Lógica en la Informática / Logic in Computer Science

Tuesday April 30th, 2019
Time: 1 h 30 min . No books, lecture notes or formula sheets allowed.

1) (4 points)

1a) Let F, G, H be formulas. Is it true that if $F \vee G \models H$ then $F \wedge \neg H$ is unsatisfiable? Prove it using only the definition of propositional logic.
Answer: This is true. $F \vee G \models H$ implies (by def. of logical consequence) that for all I, if $I \models F \vee G$ then $I \models H$, which implies (by def. of \models) that
for all I, if $e v a l_{I}(F \vee G)=1$ then $\operatorname{eval}_{I}(H)=1$, which implies (by def of $e v a l_{I}(\vee)$) that
for all I, if $\max \left(\operatorname{eval}_{I}(F), \operatorname{eval}_{I}(G)\right)=1$ then $\operatorname{eval}_{I}(H)=1$, which implies (by def of max) that
for all I, if $\operatorname{eval}_{I}(F)=1$ then $\operatorname{eval}_{I}(H)=1$, which implies (by arithmetic) that
for all I, if $\operatorname{eval}_{I}(F)=1$ then $1-\operatorname{eval}_{I}(H)=0$, which implies (by def $\operatorname{eval}_{I}(\neg)$) that
for all I, if $\operatorname{eval}_{I}(F)=1$ then $\operatorname{eval}_{I}(\neg H)=0$, which implies (by def. of min) that for all $I, \min \left(e v a l_{I}(F), \operatorname{eval}_{I}(\neg H)\right)=0$, which implies (by def $\left.\operatorname{eval}_{I}(\wedge)\right)$ that for all $I, \operatorname{eval}_{I}(F \wedge \neg H)=0$, which implies (by def of \models) that
for all $I, I \not \vDash F \wedge \neg H$, which implies (by def of unsatisfiable) that $F \wedge \neg H$ is unsatisfiable.
1B) Let F and G be propositional formulas. Is it true that if $F \rightarrow G$ is satisfiable and F is satisfiable, then G is satisfiable? Prove it using only the definition of propositional logic.
Answer: This is false. Counterexample: $F=p$ and $G=p \wedge \neg p$. Then $F \rightarrow G$, which is $\neg F \vee G$, which is $\neg p \vee(p \wedge \neg p)$ is satisfiable: if we define I such that $I(p)=0$, then $I \models \neg p$ and hence $I \models \neg p \vee(p \wedge \neg p)$. Also F is satisfiable: if we define I such that $I(p)=1$, then $I \models p$. But G is not satisfiable: there is no I such that $I \models p \wedge \neg p$.
2) (2 points) Let \mathcal{P} be the set of four predicate symbols $\{p, q, r, s\}$.

2a) How many propositional formulas F built over \mathcal{P} exist?
Answer: infinitely many (including $p, p \vee p, p \vee p \vee p \ldots$).
2b) My friend John has a list $L=\left\{F_{1}, F_{2}, \ldots, F_{100000}\right\}$ of one hundred thousand formulas over $\{p, q, r, s\}$. He says that they are all logically non-equivalent, that is, $F_{i} \not \equiv F_{j}$ for all i, j with $1 \leq i<$ $j \leq 100000$. What is the most efficient way to check whether John is right for a given L ? Why? Your answer cannot be longer than 20 words.
Answer: Constant time. Just output: "no, John is not right". $F_{i} \not \equiv F_{j}$ means that F_{i} and F_{j} represent two different Boolean functions with 4 inputs, of which only $2^{\left(2^{4}\right)}=2^{16} \approx 64000$ exist.
3) (4 points) Let C be the atleast- 1 constraint $l_{1}+l_{2}+l_{3} \geq 1$, where l_{1}, l_{2}, l_{3} are literals, and let S be the set of five exactly- 1 constraints

$$
\left\{\quad l_{1}+a_{1}+a_{4}=1, \quad l_{2}+a_{2}+a_{4}=1, \quad l_{3}+a_{3}=1, \quad a_{1}+a_{2}+a_{5}=1, \quad a_{3}+a_{4}+a_{6}=1\right\}
$$

where $a_{1} \ldots a_{6}$ are distinct propositional symbols not occurring in C.
3A) Is it true that $S \models C$? Why? (answer in at most two lines).
Answer: Yes. Assume $S \not \vDash C$. Then $\exists I$ with $I \models S$ and $I \not \vDash C$, i.e., $\neg l_{1}, \neg l_{2}, \neg l_{3}$ true in I, implying a_{3} true in I by constraint $3, \neg a_{4}$ by $5, a_{1}$ and a_{2} by 1,2 , contradicting constraint 4, i.e., that $I \models S$.

3B) Is it true that any model I of C can be extended to a model I^{\prime} of S ?
Here, by "extending" I to I^{\prime} we mean that $e v a l_{I}\left(l_{i}\right)=e v a l_{I^{\prime}}\left(l_{i}\right)$ and adequately defining the $I^{\prime}\left(a_{j}\right)$.
Answer by just listing I^{\prime} for the 7 cases of I, completing the table:

l_{1}	l_{2}	l_{3}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}
0	0	1	\cdot	\cdot	0	1	\cdot	\cdot
0	1	0	\cdot	\cdot				
\cdot	\cdot	\cdot						

l_{1}	l_{2}	l_{3}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}
0	0	1	0	0	0	1	1	0
0	1	0	1	0	1	0	0	0
0	1	1	1	0	0	0	0	1
1	0	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0	1
1	1	0	0	0	1	0	1	0
1	1	1	0	0	0	0	1	1

3C) Exactly-1-SAT is the problem of deciding the satisfiability of a given set S of exactly-1 constraints. What do you think is the computational complexity of exactly-1-SAT? (polynomial?, NP-complete?, harder?). Why?

Answer: NP-complete.
It is NP-hard since 2 A and 2 B show how to reduce 3 -SAT to Exactly-1-SAT (note that $l_{1}+l_{2}+l_{3} \geq 1$ is in fact a clause $l_{1} \vee l_{2} \vee l_{3}$).
It is in NP since we can reduce Exactly-1-SAT to SAT: each exactly-1 constraint generates one clause for atleast-1 and we can use any well-known encoding for the atmost-1 (quadratic, Heule, ladder,...).

3D) Same question if all exactly- 1 constraints in S have the form $l+l^{\prime}=1$ for literals l and l^{\prime}.
Answer: Polynomial. We can reduce it to 2-SAT, expressing each constraint $l+l^{\prime}=1$ by two clauses: $l \vee l^{\prime}$ and $\neg l \vee \neg l^{\prime}$.

