Légica en la Informatica / Logic in Computer Science
Tuesday April 30th, 2019

Time: 1h30min. No books, lecture notes or formula sheets allowed.

1) (4 points)

la) Let F,G, H be formulas. Is it true that if 'V G = H then F' A —H is unsatisfiable? Prove it
using only the definition of propositional logic.

Answer: This is true. F'V G = H implies (by def. of logical consequence) that

for all I, if I = F'V G then I = H, which implies (by def. of |=) that

for all I, if eval;(F V G) =1 then eval;(H) = 1, which implies (by def of eval;(V) ) that

for all I, if maz(eval;(F'),eval;(G)) =1 then eval;(H) = 1, which implies (by def of max) that
for all I, if eval;(F) =1 then eval;(H) = 1, which implies (by arithmetic) that

for all I, if eval;(F) =1 then 1 — eval;(H) = 0, which implies (by def eval;(—) ) that

for all I, if eval;(F') =1 then eval;(—H) = 0, which implies (by def. of min) that

for all I, min(eval;(F),eval;(—H)) = 0, which implies (by def eval;(A)) that

for all I, eval;(F N —H) = 0, which implies (by def of =) that

for all I, I = F A—H, which implies (by def of unsatisfiable) that F' A =H is unsatisfiable.

1B) Let F' and G be propositional formulas. Is it true that if F' — G is satisfiable and F is satisfiable,
then G is satisfiable? Prove it using only the definition of propositional logic.

Answer: This is false. Counterexample: F' = p and G = p A =p. Then F — G, which is =F V G,
which is =p V (p A —p) is satisfiable: if we define I such that I(p) = 0, then I = —p and hence
I'E=-pV(pA-p). Also F is satisfiable: if we define I such that I(p) = 1, then I |= p. But G is not
satisfiable: there is no I such that I = p A —p.

2) (2 points) Let P be the set of four predicate symbols {p, q,r, s}.
2a) How many propositional formulas F' built over P exist?

Answer: infinitely many (including p, pVp, pVpVp...).

2b) My friend John has a list L = {F, Fy,..., Fioooo0} of one hundred thousand formulas over
{p,q,r,s}. He says that they are all logically non-equivalent, that is, F; # Fj for all 4,5 with 1 <i <
7 <100000. What is the most efficient way to check whether John is right for a given L? Why? Your
answer cannot be longer than 20 words.

Answer: Constant time. Just output: “no, John is not right”. F; # F; means that F; and F)
represent two different Boolean functions with 4 inputs, of which only 2(2Y) = 216 ~ 64000 exist.

3) (4 points) Let C be the atleast-1 constraint I + Iy + I3 > 1, where I3, 3,3 are literals, and let S
be the set of five exactly-1 constraints

{ h4+ar+as=1, latay+as=1, l3+a3=1, a+ax+as=1, az+as+as=1 }
where a; ...ag are distinct propositional symbols not occurring in C.
3A) Isit true that S = C? Why? (answer in at most two lines).
Answer: Yes. Assume S} C. Then 31 with I = S and I }£ C, i.e., —ly, —la, —lg true in I, implying
as true in I by constraint 3, —ays by 5, a; and ag by 1,2, contradicting constraint 4, i.e., that I = S.



3B) Is it true that any model I of C' can be extended to a model I’ of S?
Here, by “extending” I to I’ we mean that eval;(l;)=evalp(l;) and adequately defining the I'(a;).
Answer by just listing I’ for the 7 cases of I, completing the table:

ll ZQ lg ay; ay a3 a4 a5 ag

oo 1. . 0 1
0 1 0
ll l2 13 a]; ag a3 a4 a5 ag
o 0o 140 O O 1 1 O
o1 01 0 1 0 0 O
o1 1,1 0 O O 0 1
Answer: Yes: L oo0olo 1 1 0 0 o
1 0 1{]0 1 O O 0 1
11 00 0 1 0 1 O
11 1{0 0 O O 1 1

3C) Exactly-1-SAT is the problem of deciding the satisfiability of a given set S of exactly-1 constraints.
What do you think is the computational complexity of exactly-1-SAT? (polynomial?, NP-complete?,
harder?). Why?

Answer: NP-complete.

It is NP-hard since 2A and 2B show how to reduce 3-SAT to Exactly-1-SAT (note that Iy +1lo+13 > 1
is in fact a clause I; V l2 V I3).

It is in NP since we can reduce Exactly-1-SAT to SAT: each exactly-1 constraint generates one clause
for atleast-1 and we can use any well-known encoding for the atmost-1 (quadratic, Heule, ladder,...).

3D) Same question if all exactly-1 constraints in S have the form [ 4" = 1 for literals [ and I’.

Answer: Polynomial. We can reduce it to 2-SAT, expressing each constraint [ + 1’ = 1 by two
clauses: [VI' and —lV -l



