_I(F \land G) = min(eval_I(F), eval_I(G)) = min(1, 1) = 1$.

B) Let I be any model of $F \wedge G$. We prove that then $I \models F$. $I \models F \wedge G$ implies $eval_I(F) = eval_I(G) = min(eval_I(F), eval_I(G))$, which implies that $eval_I(F) = eval_I(G) = 1$ and therefore $I \models F$.

1B) Given two propositional formulas F and G, is it true that either $F \models G$ or $F \models \neg G$? Prove it using only the formal definitions of propositional logic.

Solution: It is false. A counterexample is as follows: let F be the formula p and G be the formula q. Then $F \not\models G$: for example, if we define I s.t. I(p) = 1 and I(q) = 0 then we have $I \models F$ but $I \not\models G$. And $F \not\models \neg G$: now, if we define I(p) = 1 and I(q) = 1 then again $I \models F$ but $I \not\models \neg G$.

2) If S is a set of clauses, let us denote by UP(S) the set of all literals that can be obtained from S by zero or more steps of unit propagation. Imagine you have a C++ program P that does unit propagation in linear time, taking as input any set of clauses S and returning UP(S). Explain your answers to the following questions:

2A): Is it true that $l \in UP(S)$ implies $S \models l$?

Solution: Yes, if *I* is a model of given a clause $l \vee l_1 \vee \ldots \vee l_n$ and unit clauses $\neg l_1, \ldots, \neg l_n$ then also $I \models l$, since $1 = eval_I(l \vee l_1 \vee \ldots \vee l_n) = max\{eval_I(l), eval_I(l_1), \ldots eval_I(l_n)\} = max\{eval_I(l), 0 \ldots 0\}$ which implies $eval_I(l) = 1$.

2B): Let l be any literal. Is it true that $S \models l$ implies $l \in UP(S)$?

Solution: No. Counterexample: if $S = \{p \lor q, \neg p \lor q\}$, then $S \models q$ but $q \notin UP(S)$.

2C): Can you use your program P to decide 2-SAT in polynomial time?

Solution: No. The program by itself cannot.

2D): Can you use your program P to decide Horn-SAT in polynomial time?

Solution: Yes, because a set of Horn clauses is satisfiable if and only if the output UP(S) of P contains any pair of contradictory literals l and $\neg l$ (see also exercise 25 of "3. Deduccion en Logica Proposicional"):

If for some l, we have $UP(S) \supseteq \{l, \neg l\}$ then by 2A), we have $S \models l$ and $S \models \neg l$ and hence $S \models l \land \neg l$ so S is unsatisfiable.

For the reverse implication: if there is no l such that $UP(S) \supseteq \{l, \neg l\}$, then S is satisfiable, since it has the model I defined as I(l) = 1 iff l is a unit clause in UP(S). This is true because Horn clauses have at most one positive literal, so there are only two possible kinds of clauses:

A) (one positive literal): for every clause $l \vee C$ in S, if $I \not\models C$ then by unit propagation we have $l \in UP(S)$ and $I \models l \vee C$. and

B) (no positive literals): for every clause clause C of the form $\neg l_1 \lor \ldots \lor \neg l_n$ in S, if $I \not\models C$ then $I \models l_i$ for all i, so $l_i \in UP(S)$. But then by unit propagation also $\neg l_i$ would belong to UP(S).

3A) Write all clauses needed to express the cardinality constraint $x_1 + \cdots + x_6 \leq 4$ without using any auxiliary variables (do not write any unnecessary clauses).

Solution: Of all subsets of 5 at least one is false:

3B) Write all clauses needed to express the Pseudo-Boolean constraint $1x + 3y + 4z + 5u + 8v \ge 14$ without using any auxiliary variables (do not write any unnecessary clauses). Hint: write one clause for each (minimal) subset S of the variables such that not all variables of S can be false. **Solution:** v, $u \lor z$, $u \lor y$, $z \lor y \lor x$.

