
Lógica en la Informática / Logic in Computer Science

Tuesday April 30th, 2019

Time: 1h30min. No books, lecture notes or formula sheets allowed.

1) (4 points)
1a) Let F,G,H be formulas. Is it true that if F ∨ G |= H then F ∧ ¬H is unsatisfiable? Prove it
using only the definition of propositional logic.

Answer: This is true. F ∨G |= H implies (by def. of logical consequence) that
for all I, if I |= F ∨G then I |= H, which implies (by def. of |=) that
for all I, if evalI(F ∨G) = 1 then evalI(H) = 1, which implies (by def of evalI(∨)) that
for all I, if max(evalI(F), evalI(G)) = 1 then evalI(H) = 1, which implies (by def of max) that
for all I, if evalI(F) = 1 then evalI(H) = 1, which implies (by arithmetic) that
for all I, if evalI(F) = 1 then 1− evalI(H) = 0, which implies (by def evalI(¬)) that
for all I, if evalI(F) = 1 then evalI(¬H) = 0, which implies (by def. of min) that
for all I, min(evalI(F), evalI(¬H)) = 0, which implies (by def evalI(∧)) that
for all I, evalI(F ∧ ¬H) = 0, which implies (by def of |=) that
for all I, I 6|= F ∧ ¬H, which implies (by def of unsatisfiable) that F ∧ ¬H is unsatisfiable.

1B) Let F and G be propositional formulas. Is it true that if F → G is satisfiable and F is satisfiable,
then G is satisfiable? Prove it using only the definition of propositional logic.

Answer: This is false. Counterexample: F = p and G = p ∧ ¬p. Then F → G, which is ¬F ∨ G,
which is ¬p ∨ (p ∧ ¬p) is satisfiable: if we define I such that I(p) = 0, then I |= ¬p and hence
I |= ¬p ∨ (p ∧ ¬p). Also F is satisfiable: if we define I such that I(p) = 1, then I |= p. But G is not
satisfiable: there is no I such that I |= p ∧ ¬p.

2) (2 points) Let P be the set of four predicate symbols {p, q, r, s}.
2a) How many propositional formulas F built over P exist?

Answer: infinitely many (including p, p ∨ p, p ∨ p ∨ p...).

2b) My friend John has a list L = {F1, F2, . . . , F100000} of one hundred thousand formulas over
{p, q, r, s}. He says that they are all logically non-equivalent, that is, Fi 6≡ Fj for all i, j with 1 ≤ i <
j ≤ 100000. What is the most efficient way to check whether John is right for a given L? Why? Your
answer cannot be longer than 20 words.

Answer: Constant time. Just output: “no, John is not right”. Fi 6≡ Fj means that Fi and Fj

represent two different Boolean functions with 4 inputs, of which only 2(2
4) = 216 ≈ 64000 exist.

3) (4 points) Let C be the atleast-1 constraint l1 + l2 + l3 ≥ 1, where l1, l2, l3 are literals, and let S
be the set of five exactly-1 constraints
{ l1 + a1 + a4 = 1, l2 + a2 + a4 = 1, l3 + a3 = 1, a1 + a2 + a5 = 1, a3 + a4 + a6 = 1 }

where a1 . . . a6 are distinct propositional symbols not occurring in C.

3A) Is it true that S |= C? Why? (answer in at most two lines).

Answer: Yes. Assume S 6|= C. Then ∃ I with I |= S and I 6|= C, i.e., ¬l1, ¬l2, ¬l3 true in I, implying
a3 true in I by constraint 3, ¬a4 by 5, a1 and a2 by 1,2, contradicting constraint 4, i.e., that I |= S.

3B) Is it true that any model I of C can be extended to a model I ′ of S?
Here, by “extending” I to I ′ we mean that evalI(li)=evalI′(li) and adequately defining the I ′(aj).
Answer by just listing I ′ for the 7 cases of I, completing the table:

l1 l2 l3 a1 a2 a3 a4 a5 a6
0 0 1 . . 0 1 . .
0 1 0 . .
. . .

Answer: Yes:

l1 l2 l3 a1 a2 a3 a4 a5 a6
0 0 1 0 0 0 1 1 0
0 1 0 1 0 1 0 0 0
0 1 1 1 0 0 0 0 1
1 0 0 0 1 1 0 0 0
1 0 1 0 1 0 0 0 1
1 1 0 0 0 1 0 1 0
1 1 1 0 0 0 0 1 1

3C) Exactly-1-SAT is the problem of deciding the satisfiability of a given set S of exactly-1 constraints.
What do you think is the computational complexity of exactly-1-SAT? (polynomial?, NP-complete?,
harder?). Why?

Answer: NP-complete.
It is NP-hard since 2A and 2B show how to reduce 3-SAT to Exactly-1-SAT (note that l1 + l2 + l3 ≥ 1
is in fact a clause l1 ∨ l2 ∨ l3).
It is in NP since we can reduce Exactly-1-SAT to SAT: each exactly-1 constraint generates one clause
for atleast-1 and we can use any well-known encoding for the atmost-1 (quadratic, Heule, ladder,...).

3D) Same question if all exactly-1 constraints in S have the form l + l′ = 1 for literals l and l′.

Answer: Polynomial. We can reduce it to 2-SAT, expressing each constraint l + l′ = 1 by two
clauses: l ∨ l′ and ¬l ∨ ¬l′.