4) We want to use a SAT solver to do *factoring*: given a natural number n, find two natural numbers p and q with $p \ge 2$ and $q \ge 2$, such that $n = p \cdot q$. Of course, the SAT solver will return "unsatisfiable" if and only if n is a prime number. (Curiosity: if we could factor large n, we could break many cryptographic systems!).

4A) Let a and b be bits (propositional variables). Write the seven clauses meeded to express that the two-bit number cd is the result of the sum a+b, that is, c is the "carry" ($c = a \land b$) and d means "exactly one of a, b is 1" (exclusive or: c = xor(a, b)).

Solution:

4B) Here we will factor numbers n of four bits $n_3 n_2 n_1 n_0$ only, so $n \leq 15$. This means that, since we want to find $p \geq 2$ and $q \geq 2$, we know that p < 8 and q < 8 so for p and for q three bits each are sufficient, which we will call $p_2 p_1 p_0$ and $q_2 q_1 q_0$. Graphically, we can express the multiplication as we would do it "by hand":

using 9 intermediate auxiliary variables (called x, y, z, with subindices), where in fact we already know that z_2 must be 0. Using these auxiliary variables, and a few other auxiliary variables expressing the "carries" (please call them c_*), write here the expressions, like $n_1 = xor(x_1, y_0)$, cardinality constraints, etc., needed to ensure that indeed $n = p \cdot q$. After that, write the concrete clauses needed for each expression.

Solution: Since $x_0 = n_0$, we can directly define $n_0 = and(q_0, p_0)$. Every and of this kind generates three clauses as we wrote above for $c = a \wedge b$. We also have: $x_1 = and(q_0, p_1)$, $x_2 = and(q_0, p_2)$, $y_0 = and(q_1, p_0)$, $y_1 = and(q_1, p_1)$, $y_2 = and(q_1, p_2)$, $z_0 = and(q_2, p_0)$, $z_1 = and(q_2, p_1)$. Since z_2 must be 0, we need the clause $\neg q_2 \vee \neg p_2$.

We need two carry bits: $c_0 = and(x_1, y_0)$, $c_1 = atleasttwo(c_0, x_2, y_1, z_0)$, and also one clause $\neg c_0 \lor \neg x_2 \lor \neg y_1 \lor \neg z_0$ (otherwise the sum is too large) and the bits for the result: $n_1 = xor(x_1, y_0)$ (four clauses as above), $n_2 = odd(c_0, x_2, y_1, z_0)$, and $n_3 = or(c_1, y_2, z_1)$. This last sum must give no carry: $atmostone(c_1, y_2, z_1)$. To encode this into CNF:

 $c_1 = atleasttwo(c_0, x_2, y_1, z_0) \text{ can be expressed, e.g., making } c_1 \text{ be the second output bit of a 4-bit sorting network, or with clauses: } \neg c_0 \lor \neg x_2 \lor c_1, \quad \neg c_0 \lor \neg y_1 \lor c_1, \quad \dots \quad \neg y_1 \lor \neg z_0 \lor c_1, \quad \text{and} \quad c_0 \lor x_2 \lor y_1 \lor \neg c_1, \quad c_0 \lor x_2 \lor z_o \lor \neg c_1, \quad c_0 \lor y_1 \lor z_o \lor \neg c_1, \quad x_2 \lor y_1 \lor z_o \lor \neg c_1.$

 $n_2 = odd(c_0, x_2, y_1, z_0)$ can be expressed by all 16 cases:

 $\neg c_0 \lor \neg x_2 \lor \neg y_1 \lor \neg z_o \lor \neg n_2, \quad \neg c_0 \lor \neg x_2 \lor \neg y_1 \lor z_o \lor n_2, \quad \dots \quad c_0 \lor x_2 \lor y_1 \lor z_o \lor \neg n_2.$

 $n_3 = or(c_1, y_2, z_1)$ can be expressed similarly to a binary or, with clauses:

 $n_3 \vee \neg c_1 \qquad n_3 \vee \neg y_2 \qquad n_3 \vee \neg z_1 \qquad \neg n_3 \vee \neg c_1 \vee \neg y_2 \vee \neg z_1.$